This patent claims priority to Indian Provisional Patent Application No. 202241077283, which was filed on Dec. 30, 2022. Indian Provisional Patent Application No. 202241077283 is hereby incorporated herein by reference in its entirety.
This disclosure relates generally to liquid cooling systems for electronic components and, more particularly, to telemetry systems for monitoring cooling of compute components and related apparatus and methods.
The use of liquids to cool electronic components is being explored for its benefits over more traditional air cooling systems, as there is an increasing need to address thermal management risks resulting from increased thermal design power in high performance systems (e.g., CPU and/or GPU servers in data centers, cloud computing, edge computing, and the like). More particularly, relative to air, liquid has inherent advantages of higher specific heat (when no boiling is involved) and higher latent heat of vaporization (when boiling is involved).
In general, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts. The figures are not necessarily to scale.
As used herein, connection references (e.g., attached, coupled, connected, and joined) may include intermediate members between the elements referenced by the connection reference and/or relative movement between those elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and/or in fixed relation to each other. As used herein, stating that any part is in “contact” with another part is defined to mean that there is no intermediate part between the two parts.
Unless specifically stated otherwise, descriptors such as “first,” “second,” “third,” etc., are used herein without imputing or otherwise indicating any meaning of priority, physical order, arrangement in a list, and/or ordering in any way, but are merely used as labels and/or arbitrary names to distinguish elements for ease of understanding the disclosed examples. In some examples, the descriptor “first” may be used to refer to an element in the detailed description, while the same element may be referred to in a claim with a different descriptor such as “second” or “third.” In such instances, it should be understood that such descriptors are used merely for identifying those elements distinctly within the context of the discussion (e.g., within a claim) in which the elements might, for example, otherwise share a same name.
As used herein, “approximately” and “about” modify their subjects/values to recognize the potential presence of variations that occur in real world applications. For example, “approximately” and “about” may modify dimensions that may not be exact due to manufacturing tolerances and/or other real world imperfections as will be understood by persons of ordinary skill in the art. For example, “approximately” and “about” may indicate such dimensions may be within a tolerance range of +/−10% unless otherwise specified in the below description.
As used herein, the phrase “in communication,” including variations thereof, encompasses direct communication and/or indirect communication through one or more intermediary components, and does not require direct physical (e.g., wired) communication and/or constant communication, but rather additionally includes selective communication at periodic intervals, scheduled intervals, aperiodic intervals, and/or one-time events.
As used herein, “programmable circuitry” is defined to include (i) one or more special purpose electrical circuits (e.g., an application specific circuit (ASIC)) structured to perform specific operation(s) and including one or more semiconductor-based logic devices (e.g., electrical hardware implemented by one or more transistors), and/or (ii) one or more general purpose semiconductor-based electrical circuits programmable with instructions to perform specific functions(s) and/or operation(s) and including one or more semiconductor-based logic devices (e.g., electrical hardware implemented by one or more transistors). Examples of programmable circuitry include programmable microprocessors such as Central Processor Units (CPUs) that may execute first instructions to perform one or more operations and/or functions, Field Programmable Gate Arrays (FPGAs) that may be programmed with second instructions to cause configuration and/or structuring of the FPGAs to instantiate one or more operations and/or functions corresponding to the first instructions, Graphics Processor Units (GPUs) that may execute first instructions to perform one or more operations and/or functions, Digital Signal Processors (DSPs) that may execute first instructions to perform one or more operations and/or functions, XPUs, Network Processing Units (NPUs) one or more microcontrollers that may execute first instructions to perform one or more operations and/or functions and/or integrated circuits such as Application Specific Integrated Circuits (ASICs). For example, an XPU may be implemented by a heterogeneous computing system including multiple types of programmable circuitry (e.g., one or more FPGAs, one or more CPUs, one or more GPUs, one or more NPUs, one or more DSPs, etc., and/or any combination(s) thereof), and orchestration technology (e.g., application programming interface(s) (API(s)) that may assign computing task(s) to whichever one(s) of the multiple types of programmable circuitry is/are suited and available to perform the computing task(s).
As used herein integrated circuit/circuitry is defined as one or more semiconductor packages containing one or more circuit elements such as transistors, capacitors, inductors, resistors, current paths, diodes, etc. For example, an integrated circuit may be implemented as one or more of an ASIC, an FPGA, a chip, a microchip, programmable circuitry, a semiconductor substrate coupling multiple circuit elements, a system on chip (SoC), etc.
As noted above, the use of liquids to cool electronic components is being explored for its benefits over more traditional air cooling systems, as there are increasing needs to address thermal management risks resulting from increased thermal design power in high performance systems (e.g., CPU and/or GPU servers in data centers, accelerators, artificial intelligence computing, machine learning computing, cloud computing, edge computing, and the like). More particularly, relative to air, liquid has inherent advantages of higher specific heat (when no boiling is involved) and higher latent heat of vaporization (when boiling is involved). In some instances, liquid can be used to indirectly cool electronic components by cooling a cold plate that is thermally coupled to the electronic component(s). An alternative approach is to directly immerse electronic components in the cooling liquid. In direct immersion cooling, the liquid can be in direct contact with the electronic components to directly draw away heat from the electronic components. To enable the cooling liquid to be in direct contact with electronic components, the cooling liquid is electrically insulative (e.g., a dielectric liquid).
A liquid cooling system can involve at least one of single-phase cooling or two-phase cooling. As used herein, single-phase cooling (e.g., single-phase immersion cooling) means the cooling fluid (sometimes also referred to herein as cooling liquid or coolant) used to cool electronic components draws heat away from heat sources (e.g., electronic components) without changing phase (e.g., without boiling and becoming vapor). Such cooling fluids are referred to herein as single-phase cooling fluids, liquids, or coolants. By contrast, as used herein, two-phase cooling (e.g., two-phase immersion cooling) means the cooling fluid (in this case, a cooling liquid) vaporizes or boils from the heat generated by the electronic components to be cooled, thereby changing from the liquid phase to the vapor phase. The gaseous vapor may subsequently be condensed back into a liquid (e.g., via a condenser) to again be used in the cooling process. Such cooling fluids are referred to herein as two-phase cooling fluids, liquids, or coolants. Notably, gases (e.g., air) can also be used to cool components and, therefore, may also be referred to as a cooling fluid and/or a coolant. However, indirect cooling and immersion cooling typically involves at least one cooling liquid (which may or may not change to the vapor phase when in use). Example systems, apparatus, and associated methods to improve cooling systems and/or associated cooling processes are disclosed herein.
In some edge environments, compute resources of an edge device can be purchased and/or accessed by one or more tenants (e.g., parties, clients, etc.). For instance, the tenants can purchase usage of and/or access to the compute resources to perform workloads for the corresponding tenants. In some cases, an amount, duration, and/or price of the compute resources purchased by a corresponding tenant are controlled based on a service-level agreement (SLA) or a service level objective (SLO) associated with the tenant. The SLA/SLO can further indicate a temperature at which the compute resources are to be maintained to facilitate performance of the workloads. In some cases, the compute resources generate heat while performing workloads for the tenants. As such, cooling systems are implemented in the edge environments to cool the compute resources to and/or maintain the compute resources at the temperature indicated in the SLA/SLO (e.g., to prevent overheating). In some instances, workloads may differ across the compute resources at a given time, such that cooling needs may vary across the compute resources. Further, the cooling needs for respective ones of compute resources may vary over time, such that tenants may wish to purchase fewer or greater cooling resources for the respective compute resources.
In some instances, a cooling system of an edge environment includes one or more cooling distribution units (CDUs) to distribute cooling resources to and/or between edge locations (e.g., edge nodes and/or devices) in the edge environment. The CDU(s) distribute the fluid based on amounts of cooling fluid purchased and/or expected by corresponding tenants operating at the edge locations. In some cases, the cooling resources expected and/or to be provided (e.g., to sufficiently cool a component, to meet SLA criteria) at a particular edge location may vary based on changing conditions. For instance, an amount of cooling fluid to cool a given node can vary as a result of a change in ambient temperature, a change in workload at the node, a change in a number of processor cores implemented at the node, an average power draw at the node, a peak power draw at the node, etc. In some such cases, additional cooling fluid may be expected and/or excess cooling fluid may be available for the node.
Telemetry provides for collection of data (e.g., performance data, operational data) associated with components (e.g., compute devices such as servers) of a system architecture that can be used by schedulers, orchestrators, operations support systems, and/or business support systems. For instance, data can be collected from performance counters associated with a central processing unit (CPU). In some known examples, information captured via telemetry is associated with a logical entity that is typically identified by a unique identifier. In emerging system architectures, the system can be understood as a volumetric and dynamic system and, thus, telemetry for the system should be expanded. For instance, some known cooling systems operate based on a level of telemetry that shows temperature for a particular element and/or a temperature of a coolant. However, additional details about the cooling behavior across the system would permit more robust analysis of heat reuse and cooling scheduling policies. For instance, in systems where cooling is used as a mean to dissipate heat, detailed information about cooling states throughout the system could permit the dissipated heat to be collected and distributed across other elements of the infrastructure.
Examples disclosed herein provide for dynamic adjustments of cooling parameters and/or workload parameters based on analysis of sensor telemetry and compute performance telemetry to facilitate performance of workloads. In particular, examples disclosed herein facilitate cooling of electronic components and/or performance of workloads to satisfy parameters set forth in SLAs/SLOs associated with the node. Examples disclosed herein provide for observability in the context of a system or infrastructure that considers cooling of multiple compute devices and capabilities to reuse heat generated during the cooling (e.g., to heat buildings). Examples disclosed herein monitor how the coolant is distributed within the system architecture and/or how resulting heated fluid (i.e., the coolant that has been previously exposed to heat-generating devices and, thus, has absorbed heat to facilitate cooling of the devices) is consumed. Examples disclosed herein provide for detailed cooling telemetry that can be used to establish heatmaps for the respective compute devices and the overall infrastructure. The heatmaps can be used to provide for, for example, advanced orchestration of resources and/or infrastructure analysis and prediction with respect to behavior of cooling and/or reuse of heat across the system. Examples disclosed herein can be used to implement metering and billing methods that promote sustainable heating and cooling resource policies. Some examples disclosed herein provide for implementation of billing and brokering models between tenants using the compute resources (e.g., based on service level agreements with a provider) with respect to cooling of the compute devices and/or consumption of reused heat.
The example environments of
The example environment(s) of
The example environment(s) of
In some instances, the example data centers 102, 106, 116 and/or building(s) 110 of
Although a certain number of cooling tank(s) and other component(s) are shown in the figures, any number of such components may be present. Also, the example cooling data centers and/or other structures or environments disclosed herein are not limited to arrangements of the size that are depicted in
A data center including disaggregated resources, such as the data center 200, can be used in a wide variety of contexts, such as enterprise, government, cloud service provider, and communications service provider (e.g., Telco's), as well in a wide variety of sizes, from cloud service provider mega-data centers that consume over 200,000 sq. ft. to single- or multi-rack installations for use in base stations.
In some examples, the disaggregation of resources is accomplished by using individual sleds that include predominantly a single type of resource (e.g., compute sleds including primarily compute resources, memory sleds including primarily memory resources). The disaggregation of resources in this manner, and the selective allocation and deallocation of the disaggregated resources to form a managed node assigned to execute a workload, improves the operation and resource usage of the data center 200 relative to typical data centers. Such typical data centers include hyperconverged servers containing compute, memory, storage and perhaps additional resources in a single chassis. For example, because a given sled will contain mostly resources of a same particular type, resources of that type can be upgraded independently of other resources. Additionally, because different resource types (programmable circuitry, storage, accelerators, etc.) typically have different refresh rates, greater resource utilization and reduced total cost of ownership may be achieved. For example, a data center operator can upgrade the programmable circuitry throughout a facility by only swapping out the compute sleds. In such a case, accelerator and storage resources may not be contemporaneously upgraded and, rather, may be allowed to continue operating until those resources are scheduled for their own refresh. Resource utilization may also increase. For example, if managed nodes are composed based on requirements of the workloads that will be running on them, resources within a node are more likely to be fully utilized. Such utilization may allow for more managed nodes to run in a data center with a given set of resources, or for a data center expected to run a given set of workloads, to be built using fewer resources.
Referring now to
It should be appreciated that any one of the other pods 220, 230, 240 (as well as any additional pods of the data center 200) may be similarly structured as, and have components similar to, the pod 210 shown in and disclosed in regard to
In the illustrative examples, at least some of the sleds of the data center 200 are chassis-less sleds. That is, such sleds have a chassis-less circuit board substrate on which physical resources (e.g., programmable circuitry, memory, accelerators, storage, etc.) are mounted as discussed in more detail below. As such, the rack 340 is configured to receive the chassis-less sleds. For example, a given pair 410 of the elongated support arms 412 defines a sled slot 420 of the rack 340, which is configured to receive a corresponding chassis-less sled. To do so, the elongated support arms 412 include corresponding circuit board guides 430 configured to receive the chassis-less circuit board substrate of the sled. The circuit board guides 430 are secured to, or otherwise mounted to, a top side 432 of the corresponding elongated support arms 412. For example, in the illustrative example, the circuit board guides 430 are mounted at a distal end of the corresponding elongated support arm 412 relative to the corresponding elongated support post 402, 404. For clarity of
The circuit board guides 430 include an inner wall that defines a circuit board slot 480 configured to receive the chassis-less circuit board substrate of a sled 500 when the sled 500 is received in the corresponding sled slot 420 of the rack 340. To do so, as shown in
It should be appreciated that the circuit board guides 430 are dual sided. That is, a circuit board guide 430 includes an inner wall that defines a circuit board slot 480 on each side of the circuit board guide 430. In this way, the circuit board guide 430 can support a chassis-less circuit board substrate on either side. As such, a single additional elongated support post may be added to the rack 340 to turn the rack 340 into a two-rack solution that can hold twice as many sled slots 420 as shown in
In some examples, various interconnects may be routed upwardly or downwardly through the elongated support posts 402, 404. To facilitate such routing, the elongated support posts 402, 404 include an inner wall that defines an inner chamber in which interconnects may be located. The interconnects routed through the elongated support posts 402, 404 may be implemented as any type of interconnects including, but not limited to, data or communication interconnects to provide communication connections to the sled slots 420, power interconnects to provide power to the sled slots 420, and/or other types of interconnects.
The rack 340, in the illustrative example, includes a support platform on which a corresponding optical data connector (not shown) is mounted. Such optical data connectors are associated with corresponding sled slots 420 and are configured to mate with optical data connectors of corresponding sleds 500 when the sleds 500 are received in the corresponding sled slots 420. In some examples, optical connections between components (e.g., sleds, racks, and switches) in the data center 200 are made with a blind mate optical connection. For example, a door on a given cable may prevent dust from contaminating the fiber inside the cable. In the process of connecting to a blind mate optical connector mechanism, the door is pushed open when the end of the cable approaches or enters the connector mechanism. Subsequently, the optical fiber inside the cable may enter a gel within the connector mechanism and the optical fiber of one cable comes into contact with the optical fiber of another cable within the gel inside the connector mechanism.
The illustrative rack 340 also includes a fan array 470 coupled to the cross-support arms of the rack 340. The fan array 470 includes one or more rows of cooling fans 472, which are aligned in a horizontal line between the elongated support posts 402, 404. In the illustrative example, the fan array 470 includes a row of cooling fans 472 for the different sled slots 420 of the rack 340. As discussed above, the sleds 500 do not include any on-board cooling system in the illustrative example and, as such, the fan array 470 provides cooling for such sleds 500 received in the rack 340. In other examples, some or all of the sleds 500 can include on-board cooling systems. Further, in some examples, the sleds 500 and/or the racks 340 may include and/or incorporate a liquid and/or immersion cooling system to facilitate cooling of electronic component(s) on the sleds 500. The rack 340, in the illustrative example, also includes different power supplies associated with different ones of the sled slots 420. A given power supply is secured to one of the elongated support arms 412 of the pair 410 of elongated support arms 412 that define the corresponding sled slot 420. For example, the rack 340 may include a power supply coupled or secured to individual ones of the elongated support arms 412 extending from the elongated support post 402. A given power supply includes a power connector configured to mate with a power connector of a sled 500 when the sled 500 is received in the corresponding sled slot 420. In the illustrative example, the sled 500 does not include any on-board power supply and, as such, the power supplies provided in the rack 340 supply power to corresponding sleds 500 when mounted to the rack 340. A given power supply is configured to satisfy the power requirements for its associated sled, which can differ from sled to sled. Additionally, the power supplies provided in the rack 340 can operate independent of each other. That is, within a single rack, a first power supply providing power to a compute sled can provide power levels that are different than power levels supplied by a second power supply providing power to an accelerator sled. The power supplies may be controllable at the sled level or rack level, and may be controlled locally by components on the associated sled or remotely, such as by another sled or an orchestrator.
Referring now to
As discussed above, the illustrative sled 500 includes a chassis-less circuit board substrate 702, which supports various physical resources (e.g., electrical components) mounted thereon. It should be appreciated that the circuit board substrate 702 is “chassis-less” in that the sled 500 does not include a housing or enclosure. Rather, the chassis-less circuit board substrate 702 is open to the local environment. The chassis-less circuit board substrate 702 may be formed from any material capable of supporting the various electrical components mounted thereon. For example, in an illustrative example, the chassis-less circuit board substrate 702 is formed from an FR-4 glass-reinforced epoxy laminate material. Other materials may be used to form the chassis-less circuit board substrate 702 in other examples.
As discussed in more detail below, the chassis-less circuit board substrate 702 includes multiple features that improve the thermal cooling characteristics of the various electrical components mounted on the chassis-less circuit board substrate 702. As discussed, the chassis-less circuit board substrate 702 does not include a housing or enclosure, which may improve the airflow over the electrical components of the sled 500 by reducing those structures that may inhibit air flow. For example, because the chassis-less circuit board substrate 702 is not positioned in an individual housing or enclosure, there is no vertically-arranged backplane (e.g., a back plate of the chassis) attached to the chassis-less circuit board substrate 702, which could inhibit air flow across the electrical components. Additionally, the chassis-less circuit board substrate 702 has a geometric shape configured to reduce the length of the airflow path across the electrical components mounted to the chassis-less circuit board substrate 702. For example, the illustrative chassis-less circuit board substrate 702 has a width 704 that is greater than a depth 706 of the chassis-less circuit board substrate 702. In one particular example, the chassis-less circuit board substrate 702 has a width of about 21 inches and a depth of about 9 inches, compared to a typical server that has a width of about 17 inches and a depth of about 39 inches. As such, an airflow path 708 that extends from a front edge 710 of the chassis-less circuit board substrate 702 toward a rear edge 712 has a shorter distance relative to typical servers, which may improve the thermal cooling characteristics of the sled 500. Furthermore, although not illustrated in
As discussed above, the illustrative sled 500 includes one or more physical resources 720 mounted to a top side 750 of the chassis-less circuit board substrate 702. Although two physical resources 720 are shown in
The sled 500 also includes one or more additional physical resources 730 mounted to the top side 750 of the chassis-less circuit board substrate 702. In the illustrative example, the additional physical resources include a network interface controller (NIC) as discussed in more detail below. Depending on the type and functionality of the sled 500, the physical resources 730 may include additional or other electrical components, circuits, and/or devices in other examples.
The physical resources 720 are communicatively coupled to the physical resources 730 via an input/output (I/O) subsystem 722. The I/O subsystem 722 may be implemented as circuitry and/or components to facilitate input/output operations with the physical resources 720, the physical resources 730, and/or other components of the sled 500. For example, the I/O subsystem 722 may be implemented as, or otherwise include, memory controller hubs, input/output control hubs, integrated sensor hubs, firmware devices, communication links (e.g., point-to-point links, bus links, wires, cables, waveguides, light guides, printed circuit board traces, etc.), and/or other components and subsystems to facilitate the input/output operations. In the illustrative example, the I/O subsystem 722 is implemented as, or otherwise includes, a double data rate 4 (DDR4) data bus or a DDR5 data bus.
In some examples, the sled 500 may also include a resource-to-resource interconnect 724. The resource-to-resource interconnect 724 may be implemented as any type of communication interconnect capable of facilitating resource-to-resource communications. In the illustrative example, the resource-to-resource interconnect 724 is implemented as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 722). For example, the resource-to-resource interconnect 724 may be implemented as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to resource-to-resource communications.
The sled 500 also includes a power connector 740 configured to mate with a corresponding power connector of the rack 340 when the sled 500 is mounted in the corresponding rack 340. The sled 500 receives power from a power supply of the rack 340 via the power connector 740 to supply power to the various electrical components of the sled 500. That is, the sled 500 does not include any local power supply (i.e., an on-board power supply) to provide power to the electrical components of the sled 500. The exclusion of a local or on-board power supply facilitates the reduction in the overall footprint of the chassis-less circuit board substrate 702, which may increase the thermal cooling characteristics of the various electrical components mounted on the chassis-less circuit board substrate 702 as discussed above. In some examples, voltage regulators are placed on a bottom side 850 (see
In some examples, the sled 500 may also include mounting features 742 configured to mate with a mounting arm, or other structure, of a robot to facilitate the placement of the sled 500 in a rack 340 by the robot. The mounting features 742 may be implemented as any type of physical structures that allow the robot to grasp the sled 500 without damaging the chassis-less circuit board substrate 702 or the electrical components mounted thereto. For example, in some examples, the mounting features 742 may be implemented as non-conductive pads attached to the chassis-less circuit board substrate 702. In other examples, the mounting features may be implemented as brackets, braces, or other similar structures attached to the chassis-less circuit board substrate 702. The particular number, shape, size, and/or make-up of the mounting feature 742 may depend on the design of the robot configured to manage the sled 500.
Referring now to
The memory devices 820 may be implemented as any type of memory device capable of storing data for the physical resources 720 during operation of the sled 500, such as any type of volatile (e.g., dynamic random access memory (DRAM), etc.) or non-volatile memory. Volatile memory may be a storage medium that requires power to maintain the state of data stored by the medium. Non-limiting examples of volatile memory may include various types of random access memory (RAM), such as dynamic random access memory (DRAM) or static random access memory (SRAM). One particular type of DRAM that may be used in a memory module is synchronous dynamic random access memory (SDRAM). In particular examples, DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for DDR3 SDRAM, JESD79-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR), JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4. Such standards (and similar standards) may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces.
In one example, the memory device is a block addressable memory device, such as those based on NAND or NOR technologies. A memory device may also include next-generation nonvolatile devices, such as Intel 3D XPoint™ memory or other byte addressable write-in-place nonvolatile memory devices. In one example, the memory device may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory. The memory device may refer to the die itself and/or to a packaged memory product. In some examples, the memory device may include a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance.
Referring now to
In the illustrative compute sled 900, the physical resources 720 include programmable circuitry 920. Although only two blocks of programmable circuitry 920 are shown in
In some examples, the compute sled 900 may also include a programmable circuitry-to-programmable circuitry interconnect 942. Similar to the resource-to-resource interconnect 724 of the sled 500 discussed above, the programmable circuitry-to-programmable circuitry interconnect 942 may be implemented as any type of communication interconnect capable of facilitating programmable circuitry-to-programmable circuitry interconnect 942 communications. In the illustrative example, the programmable circuitry-to-programmable circuitry interconnect 942 is implemented as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 722). For example, the programmable circuitry-to-programmable circuitry interconnect 942 may be implemented as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to programmable circuitry-to-programmable circuitry communications.
The compute sled 900 also includes a communication circuit 930. The illustrative communication circuit 930 includes a network interface controller (NIC) 932, which may also be referred to as a host fabric interface (HFI). The NIC 932 may be implemented as, or otherwise include, any type of integrated circuit, discrete circuits, controller chips, chipsets, add-in-boards, daughtercards, network interface cards, or other devices that may be used by the compute sled 900 to connect with another compute device (e.g., with other sleds 500). In some examples, the NIC 932 may be implemented as part of a system-on-a-chip (SoC) that includes one or more processor circuits, or included on a multichip package that also contains one or more processor circuits. In some examples, the NIC 932 may include a local processor circuit (not shown) and/or a local memory (not shown) that are both local to the NIC 932. In such examples, the local processor circuit of the NIC 932 may be capable of performing one or more of the functions of the programmable circuitry 920. Additionally or alternatively, in such examples, the local memory of the NIC 932 may be integrated into one or more components of the compute sled at the board level, socket level, chip level, and/or other levels.
The communication circuit 930 is communicatively coupled to an optical data connector 934. The optical data connector 934 is configured to mate with a corresponding optical data connector of the rack 340 when the compute sled 900 is mounted in the rack 340. Illustratively, the optical data connector 934 includes a plurality of optical fibers which lead from a mating surface of the optical data connector 934 to an optical transceiver 936. The optical transceiver 936 is configured to convert incoming optical signals from the rack-side optical data connector to electrical signals and to convert electrical signals to outgoing optical signals to the rack-side optical data connector. Although shown as forming part of the optical data connector 934 in the illustrative example, the optical transceiver 936 may form a portion of the communication circuit 930 in other examples.
In some examples, the compute sled 900 may also include an expansion connector 940. In such examples, the expansion connector 940 is configured to mate with a corresponding connector of an expansion chassis-less circuit board substrate to provide additional physical resources to the compute sled 900. The additional physical resources may be used, for example, by the programmable circuitry 920 during operation of the compute sled 900. The expansion chassis-less circuit board substrate may be substantially similar to the chassis-less circuit board substrate 702 discussed above and may include various electrical components mounted thereto. The particular electrical components mounted to the expansion chassis-less circuit board substrate may depend on the intended functionality of the expansion chassis-less circuit board substrate. For example, the expansion chassis-less circuit board substrate may provide additional compute resources, memory resources, and/or storage resources. As such, the additional physical resources of the expansion chassis-less circuit board substrate may include, but is not limited to, processor circuitry, memory devices, storage devices, and/or accelerator circuits including, for example, field programmable gate arrays (FPGA), application-specific integrated circuits (ASICs), security co-processor circuits, graphics processing units (GPUs), machine learning circuits, or other specialized processor circuits, controllers, devices, and/or circuits.
Referring now to
As discussed above, the separate programmable circuitry 920 and the communication circuit 930 are mounted to the top side 750 of the chassis-less circuit board substrate 702 such that no two heat-producing, electrical components shadow each other. In the illustrative example, the programmable circuitry 920 and the communication circuit 930 are mounted in corresponding locations on the top side 750 of the chassis-less circuit board substrate 702 such that no two of those physical resources are linearly in-line with others along the direction of the airflow path 708. It should be appreciated that, although the optical data connector 934 is in-line with the communication circuit 930, the optical data connector 934 produces no or nominal heat during operation.
The memory devices 820 of the compute sled 900 are mounted to the bottom side 850 of the of the chassis-less circuit board substrate 702 as discussed above in regard to the sled 500. Although mounted to the bottom side 850, the memory devices 820 are communicatively coupled to the programmable circuitry 920 located on the top side 750 via the I/O subsystem 722. Because the chassis-less circuit board substrate 702 is implemented as a double-sided circuit board, the memory devices 820 and the programmable circuitry 920 may be communicatively coupled by one or more vias, connectors, or other mechanisms extending through the chassis-less circuit board substrate 702. Different programmable circuitry 920 (e.g., different processor circuitry) may be communicatively coupled to a different set of one or more memory devices 820 in some examples. Alternatively, in other examples, different programmable circuitry 920 (e.g., different processor circuitry) may be communicatively coupled to the same ones of the memory devices 820. In some examples, the memory devices 820 may be mounted to one or more memory mezzanines on the bottom side of the chassis-less circuit board substrate 702 and may interconnect with a corresponding programmable circuitry 920 through a ball-grid array.
Different programmable circuitry 920 (e.g., different processor circuitry) include and/or is associated with corresponding heatsinks 950 secured thereto. Due to the mounting of the memory devices 820 to the bottom side 850 of the chassis-less circuit board substrate 702 (as well as the vertical spacing of the sleds 500 in the corresponding rack 340), the top side 750 of the chassis-less circuit board substrate 702 includes additional “free” area or space that facilitates the use of heatsinks 950 having a larger size relative to traditional heatsinks used in typical servers. Additionally, due to the improved thermal cooling characteristics of the chassis-less circuit board substrate 702, none of the programmable circuitry heatsinks 950 include cooling fans attached thereto. That is, the heatsinks 950 may be fan-less heatsinks. In some examples, the heatsinks 950 mounted atop the programmable circuitry 920 may overlap with the heatsink attached to the communication circuit 930 in the direction of the airflow path 708 due to their increased size, as illustratively suggested by
Referring now to
In the illustrative accelerator sled 1100, the physical resources 720 include accelerator circuits 1120. Although only two accelerator circuits 1120 are shown in
In some examples, the accelerator sled 1100 may also include an accelerator-to-accelerator interconnect 1142. Similar to the resource-to-resource interconnect 724 of the sled 500 discussed above, the accelerator-to-accelerator interconnect 1142 may be implemented as any type of communication interconnect capable of facilitating accelerator-to-accelerator communications. In the illustrative example, the accelerator-to-accelerator interconnect 1142 is implemented as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 722). For example, the accelerator-to-accelerator interconnect 1142 may be implemented as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to programmable circuitry-to-programmable circuitry communications. In some examples, the accelerator circuits 1120 may be daisy-chained with a primary accelerator circuit 1120 connected to the NIC 932 and memory 820 through the I/O subsystem 722 and a secondary accelerator circuit 1120 connected to the NIC 932 and memory 820 through a primary accelerator circuit 1120.
Referring now to
Referring now to
In the illustrative storage sled 1300, the physical resources 720 includes storage controllers 1320. Although only two storage controllers 1320 are shown in
In some examples, the storage sled 1300 may also include a controller-to-controller interconnect 1342. Similar to the resource-to-resource interconnect 724 of the sled 500 discussed above, the controller-to-controller interconnect 1342 may be implemented as any type of communication interconnect capable of facilitating controller-to-controller communications. In the illustrative example, the controller-to-controller interconnect 1342 is implemented as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 722). For example, the controller-to-controller interconnect 1342 may be implemented as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to programmable circuitry-to-programmable circuitry communications.
Referring now to
The storage cage 1352 illustratively includes sixteen mounting slots 1356 and is capable of mounting and storing sixteen solid state drives 1354. The storage cage 1352 may be configured to store additional or fewer solid state drives 1354 in other examples. Additionally, in the illustrative example, the solid state drives are mounted vertically in the storage cage 1352, but may be mounted in the storage cage 1352 in a different orientation in other examples. A given solid state drive 1354 may be implemented as any type of data storage device capable of storing long term data. To do so, the solid state drives 1354 may include volatile and non-volatile memory devices discussed above.
As shown in
As discussed above, the individual storage controllers 1320 and the communication circuit 930 are mounted to the top side 750 of the chassis-less circuit board substrate 702 such that no two heat-producing, electrical components shadow each other. For example, the storage controllers 1320 and the communication circuit 930 are mounted in corresponding locations on the top side 750 of the chassis-less circuit board substrate 702 such that no two of those electrical components are linearly in-line with each other along the direction of the airflow path 708.
The memory devices 820 (not shown in
Referring now to
In the illustrative memory sled 1500, the physical resources 720 include memory controllers 1520. Although only two memory controllers 1520 are shown in
In some examples, the memory sled 1500 may also include a controller-to-controller interconnect 1542. Similar to the resource-to-resource interconnect 724 of the sled 500 discussed above, the controller-to-controller interconnect 1542 may be implemented as any type of communication interconnect capable of facilitating controller-to-controller communications. In the illustrative example, the controller-to-controller interconnect 1542 is implemented as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 722). For example, the controller-to-controller interconnect 1542 may be implemented as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to programmable circuitry-to-programmable circuitry communications. As such, in some examples, a memory controller 1520 may access, through the controller-to-controller interconnect 1542, memory that is within the memory set 1532 associated with another memory controller 1520. In some examples, a scalable memory controller is made of multiple smaller memory controllers, referred to herein as “chiplets”, on a memory sled (e.g., the memory sled 1500). The chiplets may be interconnected (e.g., using EMIB (Embedded Multi-Die Interconnect Bridge) technology). The combined chiplet memory controller may scale up to a relatively large number of memory controllers and I/O ports, (e.g., up to 16 memory channels). In some examples, the memory controllers 1520 may implement a memory interleave (e.g., one memory address is mapped to the memory set 1530, the next memory address is mapped to the memory set 1532, and the third address is mapped to the memory set 1530, etc.). The interleaving may be managed within the memory controllers 1520, or from CPU sockets (e.g., of the compute sled 900) across network links to the memory sets 1530, 1532, and may improve the latency associated with performing memory access operations as compared to accessing contiguous memory addresses from the same memory device.
Further, in some examples, the memory sled 1500 may be connected to one or more other sleds 500 (e.g., in the same rack 340 or an adjacent rack 340) through a waveguide, using the waveguide connector 1580. In the illustrative example, the waveguides are 74 millimeter waveguides that provide 16 Rx (i.e., receive) lanes and 16 Tx (i.e., transmit) lanes. Different ones of the lanes, in the illustrative example, are either 16 GHz or 32 GHz. In other examples, the frequencies may be different. Using a waveguide may provide high throughput access to the memory pool (e.g., the memory sets 1530, 1532) to another sled (e.g., a sled 500 in the same rack 340 or an adjacent rack 340 as the memory sled 1500) without adding to the load on the optical data connector 934.
Referring now to
Additionally, in some examples, the orchestrator server 1620 may identify trends in the resource utilization of the workload (e.g., the application 1632), such as by identifying phases of execution (e.g., time periods in which different operations, having different resource utilizations characteristics, are performed) of the workload (e.g., the application 1632) and pre-emptively identifying available resources in the data center 200 and allocating them to the managed node 1670 (e.g., within a predefined time period of the associated phase beginning). In some examples, the orchestrator server 1620 may model performance based on various latencies and a distribution scheme to place workloads among compute sleds and other resources (e.g., accelerator sleds, memory sleds, storage sleds) in the data center 200. For example, the orchestrator server 1620 may utilize a model that accounts for the performance of resources on the sleds 500 (e.g., FPGA performance, memory access latency, etc.) and the performance (e.g., congestion, latency, bandwidth) of the path through the network to the resource (e.g., FPGA). As such, the orchestrator server 1620 may determine which resource(s) should be used with which workloads based on the total latency associated with different potential resource(s) available in the data center 200 (e.g., the latency associated with the performance of the resource itself in addition to the latency associated with the path through the network between the compute sled executing the workload and the sled 500 on which the resource is located).
In some examples, the orchestrator server 1620 may generate a map of heat generation in the data center 200 using telemetry data (e.g., temperatures, fan speeds, etc.) reported from the sleds 500 and allocate resources to managed nodes as a function of the map of heat generation and predicted heat generation associated with different workloads, to maintain a target temperature and heat distribution in the data center 200. Additionally or alternatively, in some examples, the orchestrator server 1620 may organize received telemetry data into a hierarchical model that is indicative of a relationship between the managed nodes (e.g., a spatial relationship such as the physical locations of the resources of the managed nodes within the data center 200 and/or a functional relationship, such as groupings of the managed nodes by the customers the managed nodes provide services for, the types of functions typically performed by the managed nodes, managed nodes that typically share or exchange workloads among each other, etc.). Based on differences in the physical locations and resources in the managed nodes, a given workload may exhibit different resource utilizations (e.g., cause a different internal temperature, use a different percentage of programmable circuitry or memory capacity) across the resources of different managed nodes. The orchestrator server 1620 may determine the differences based on the telemetry data stored in the hierarchical model and factor the differences into a prediction of future resource utilization of a workload if the workload is reassigned from one managed node to another managed node, to accurately balance resource utilization in the data center 200. In some examples, the orchestrator server 1620 may identify patterns in resource utilization phases of the workloads and use the patterns to predict future resource utilization of the workloads.
To reduce the computational load on the orchestrator server 1620 and the data transfer load on the network, in some examples, the orchestrator server 1620 may send self-test information to the sleds 500 to enable a given sled 500 to locally (e.g., on the sled 500) determine whether telemetry data generated by the sled 500 satisfies one or more conditions (e.g., an available capacity that satisfies a predefined threshold, a temperature that satisfies a predefined threshold, etc.). The given sled 500 may then report back a simplified result (e.g., yes or no) to the orchestrator server 1620, which the orchestrator server 1620 may utilize in determining the allocation of resources to managed nodes.
In the illustrated example of
A temperature of the coolant provided to the respective appliances 1702 increases due to exposure of the coolant the electronic components (e.g., heat emitted by the electronic components is absorbed by the coolant as the coolant flows past the electronic components). The heated coolant is carried away from the appliances 1702 by the heat distribution pipe(s) 1714. The heated fluid can be delivered to the heat consumers 1705 for purposes of heating, for example, a building. Thus, in the example of
For illustrative purposes, the appliances 1702 will be discussed in connection with the example appliance 1702A with the understanding that the other appliances 1702B, 1702C could include one or more of the same or similar components as the appliance 1702A. In the illustrated example of
In this example, the tanks 1718 include one or more example chassis 1720 (e.g., including a first chassis 1720A and a second chassis 1720B). In some examples, the tank 1718 includes an example tank CDU 1721 to direct the coolant provided to the tank 1804 to one(s) of the chassis 1720. The CDU 1721 can be in fluid communication with the appliance CDU 1704. While two of the chassis 1720 are shown in the illustrated example of
In the illustrated example of
In the illustrated example of
In some examples, one or more tenants can operate on the edge appliance 1702. In examples disclosed herein, a “tenant” refers to one or more users having access to one or more edge devices. As used herein, an “edge device” encompasses one or more of the appliances 1702, one or more of the tanks 1718, one or more of the chassis 1720, and/or one or more of the compute device(s) 1726 of the environment 1700 of
Service-level agreements (SLAs) or service-level objectives (SLOs) between (a) the provider(s) (e.g., owner(s)) of the edge appliance(s) 1702 and/or respective component(s) thereof and (b) the respective tenants can be used to define parameters such as workload(s) to be performed by the edge devices 1702, 1718, 1720, 1726 for the tenant, available memory for tenant workload(s), speed(s) at which the workload(s) are to be performed, time(s) at which the workload(s) are to be performed, etc. In some examples, the SLAs include quality of service (QoS) targets.
In the example of
In this example, the edge devices 1702, 1718, 1720, 1726 that are exposed to the coolant each include one or more of the sensors 1707. For example, the appliances 1702, the CDUs 1704, 1721, 1724, the tanks 1718, the chassis 1720, and the compute device(s) 1726 each include one or more of the sensors 1707. Further, the sensors 1707 can be associated with various locations within the edge devices 1702, 1718, 1720, 1726. In some examples, ones of the sensors 1707 may be positioned in the edge devices 1702, 1718, 1720, 1726 based on thermal activity associated with the area (e.g., where multiple processors are located and, thus, expected to output heat).
Additionally, ones of the sensors 1707 are positioned in, and/or operatively coupled to, the pipe(s) 1716 that convey the (lower temperature) fluid to the appliances 1702 and/or the tanks 1718 and the pipe(s) 1714 that carry (higher temperature) fluid to the heat consumers 1705. More generally, ones of the sensors 1707 are positioned in, and provide telemetry associated with, a certain area of, and/or position within, the environment 1700. For example, respective ones of the sensors 1707 are associated with certain positions within the pipes 1714, 1716 and certain positions within the appliances 1702 including certain positions within the CDUs 1704, 1721, 1724, certain positions within the tanks 1718, certain positions on and/or within the chassis 1720, and certain positions on and/or within the compute device(s) 1726. For example, one of the sensors 1707 positioned in, and/or operatively coupled to the heat distribution pipe 1714 can be positioned downstream of the sensor(s) 1707 in the first appliance 1702A. Such sensor(s) 1707 of the heat distribution pipe 1714 can be used to measure a temperature of the coolant exiting the first appliance 1702A before substantially flowing through the heat distribution pipe (e.g., to record an initial temperature of the heated fluid as a result of the heat dissipated by the compute device(s) 1726 into the coolant in advance of the coolant flowing through the heat distribution pipe). While a certain number of instances of the sensors 1707 is shown in
The outputs of the sensors 1707 are analyzed by example sensor circuitry 1706. In some examples, the sensor circuitry 1706 is implemented at, for instance, the appliance(s) 1702, the tank(s) 1718, the chassis 1720, the CDU(s) 1704, 1721, 1724, etc. in communication with one or more of the respective sensors 1707. In some examples, each sensor 1707 includes associated sensor circuitry 1706. In some examples, two or more sensors 1707 are in communication with the sensor circuitry 1706 located at, for example, the respective appliances 1702. In some examples, the sensor circuitry 1706 is implemented by, for example, a cloud-based device, programmable circuitry of a user device, etc. and the outputs of the sensor(s) 1707 are transmitted to the sensor circuitry 1706 via a network 1712. In some examples, outputs of sensor circuitry implemented at, for example, the respective appliances 1702 are transmitted via the network 1712 to (e.g., remote) sensor circuitry 1706 that serves as a central repository. The various locations of the sensor circuitry 1706 illustrated in
The example sensor circuitry 1706 of
In the illustrated example of
In the example of
In the example of
In addition to the metric(s) associated with properties of the coolant identified by the sensor circuitry 1706 and corresponding location(s) in the environment 1700 associated with the coolant properties (e.g., as determined based on the locations of the sensor(s) 1707), telemetry or outputs of the sensor circuitry 1706 can identify owner(s) of the edge device(s) 1702, 1718, 1720, 1726 associated with the location(s) and/or one or more tenant(s) accessing and/or utilizing those edge device(s) 1702, 1718, 1720, 1726. For example, telemetry from the sensor circuitry 1706 can indicate a temperature of the coolant and/or the edge device(s) 1702, 1718, 1720, 1726 measured by the sensor(s) 1707); a position of the sensor 1707 within the environment 1700 (e.g., three-dimensional (x-y-z) coordinates based on a mapping of the environment 1700); one or more edge device(s) 1702, 1718, 1720, 1726 associated with the position of the sensor 1707; an owner of the edge device(s) 1702, 1718, 1720, 1726; and/or a tenant or user associated with the edge device(s) 1702, 1718, 1720, 1726, etc.
In the illustrated example of
Also, in the example of
The example telemetry analysis circuitry 1708 aggregates the sensor telemetry and the compute performance telemetry to generate dynamic heatmaps that indicate temperatures within the environment 1700 and/or coolant parameters in the environment 1700. The heatmaps generated by the telemetry analysis circuitry 1708 can also include, indicate and/or reflect compute performance telemetry, a mapping of the edge devices 1702, 1718, 1720, 1726 in the environment 1700, and/or parameters of the SLAs associated with the compute device(s) 1726.
As used herein, a “heatmap” refers to a mapping of a metric (e.g., device temperature, coolant temperature, coolant flow rate) to a corresponding location, edge, and/or structure, which can be represented via an image (e.g., still or video) and/or numerically. For example, the heatmap may visually represent a corresponding environment (e.g., the environment 1700 of
The telemetry analysis circuitry 1708 can utilize the heatmaps to determine (e.g., measure, estimate, predict) coolant consumption within the environment 1700 by region, by time, by edge device 1702, 1718, 1720, 1726, etc. and/or available heat output for delivery to the heat consumer(s) 1705. In some examples, the telemetry analysis circuitry 1708 can determine a cooling strategy (e.g., a thermal management plan, a cooling program, cooling parameter(s) (e.g., coolant propert(ies) and/or coolant parameter(s); propert(ies) of workload distribution(s) and/or device operation(s); set point(s); metric(s); and/or adjustment(s) thereto) to be implemented based on the heatmap(s). The telemetry analysis circuitry 1708 is in communication with the CDUs 1704, 1721, 1724 (e.g., via the network 1712) and generates instructions to affect (e.g., control, adjust) distribution of the coolant by the CDUs 1704, 1721, 1724. For example, the telemetry analysis circuitry 1708 can cause the CDUs 1704, 1721, 1724 to increase an amount of coolant provided to a portion of a tank 1718 or a chassis 1720 including particular compute device(s) 1726 in response to those compute device(s) 1726 (or portions thereof) satisfying or being within a certain range of an operating temperature threshold defined in the SLA(s), detected based on the heatmap(s), etc.
For example, the telemetry analysis circuitry 1708 can cause the CDU(s) 1724, 1721, 1704 of the appliances 1702 distribute cooling fluid to the one or more edge devices 1702, 1718, 1720, 1726 based on the SLA(s) corresponding to the one or more tenants. The SLA(s) can indicate a particular threshold (e.g., maximum) temperature of edge device(s) 1702, 1718, 1720, 1726 corresponding to the tenants, a particular temperature or temperature range of coolant provided to the edge device(s) 1702, 1718, 1720, 1726, expected fluid properties or parameters of the coolant provided to the edge device(s) 1702, 1718, 1720, 1726 (e.g., flow rate, density), etc. In some examples, the telemetry analysis circuitry 1708 accesses compute performance telemetry data indicative of performance conditions (e.g., throughput, latency, instructions per second, etc.) associated with the compute device(s) 1726. In such examples, the telemetry analysis circuitry 1708 causes the CDUs 1724, 1721, 1704 of the appliances 1702 distribute cooling fluid to the one or more edge devices 1702, 1718, 1720, 1726 based on the compute performance telemetry data.
As an example, the appliance CDU 1704 can distribute the coolant to and/or between one(s) of the tanks 1718 based on a cooling strategy and/or cooling parameter(s) (e.g., a thermal management plan, a cooling program, cooling parameter set points and/or adjustments) determined by the telemetry analysis circuitry 1708. For example, the telemetry analysis circuitry 1708 can determine the cooling strategy and/or cooling parameter(s) based on telemetry from the sensor circuitry 1706 (e.g., indicative of temperatures of the coolant at particular locations in the appliance 1702 and/or operating temperatures of the compute device(s) 1726 at the appliance 1702); workloads of compute device(s) 1726 associated with the appliance 1702; and service level agreements associated with the compute device(s) 1726, as disclosed in further detail below. In some examples, the appliance CDU 1704 distributes the coolant to one(s) of the tanks 1718 via the one or more pipe(s) 1719 fluidly coupled to the tank(s) 1718. Similarly, the cooling strategy and/or cooling parameter(s) generated by the telemetry analysis circuitry 1708 may include coolant parameters associated with coolant that the appliance CDU 1704 is to bring into and/or release from the appliance 1702 to and/or from one or more of the pipe(s) 1714, 1716. As used herein, the term “coolant parameters” includes coolant properties, such as a temperature of the coolant, a density of the coolant, chemical properties of the coolant, a pressure of the coolant, a flow rate of the coolant, and/or the like.
In the illustrated example of
In the illustrated example of
The interface circuitry 1810 provides for interfaces between (a) the sensor circuitry 1706 and the sensors 1707, (b) the sensor circuitry 1706 and the telemetry analysis circuitry 1708, and/or (c) the sensor circuitry 1706 and the infrastructure monitoring circuitry 1710. The interface circuitry 1810 can be implemented by a communication device (e.g., a network interface card (NIC), a smart NIC, an Infrastructure Processing Unit (IPU), etc.) such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind). For example, the interface circuitry 1810 can be implemented by any type of interface standard, such as a wireless fidelity (Wi-Fi) interface, an Ethernet interface, a universal serial bus (USB), a Bluetooth interface, a near field communication (NFC) interface, a Peripheral Component Interconnect (PCI) interface, a Peripheral Component Interconnect express (PCI-e or PCIe) interface, and/or other types of interface standards.
The example interface circuitry 1810 facilitates access by the sensor circuitry 1706 to the outputs of the sensors 1707. The interface circuitry 1810 facilitates transmission of data generated by the sensor circuitry 1706 (e.g., sensor telemetry) to the telemetry analysis circuitry 1708 and/or the infrastructure monitoring circuitry 1710. In some examples, the interface circuitry 1810 receives information from the telemetry analysis circuitry 1708, such as location information and/or related edge device 1702, 1718, 1720, 1726, owner, and/or tenant information. The example interface circuitry 1810 exchanges information with the telemetry analysis circuitry 1708 and/or the infrastructure monitoring circuitry 1710 via the network 1712 of
As represented by arrow 1801 in
The sensor circuitry 1706 of the illustrated example includes the metric determination circuitry 1840 to process the electrical signal(s) output by the sensors 1707 and determine corresponding metric(s). For example, the metric determination circuitry 1840 can determine a temperature value, a chemical composition, a pressure value, a density, a flow rate, and/or other properties measured by the sensors 1707 at a given time and/or over time. In some examples, the metric determination circuitry 1840 is instantiated by programmable circuitry executing metric determination instructions and/or configured to perform operations such as those represented by the flowchart of
The sensor circuitry 1706 of the illustrated example includes the location identification circuitry 1850 to identify respective locations associated with the sensor 1707 from which the outputs are obtained. For example, the location identification circuitry 1850 can identify three-dimensional coordinates representative of a position of the sensor 1707 in the environment 1700. In some examples, the location identification circuitry 1850 receives and identifies a nearby location indicator, such as a radio-frequency identification tag associated with a location in the environment. In some examples, the location identification circuitry 1850 includes a global positioning system (GPS), a position sensor, and/or an altitude sensor that provide location information. In some examples, the location identification circuitry 1850 identifies a predetermined location of the sensor 1707 based on data (e.g., user defined mapping data, data received from the telemetry analysis circuitry 1708) stored in the datastore 1870. In some examples, the location identification circuitry 1850 is instantiated by programmable circuitry executing location identification instructions and/or configured to perform operations such as those represented by the flowchart of
The sensor circuitry 1706 includes metric linking circuitry 1860 to link or otherwise generate correlation(s) or mapping(s) between the determined metric, the identified location, an edge device 1702, 1718, 1720, 1726 associated with the location, an owner associated with the edge device 1702, 1718, 1720, 1726, and/or a tenant associated with the edge device 1702, 1718, 1720, 1726. For example, the metric linking circuitry 1860 can identify the edge device 1702, 1718, 1720, 1726, the owner, and/or the tenant based on data (e.g., user-defined tenant/owner data, data received from the telemetry analysis circuitry 1708) stored in the datastore 1870. In some examples, the metric linking circuitry 1860 identifies the edge device 1702, 1718, 1720, 1726, the owner, and/or the tenant based on the identified location. In the illustrated example of
In some examples, the sensor circuitry 1706 includes means for locating the sensors 1707. For example, the means for locating may be implemented by the location identification circuitry 1850. In some examples, the location identification circuitry 1850 may be instantiated by programmable circuitry such as the example programmable circuitry 3012 of
In some examples, the sensor circuitry 1706 includes means for linking data. For example, the means for linking may be implemented by metric linking circuitry 1860. In some examples, the metric linking circuitry 1860 may be instantiated by programmable circuitry such as the example programmable circuitry 3012 of
In some examples, the sensor circuitry 1706 includes means for determining metrics. For example, the means for determining metrics may be implemented by metric determination circuitry 1840. In some examples, the metric determination circuitry 1840 may be instantiated by programmable circuitry such as the example programmable circuitry 3012 of
In some examples, the sensor circuitry 1706 includes means for transmitting sensor telemetry. For example, the means for transmitting may be implemented by the interface circuitry 1810. In some examples, the interface circuitry 1810 may be instantiated by programmable circuitry such as the example programmable circuitry 3012 of
While an example manner of implementing the sensor circuitry 1706 of
In the illustrated example of
In the illustrated example of
The example interface circuitry 1910 receives or accesses sensor telemetry transmitted by the example sensor circuitry 1706 of
The telemetry analysis circuitry 1708 of the illustrated example includes the infrastructure map generation circuitry 1920 to generate map(s) corresponding to a layout of the environment 1700 of
In some examples, the infrastructure map generation circuitry 1920 generates one or more three-dimensional coordinate systems and identifies the locations of the edge devices 1702, 1718, 1720, 1726 and the pipe(s) 1714, 1716, 1719 within the coordinate system(s). In some examples, the infrastructure map generation circuitry 1920 generates coordinate systems for each of the appliances 1702 and/or the network of pipe(s) 1714, 1716, 1719. In such examples, the infrastructure map generation circuitry 1920 associates an identifier indicative of, for instance, the respective appliance 1702 or the pipe(s) 1714, 1716, 1719 (e.g., portions thereof within the environment 1700) with the three-dimensional coordinates. Similarly, the infrastructure map generation circuitry 1920 can generate three-dimensional coordinate systems and identifiers for the edge devices 1718, 1720, 1726 within the appliance 1702, such as the tanks 1718, the chassis 1720, the CDU 1724 of the chassis 1720, and/or the electronic component(s) and/or compute devices 1726 supported by the chassis 1720. In some examples, the infrastructure map generation circuitry 1920 identifies reference points for the spatial boundaries based on location(s) of an edge device 1702, 1718, 1720, 1726 or a related structure (e.g., the pipe(s) 1714, 1716, 1719) that conveys the coolant. In such examples, the infrastructure map generation circuitry 1920 can set the reference point as a particular location on (e.g., a corner of, an end of, a midpoint of, etc.) the appliance 1702, the tank 1718, the chassis 1720, the CDU 1724, the electrical component(s) 1726, and/or the pipe(s) 1714, 1716. For example, the infrastructure map generation circuitry 1920 can associate the reference point (e.g., a corner) of the first tank 1718A with the coordinate (Tank-1,0,0,0) where “Tank-1” is the coordinate system identifier and (0,0,0) are Cartesian coordinates along an x-axis, a y-axis, and a z-axis, respectively.
In the illustrated example of
The telemetry analysis circuitry 1708 of the illustrated example includes the heatmap generation circuitry 1930 to generate maps based on or representative of the metrics received in the sensor telemetry for the environment 1700. For example, the heatmap generation circuitry 1930 can access the sensor telemetry output by the sensor circuitry 1706 via the interface circuitry 1910. The heatmap generation circuitry 1930 can map the metric(s) to a location associated with the sensor using, for example, the location data generated by the infrastructure map generation circuitry 1920. In some examples, the sensor telemetry includes three-dimensional coordinates (e.g., indicative of a location of a sensor 1707 that provided the output corresponding to the metric). The heatmap generation circuitry 1930 can associate the metric with a specific position in the map generated by the infrastructure map generation circuitry 1920 (e.g., coolant temperature at a particular location). In some examples, the heatmap generation circuitry 1930 identifies a location associated with the particular metric based on data stored in the location datastore 1970. For example, the sensor telemetry can include an identification value associated with the respective sensor 1707 from which the metric was generated, and the heatmap generation circuitry 1930 can perform a look-up of the identification value in the location datastore 1970, which maps sensor identification values to associated locations. The example heatmap generation circuitry 1930 generates heatmaps associated with metrics communicated by the sensor telemetry. In some examples, heatmap generation circuitry 1930 incorporates parameters associated with the SLAs of the respective edge device(s) 1702, 1718, 1720, 1726 in the corresponding area of the generated heatmap(s).
Turning to
Although the heatmaps 2000, 2030, 2060 of
Returning again to
In the illustrated example of
For example, the cooling strategy determination circuitry 1950 can cause one or more of the CDU(s) 1704, 1721, 1724 to adjust a flow rate and/or direction (e.g., a velocity, an acceleration) of the coolant, a temperature of the coolant, a density of the coolant, and/or a chemical property associated with the coolant. In some examples, the cooling strategy determination circuitry 1950 determines a redistribution and/or schedule for one or more workload(s) being or to be performed by the compute device(s) 1726. In some examples, the cooling strategy determination circuitry 1950 determines one or more positional adjustment(s) of the CDU(s) 1704, 1721, 1724, the tanks 1718, the chassis 1720, and/or the compute device(s) 1726 within the appliance(s) 1702 to facilitate cooling and output data (e.g., reports) indicative of such positional adjustments for use by, for instance, an operator of a data center. In some examples, the positional adjustment recommendations include recommendations for a physical relocation of the compute device(s) 1726 in the environment 1700 so that a compute device 1726 that performs resource-intensive workloads is exposed to coolant having the lowest temperature first over other compute device(s) 1726 in the appliance 1702.
In some examples, the cooling strategy determination circuitry 1950 determines the cooling strategy and/or cooling parameter(s) to be implemented at one or more locations in the environment 1700 based on the sensor telemetry and/or compute performance telemetry received by the interface circuitry 1910 as well as SLAs associated with the edge devices 1702, 1718, 1720, 1726. For example, the cooling strategy determination circuitry 1950 can determine a workload thermal footprint associated with the compute device(s) 1726 based on an average power draw, a peak power draw, a stock-keeping unit (SKU) type, and/or a number of processor cores utilized by the compute device(s) 1726. In some examples, the cooling strategy determination circuitry 1950 determines target parameters of the coolant exposed to the compute device(s) 1726 based on the workload thermal footprint associated with the compute device(s) 1726. In some examples the cooling strategy determination circuitry 1950 determines or adjusts the cooling strategy and/or cooling parameter(s) to be implemented based on considerations of power consumption to implement the cooling strategy and/or cooling parameter(s), such as a power (e.g., in Watts) expected to be consumed by the CDU(s) 1704, 1721, 1724 to implement the cooling strategy, the power draw of the compute device(s) 1726, and/or an available power supply. In some examples the cooling strategy determination circuitry 1950 determines the cooling strategy and/or cooling parameter(s) to be implemented based on historical performance data associated with the edge devices 1702, 1718, 1720, 1726. In some examples, the cooling strategy determination circuitry 1950 determines the cooling strategy and/or cooling parameter(s) to be implemented at one or more locations in the environment 1700 based on passive effects on the coolant and/or temporal patterns in the heatmap(s). For example, the cooling strategy determination circuitry 1950 can determine that the coolant in the cooling distribution pipe 1716 is cooler at certain times (e.g., at night) and/or during certain seasons (e.g., in the winter). In such examples, the cooling strategy determination circuitry 1950 adjusts the cooling strategy and/or cooling parameter(s) based on a time of day, a time of year, and/or coolant parameters measured by the sensors 1707 associated with the cooling distribution pipe 1716.
In some examples, the cooling strategy determination circuitry 1950 determines operational performance adjustment(s) for the compute device(s) 1726 when the cooling strategy determination circuitry 1950 determines that target cooling parameters are not expected to be attained within a threshold period of time. In such examples, the performance adjustment may include an adjustment to a deployment of the workload provided to the compute device(s) 1726 for execution. For example, in response to output(s) of the sensor circuitry 1706 indicative of cooling and/or performance parameters associated with the first compute device 1726 (e.g., coolant temperature, device operating temperature), the cooling strategy determination circuitry 1950 can cause the workload associated with the first compute device 1726A to be redistributed to the second compute device 1726B to prevent, for instance, the first compute device 1726A from overheating.
In some examples, the cooling strategy determination circuitry 1950 determines a cooling priority associated with the edge device(s) 1702, 1718, 1720, 1726 based on the workload thermal footprint and/or the SLAs associated with the compute device(s) 1726. In such examples, the cooling strategy determination circuitry 1950 determines a cooling strategy and/or cooling parameter(s) that satisfies the cooling priority. For example, the cooling strategy and/or cooling parameter(s) can direct coolant to higher priority compute device(s) 1726 when the cooling strategy and/or cooling parameter(s) are unable to satisfy all or some threshold amount of the cooling targets across the environment 1700, within an appliance 1702, etc. In some examples, the cooling strategy determination circuitry 1950 is instantiated by programmable circuitry executing cooling strategy determination instructions and/or configured to perform operations such as those represented by the flowchart(s) of
In the illustrated example of
In some examples, the telemetry analysis circuitry 1708 includes means for generating an edge environment map. For example, the means for generating the edge environment map may be implemented by infrastructure map generation circuitry 1920. In some examples, infrastructure map generation circuitry 1920 may be instantiated by programmable circuitry such as the example programmable circuitry 3112 of
In some examples, the telemetry analysis circuitry 1708 includes means for analyzing data associated with the compute device(s) 1726. For example, the means for analyzing may be implemented by compute performance analysis circuitry 1940. In some examples, the compute performance analysis circuitry 1940 may be instantiated by programmable circuitry such as the example programmable circuitry 3112 of
In some examples, the telemetry analysis circuitry 1708 includes means for generating heatmap(s). For example, the means for generating the heatmap(s) may be implemented by heatmap generation circuitry 1930. In some examples, the heatmap generation circuitry 1930 may be instantiated by programmable circuitry such as the example programmable circuitry 3112 of
In some examples, the telemetry analysis circuitry 1708 includes means for determining a cooling strategy and/or cooling parameter(s). For example, the means for determining may be implemented by cooling strategy determination circuitry 1950. In some examples, the cooling strategy determination circuitry 1950 may be instantiated by programmable circuitry such as the example programmable circuitry 3112 of
In some examples, the telemetry analysis circuitry 1708 includes means for evaluating the cooling strategy and/or cooling parameter(s). For example, the means for evaluating may be implemented by cooling effect tracking circuitry 1960. In some examples, the cooling effect tracking circuitry 1960 may be instantiated by programmable circuitry such as the example programmable circuitry 3112 of
In some examples, the telemetry analysis circuitry 1708 includes means for outputting instructions. For example, the means for outputting may be implemented by interface circuitry 1910. In some examples, the interface circuitry 1910 may be instantiated by programmable circuitry such as the example programmable circuitry 3112 of
While an example manner of implementing the telemetry analysis circuitry 1708 of
In the illustrated example of
In the illustrated example of
In some examples, the interface circuitry 2110 receives or accesses sensor telemetry transmitted by the sensor circuitry 1706 of
The infrastructure monitoring circuitry 1710 of the illustrated example includes the thermal usage monitor circuitry 2115 to monitor consumption of heated fluid by the heat consumer(s) 1705 and/or consumption of cool fluid (e.g., coolant) by the edge device(s) 1702, 1718, 1720, 1726 for cooling purposes. For example, with respect to consumption of the heated fluid by the heat consumer(s) 1705, the thermal usage monitor circuitry 2115 can determine the changes in heat dissipation potential of the fluid in the heat distribution pipe 1714 over time based on the heatmaps generated by the telemetry analysis circuitry 1708. Further, the thermal usage monitor circuitry 2115 can determine the amount of heat consumption by the heat consumers 1705 based on the heatmaps. In some examples, the thermal usage monitor circuitry 2115 determines an amount of heating or cooling of the fluid that originated from a renewable source. In some examples, the thermal usage monitor circuitry 2115 determines an amount of heat that was passively provided to the fluid in the heat distribution pipe 1714 from natural resources, such as solar energy and/or a temperature encountered by an external surface of the heat distribution pipe 1714. For example, the pipe(s) 1714, 1716 may receive different thermal treatment based on a location thereof, a time of day, etc. In such examples, the thermal usage monitor circuitry 2115 can determine the amount of heat consumed by the heat consumers 1705 that was absorbed by the coolant in the heat distribution pipe 1714 from the natural resources (e.g., from the external environment encountered by the heat distribution pipe 1714). In some examples, the thermal usage monitor circuitry 2115 determines an amount of cooling that was passively provided to the coolant in the cooling distribution pipe 1716 (e.g., from the external environment encountered by the cooling distribution pipe 1716). In such examples, the heat usage processor circuitry can determine the amount of cooling consumed by the edge devices 1702, 1718, 1720, 1726 that originated from the natural resources.
In the illustrated example of
In the illustrated example of
In the illustrated example of
The infrastructure monitoring circuitry 1710 of the illustrated example includes the device grouping circuitry 2120 to group the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1707 based on positions of the components in the environment 1700. For example, the device grouping circuitry 2120 can group the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1707 by respective chassis 1720 in which the compute device(s) 1726 are positioned, by respective tanks 1718 in which the compute device(s) 1726 are positioned, by respective partitions within the tanks 1718 associated with the compute device(s) 1726, and/or by the appliances 1702. The grouping(s) can be based on, for example, proximity of the components to each other, expected exposure of the components to the same fluid flow paths of the coolant, etc. The example device grouping circuitry 2120 stores the identified groups of the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1706 via the device grouping datastore 2180. In some examples, the device grouping circuitry 2120 is instantiated by programmable circuitry executing device grouping instructions and/or configured to perform operations such as those represented by the flowchart of
The infrastructure monitoring circuitry 1710 of the illustrated example includes the anonymization circuitry 2130 to anonymize the data that the interface circuitry 2110 receives from the compute device(s) 1726, the sensor circuitry 1706, and/or the telemetry analysis circuitry 1708. For example, the anonymization circuitry 2130 can remove any information associated with an owner or a tenant associated with the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1707 in the device grouping datastore 2180. In some examples, the anonymization circuitry 2130 associates the sensor telemetry and/or the compute performance telemetry with an anonymous identifier provided to (e.g., only to) the owner or tenant associated with the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1706. In some examples, the SLA associated with the compute device(s) 1726 is maintained with the anonymized data to enable anonymized performance evaluation. In some examples, the anonymization circuitry 2130 is instantiated by programmable circuitry executing anonymization instructions and/or configured to perform operations such as those represented by the flowchart of
The infrastructure monitoring circuitry 1710 of the illustrated example includes the blockchain generator circuitry 2140 to build a blockchain including the sensor telemetry and/or the compute performance telemetry associated with the environment 1700 and/or instructions generated/executed in connection with the telemetry data, such as version of cooling strategies and/or cooling parameter(s) generated or implemented at particular times for particular components of the environment 1700. For example, the blockchain generator circuitry 2140 can construct the blockchain with the identifiers (which, in some examples, are modified, anonymous, scrambled, etc. to protect owner/tenant privacy) and associated sensor telemetry and/or compute performance telemetry. The example blockchain generator circuitry 2140 can update and store the blockchain via the blockchain datastore 2190. In some examples, the blockchain generator circuitry 2140 is instantiated by programmable circuitry executing blockchain processor instructions and/or configured to perform operations such as those represented by the flowchart of
The infrastructure monitoring circuitry 1710 includes the event detection circuitry 2150 to detect when the compute device(s) 1726 experience an event associated with performance and/or cooling of the compute device(s) 1726 and that caused or is likely to cause non-compliance with a parameter of an SLA. For example, the event detection circuitry 2150 can determine when the sensor telemetry and/or the compute performance telemetry indicates that an operating temperature of the compute device(s) 1726 exceeded a temperature identified in the SLA associated with the compute device(s) 1726. As another example, based on the sensor telemetry and/or the compute performance telemetry, the event detection circuitry 2150 can determine that flow rate of coolant provided to an appliance presents a risk of failing to satisfy a cooling parameter defined in the SLA. In some examples, the event detection circuitry 2150 is instantiated by programmable circuitry executing event detection instructions and/or configured to perform operations such as those represented by the flowchart of
The infrastructure monitoring circuitry 1710 of the illustrated example includes the event determination circuitry 2160 to determine (e.g., identify, predict) cause(s) or potential cause(s) associated with an event detected by the event detection circuitry 2150. For example, the event determination circuitry 2160 can analyze compute performance telemetry associated with the compute device(s) 1726 that encountered the event. In some examples, the event determination circuitry 2160 determines compute parameters associated with the compute device(s) 1726 caused the event in response to one or more of the compute parameters satisfying respective thresholds. For example, such compute parameter thresholds can be set based on the SLA and the temperature at which the compute device(s) 1726 are to be maintained. In some examples, event determination circuitry 2160 analyzes compute parameters and/or sensor telemetry of other compute device(s) 1726. In such examples, the event determination circuitry 2160 identifies the other compute device(s) 1726 via the device grouping datastore 2180. In some examples, the event determination circuitry 2160 analyzes the compute performance and/or sensor telemetry of the other compute device(s) 1726 via the blockchain datastore 2190. For example, the event determination circuitry 2160 can identify a higher workload of the other compute device(s) 1726 in spatial proximity to the compute device(s) 1726 that encountered the event. In such examples, the event determination circuitry 2160 can determine the higher workload caused the temperature of the coolant to increase and, thus, caused the compute device(s) 1726 that experienced the event to be exposed to coolant that was not sufficiently cool enough to cool those devices. In some examples, the event determination circuitry 2160 can determine the higher workload of the other compute deice(s) 1726 caused an adjustment to the cooling strategy and/or cooling parameter(s) that resulted in coolant being directed away from the compute device(s) 1726 that encountered the event, thereby indicating that the adjustment may need further revision. In some examples, the event determination circuitry 2160 determines coolant properties that were factors in the occurrence of the event. For example, the event determination circuitry 2160 can identify distribution patterns of the coolant, a temperature of the coolant, and/or other coolant parameters associated with the coolant prior to (e.g., in temporal proximity to) or at the time of the event. As such, the event determination circuitry 2160 can identify components and/or factors in the environment that cause, likely caused, or substantially contributed to the occurrence of the event. In some examples, the event determination circuitry 2160 is instantiated by programmable circuitry executing event determination instructions and/or configured to perform operations such as those represented by the flowchart of
The infrastructure monitoring circuitry 1710 of the illustrated example includes the adjustment determination circuitry 2170 to determine cooling strategy and/or cooling parameter(s) adjustments to be made based on a detected event and a determined or predicted cause of the detected event. For example, the adjustment determination circuitry 2170 can determine certain ones of the workload-intensive component(s) 1726 in a chassis 1720 should not be in the same group (e.g., spatial proximity) because cooling of multiple workload-intensive component(s) 1726 located in close proximity may be less efficient than if the component(s) 1726 were located in different areas of the chassis 1720 (e.g., where each device can be exposed to lower temperature coolant). In some examples, the adjustment determination circuitry 2170 determines limits to be placed on compute parameters (e.g., a power draw) associated with the compute device(s) 1726. For example, the adjustment determination circuitry 2170 can determine that the compute parameters of the compute device(s) 1726 that cause or likely contributed to the occurrence of the event are not to exceed a compute parameter threshold (e.g., a power draw limit) for a threshold period of time. In some examples, the adjustment determination circuitry 2170 determines one or more compute parameter threshold(s) and/or time limit threshold(s) for the compute device(s) 1726 within a spatial proximity region in the environment 1700.
In some examples, the adjustment determination circuitry 2170 learns which cooling strategy and/or cooling parameter(s) adjustments to implement based on the determined or predicted cause of the event and techniques such as machine learning. In such examples, the adjustment determination circuitry 2170 determines coolant parameter thresholds and/or associated time limits for which the thresholds can be satisfied before an adjustment needs to be made to prevent the compute device(s) 1726 from encountering an event. In some examples, the adjustment determination circuitry 2170 determines cooling parameter adjustments and/or cooling strategy adjustments that may have prevented the event or can be implemented to prevent a likelihood of occurrence of the event (e.g., increased flow rate of coolant to a particular edge device 1702, 1718, 1720, 1726). The example adjustment determination circuitry 2170 causes the interface circuitry 2110 to communicate the coolant and/or compute parameter adjustments to be made in an effort to reduce further occurrence of events to the telemetry analysis circuitry 1708. The telemetry analysis circuitry 1708 can incorporate the adjustments in the cooling strategies and/or cooling parameter(s). In some examples, the adjustment determination circuitry 2170 is instantiated by programmable circuitry executing adjustment determination instructions and/or configured to perform operations such as those represented by the flowchart of
In some examples, the infrastructure monitoring circuitry 1710 includes means for metering heat and/or cooling consumption. For example, the means for metering may be implemented by thermal usage monitor circuitry 2115. In some examples, the thermal usage monitor circuitry 2115 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of
In some examples, the infrastructure monitoring circuitry 1710 includes means for grouping components. For example, the means for grouping may be implemented by device grouping circuitry 2120. In some examples, the device grouping circuitry 2120 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of FIG. 32. For instance, the device grouping circuitry 2120 may be instantiated by the example microprocessor 3300 of
In some examples, the infrastructure monitoring circuitry 1710 includes means for anonymizing data. For example, the means for anonymizing may be implemented by anonymization circuitry 2130. In some examples, the anonymization circuitry 2130 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of
In some examples, the infrastructure monitoring circuitry 1710 includes means for constructing a blockchain. For example, the means for constructing may be implemented by blockchain generator circuitry 2140. In some examples, the blockchain generator circuitry 2140 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of
In some examples, the infrastructure monitoring circuitry 1710 includes means for detecting events. For example, the means for detecting may be implemented by event detection circuitry 2150. In some examples, the event detection circuitry 2150 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of
In some examples, the infrastructure monitoring circuitry 1710 includes means for determining cause(s) of event(s). For example, the means for determining may be implemented by event determination circuitry 2160. In some examples, the event determination circuitry 2160 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of
In some examples, the infrastructure monitoring circuitry 1710 includes means for determining adjustments to the compute device(s) 1726, cooling strategies, and/or cooling parameter(s). For example, the means for determining adjustments may be implemented by adjustment determination circuitry 2170. In some examples, the adjustment determination circuitry 2170 may be instantiated by programmable circuitry such as the example programmable circuitry 3212 of
In the example of
While an example manner of implementing the infrastructure monitoring circuitry of
A flowchart representative of example machine readable instructions, which may be executed by programmable circuitry to implement and/or instantiate the sensor circuitry 1706 of
Flowcharts representative of example machine readable instructions, which may be executed by programmable circuitry to implement and/or instantiate the telemetry analysis circuitry 1708 of
Flowcharts representative of example machine readable instructions, which may be executed by programmable circuitry to implement and/or instantiate the infrastructure monitoring circuitry 1710 of
The program(s) may be embodied in instructions (e.g., software and/or firmware) stored on one or more non-transitory computer readable and/or machine readable storage medium such as cache memory, a magnetic-storage device or disk (e.g., a floppy disk, a Hard Disk Drive (HDD), etc.), an optical-storage device or disk (e.g., a Blu-ray disk, a Compact Disk (CD), a Digital Versatile Disk (DVD), etc.), a Redundant Array of Independent Disks (RAID), a register, ROM, a solid-state drive (SSD), SSD memory, non-volatile memory (e.g., electrically erasable programmable read-only memory (EEPROM), flash memory, etc.), volatile memory (e.g., Random Access Memory (RAM) of any type, etc.), and/or any other storage device or storage disk. The instructions of the non-transitory computer readable and/or machine readable medium may program and/or be executed by programmable circuitry located in one or more hardware devices, but the entire program and/or parts thereof could alternatively be executed and/or instantiated by one or more hardware devices other than the programmable circuitry and/or embodied in dedicated hardware. The machine readable instructions may be distributed across multiple hardware devices and/or executed by two or more hardware devices (e.g., a server and a client hardware device). For example, the client hardware device may be implemented by an endpoint client hardware device (e.g., a hardware device associated with a human and/or machine user) or an intermediate client hardware device gateway (e.g., a radio access network (RAN)) that may facilitate communication between a server and an endpoint client hardware device. Similarly, the non-transitory computer readable storage medium may include one or more mediums. Further, although the example program is described with reference to the flowchart(s) illustrated in
The machine readable instructions described herein may be stored in one or more of a compressed format, an encrypted format, a fragmented format, a compiled format, an executable format, a packaged format, etc. Machine readable instructions as described herein may be stored as data (e.g., computer-readable data, machine-readable data, one or more bits (e.g., one or more computer-readable bits, one or more machine-readable bits, etc.), a bitstream (e.g., a computer-readable bitstream, a machine-readable bitstream, etc.), etc.) or a data structure (e.g., as portion(s) of instructions, code, representations of code, etc.) that may be utilized to create, manufacture, and/or produce machine executable instructions. For example, the machine readable instructions may be fragmented and stored on one or more storage devices, disks and/or computing devices (e.g., servers) located at the same or different locations of a network or collection of networks (e.g., in the cloud, in edge devices, etc.). The machine readable instructions may require one or more of installation, modification, adaptation, updating, combining, supplementing, configuring, decryption, decompression, unpacking, distribution, reassignment, compilation, etc., in order to make them directly readable, interpretable, and/or executable by a computing device and/or other machine. For example, the machine readable instructions may be stored in multiple parts, which are individually compressed, encrypted, and/or stored on separate computing devices, wherein the parts when decrypted, decompressed, and/or combined form a set of computer-executable and/or machine executable instructions that implement one or more functions and/or operations that may together form a program such as that described herein.
In another example, the machine readable instructions may be stored in a state in which they may be read by programmable circuitry, but require addition of a library (e.g., a dynamic link library (DLL)), a software development kit (SDK), an application programming interface (API), etc., in order to execute the machine-readable instructions on a particular computing device or other device. In another example, the machine readable instructions may need to be configured (e.g., settings stored, data input, network addresses recorded, etc.) before the machine readable instructions and/or the corresponding program(s) can be executed in whole or in part. Thus, machine readable, computer readable and/or machine readable media, as used herein, may include instructions and/or program(s) regardless of the particular format or state of the machine readable instructions and/or program(s).
The machine readable instructions described herein can be represented by any past, present, or future instruction language, scripting language, programming language, etc. For example, the machine readable instructions may be represented using any of the following languages: C, C++, Java, C #, Perl, Python, JavaScript, HyperText Markup Language (HTML), Structured Query Language (SQL), Swift, etc.
As mentioned above, the example operations of
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc., may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, (6) B with C, or (7) A with B and with C. As used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. Similarly, as used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. As used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. Similarly, as used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B.
As used herein, singular references (e.g., “a”, “an”, “first”, “second”, etc.) do not exclude a plurality. The term “a” or “an” object, as used herein, refers to one or more of that object. The terms “a” (or “an”), “one or more”, and “at least one” are used interchangeably herein. Furthermore, although individually listed, a plurality of means, elements, or actions may be implemented by, e.g., the same entity or object. Additionally, although individual features may be included in different examples or claims, these may possibly be combined, and the inclusion in different examples or claims does not imply that a combination of features is not feasible and/or advantageous.
At block 2404, the sensor circuitry 1706 identifies a location within the environment where the sensors 1707 are positioned. For example, the location identification circuitry 1850 can identify three-dimensional coordinates representative of a position of the sensors 1707 in the environment 1700. In some examples, the location identification circuitry 1850 receives and/or identifies a nearby location indicator, such as a radio-frequency identification tag, associated with a location in the environment. In some examples, the location identification circuitry 1850 includes a global positioning system (GPS), a position sensor, and/or an altitude sensor that provide location information. In some examples, the location identification circuitry 1850 identifies a predetermined location of the sensor circuitry 1706 via the datastore 1870. For example, the location identification circuitry 1850 can determine the respective locations of the sensors 1707 based on identifiers (e.g., identification values) that the sensors 1707 output and locations associated with the identifies stored in the datastore 1870.
At block 2406, the sensor circuitry 1706 identifies one or more structures (e.g., the pipe(s) 1714, 1716); edge device(s) 1702, 1718, 1720, 1726; owner(s); and/or tenant(s) associated with the sensor output(s) and/or data derived therefrom. In some examples, the metric linking circuitry 1860 identifies the edge device 1702, 1718, 1720, 1726, the heat consumers 1705, the owner, and/or the tenant associated with the identifiers of the sensors in the datastore 1870. In some examples, the metric linking circuitry 1860 identifies the edge device 1702, 1718, 1720, 1726, the heat consumers 1705, the owner, and/or the tenant based on the identified location of the sensor circuitry 1706. In such examples, the metric linking circuitry 1860 identifies areas associated with the edge device 1702, 1718, 1720, 1726, the heat consumers 1705, the owner, and/or the tenant via the datastore 1870. Accordingly, the metric linking circuitry 1860 can correlate the identified location of the sensor circuitry 1706 with coordinates of an edge device 1702, 1718, 1720, 1726, a heat consumer 1705, an owner, and/or a tenant having an area that includes or is near the identified location. In some examples, the metric linking circuitry 1860 causes the interface circuitry 1810 to transmit a request for one or more identifier(s) of the edge device 1702, 1718, 1720, 1726, the heat consumers 1705, the owner, and/or the tenant to the compute device(s) 1726 and/or the telemetry analysis circuitry 1708. In some examples, the interface circuitry 1810 receives information associated with one or more related edge device(s) 1702, 1718, 1720, 1726, the heat consumers 1705, an owner of the related edge device(s) 1702, 1718, 1720, 1726 or the heat consumers 1705, and/or a tenant of the related edge device(s) 1702, 1718, 1720, 1726 or the heat consumers 1705 from the compute device(s) 1726 and/or the telemetry analysis circuitry 1708.
At block 2408, the sensor circuitry 1706 identifies metrics corresponding to the signals that the sensors 1707 outputted. For example, the metric determination circuitry 1840 can determine a temperature value, a chemical composition, a pressure value, a density, a flow rate, and/or any other property measured by the sensor(s) 1707.
At block 2410, the sensor circuitry 1706 transmits sensor telemetry to the telemetry analysis circuitry 1708 and/or the infrastructure monitoring circuitry 1710. For example, the sensor telemetry can include the determined metric (e.g., a value for the metric and a label for property represented by the metric); the location of the related sensor 1707; and/or associated structures (e.g., the pipe(s) 1714, 1716), edge device(s) 1702, 1718, 1720, 1726, owner(s), and/or tenant(s). In some examples, the metric linking circuitry 1860 links the determined metric, the identified location, a pipe 1714, 1716 and/or an edge device 1702, 1718, 1720, 1726 associated with the location, an owner associated with the edge device 1702, 1718, 1720, 1726, and/or a tenant associated with the edge device 1702, 1718, 1720, 1726 to form a sensor telemetry packet. In some examples, the metric linking circuitry 1860 causes the interface circuitry 1810 to transmit the sensor telemetry packet to the telemetry analysis circuitry 1708 and/or the infrastructure monitoring circuitry 1710.
At block 2504, the telemetry analysis circuitry 1708 generates a map of the environment 1700. For example, the infrastructure map generation circuitry 1920 identifies and/or indicates the locations of the edge devices 1702, 1718, 1720, 1726 and the pipe(s) 1714, 1716, 1719 within the generated coordinate system(s). In some examples, the infrastructure map generation circuitry 1920 sets the locations of the locations of the edge devices 1702, 1718, 1720, 1726 and the pipe(s) 1714, 1716, 1719 based on the sensor telemetry. For example, the infrastructure map generation circuitry 1920 can identify an area occupied by the edge devices 1702, 1718, 1720, 1726 and the pipe(s) 1714, 1716, 1719 based on the location information in the sensor telemetry and the edge device 1702, 1718, 1720, 1726 or pipe 1714, 1716, 1719 identified by the sensor telemetry. In some examples, the infrastructure map generation circuitry 1920 identifies an area occupied by the edge devices 1702, 1718, 1720, 1726 and/or the pipe(s) 1714, 1716, 1719 in the coordinate system(s) based on an input received by the interface circuitry 1910. In some examples, the infrastructure map generation circuitry 1920 identifies an area occupied by the edge devices 1702, 1718, 1720, 1726 and/or the pipe(s) 1714, 1716, 1719 via the location datastore 1970.
At block 2506, the telemetry analysis circuitry 1708 identifies SLAs associated with one or more of the edge device(s) 1702, 1718, 1720, 1726 in the generated map(s). In some examples, the compute performance analysis circuitry 1940 accesses compute performance telemetry and service level agreements associated with the compute device(s) 1726 via the interface circuitry 1910 and the SLA datastore 1980, respectively. In such examples, the infrastructure map generation circuitry 1920 inserts parameters associated with the SLAs of the respective edge device(s) 1702, 1718, 1720, 1726 in the corresponding area of the generated map(s). For example, the infrastructure map generation circuitry 1920 can indicate a temperature range that the compute device(s) 1726 are to be within in an area of the map(s) associated with the compute device(s) 1726.
At block 2508, the telemetry analysis circuitry 1708 determines a cooling strategy and/or cooling parameter(s) to be implemented in the environment 1700 and/or portion(s) thereof based on the generated map(s). In some examples, the cooling strategy determination circuitry 1950 determines a target temperature for the coolant, a target density for the coolant, and/or other target fluid and/or chemical properties for the coolant in certain areas of the environment. In such examples, the cooling strategy determination circuitry 1950 can generate instructions to affect operation of the CDUs 1704, 1721, 1724, devices associated with the pipe(s) 1714, 1716, 1719 (e.g., valves, pumps, etc.), and/or the compute device(s) 1726 to attain the target property identified in the respective SLA(s) of the edge device(s) 1702, 1718, 1720, 1726 in the corresponding area. For example, the cooling strategy determination circuitry 1950 can cause one or more of the CDU(s) 1704, 1721, 1724 to implement a certain flow rate and/or direction (e.g., a velocity, an acceleration) of the coolant, output a certain temperature of the coolant, a certain density of the coolant, and/or a certain chemical property associated with the coolant. In some examples, the cooling strategy determination circuitry 1950 limits certain compute performance parameters and/or determines a distribution of workloads and/or portions thereof associated with the compute system(s) 1926. In some examples, the interface circuitry 1910 transmits signal(s) to the CDU(s) 1704, 1721, 1724 that causes the CDU(s) 1704, 1721, 1724 to control flow of the coolant in the environment 1700 based on the determined cooling strategy and/or cooling parameter(s).
At block 2510, the telemetry analysis circuitry 1708 associates respective ones of the sensor(s) 1707 with corresponding locations in the generated map(s). For example, the infrastructure map generation circuitry 1920 can access the sensor telemetry via the interface circuitry 1910. In some examples, the heatmap generation circuitry 1930 identifies the coordinates of the respective ones of the sensors 1707 based on the sensor telemetry. In some examples, the infrastructure map generation circuitry 1920 identifies locations of the respective ones of the sensors 1707 via the location datastore 1970. For example, the infrastructure map generation circuitry 1920 can identify the locations of the respective ones of the sensors 1707 based on a sensor identifier and/or an identifier of an edge device 1702, 1718, 1720, 1726 and/or pipe(s) 1714, 1716 received in the sensor telemetry.
At block 2512, the telemetry analysis circuitry 1708 associates respective ones of the sensors 1707 with a corresponding edge device 1702, 1718, 1720, 1726 and/or pipe(s) 1714, 1716. For example, the infrastructure map generation circuitry 1920 can identify the corresponding edge device 1702, 1718, 1720, 1726 and/or pipe(s) 1714, 1716 based on the sensor telemetry. In some examples, the infrastructure map generation circuitry 1920 determines the corresponding edge device 1702, 1718, 1720, 1726 and/or pipe(s) 1714, 1716 associated with the sensor circuitry 1706 based on the identified location of the sensor circuitry 1706.
At block 2514, the telemetry analysis circuitry 1708 generates one or more heatmap(s) for the environment based on the sensor telemetry and the generated environment map(s). For example, the heatmap generation circuitry 1930 can adapt the environment map(s) to numerically and/or symbolically include the sensor telemetry. The generating of the heatmap(s) at block 2514 is described further below in connection with
At block 2516, the telemetry analysis circuitry 1708 controls implementation of the cooling strategy in the environment 1700. For example, the cooling strategy determination circuitry 1950 can cause adjustments to the operation of the CDU(s) 1704, 1721, 1724 and/or the compute device(s) 1726 to control coolant parameters in the environment 1700 or an area thereof (e.g., based on instructions output by the telemetry analysis circuitry 1708 via the interface circuitry 1910 to the CDU(s) 1704, 1721, 1724 and/or the compute device(s) 1726). The controlling of the implementation of the cooling strategy at block 2516 is disclosed further below in connection with
At block 2604, the telemetry analysis circuitry 1708 builds one or more heatmap(s) based on the sensor telemetry and the associations between the respective ones of the sensor circuitry 1706 and the corresponding locations, edge devices 1702, 1718, 1720, 1726, and/or pipes 1714, 1716. In some examples, the heatmap generation circuitry 1930 identifies a metric communicated by the sensor telemetry and location, edge device 1702, 1718, 1720, 1726, and/or pipe 1714, 1716 associated with the respective sensor 1707 from which the sensor outputs were obtained. In such examples, the heatmap generation circuitry 1930 attributes the metric to the corresponding location, edge device 1702, 1718, 1720, 1726, and/or pipe 1714, 1716. In some examples, the heatmap generation circuitry 1930 generates various heatmaps for different metrics. In some examples, the heatmap generation circuitry 1930 includes multiple metrics in the same heatmap. In some examples, the heatmap generation circuitry 1930 updates the heatmap based on the sensor telemetry in substantially real time.
At block 2606, the telemetry analysis circuitry 1708 determines whether to add additional information to the heatmap(s) (e.g., details about the coolant flow paths, SLA parameters, etc.). In response to the telemetry analysis circuitry 1708 determining to add additional information to the heatmap(s) (e.g., block 2606 returns a result of YES based on, for example, a user request or a setting), control proceeds to block 2608. Otherwise, in response to the telemetry analysis circuitry 1708 determining not to add additional information to the heatmaps(s) (e.g., block 2606 returns a result of NO), control terminates.
At block 2608, the telemetry analysis circuitry 1708 adds additional information to the heatmap(s). In some examples, the heatmap generation circuitry 1930 indicates a flow path and/or potential flow paths of the coolant in the heatmap(s). For example, the heatmap generation circuitry 1930 can identify the flow path and/or potential flow paths based on the cooling strategy and/or cooling parameter(s) implemented by the cooling strategy determination circuitry 1950. In some examples, the heatmap generation circuitry 1930 overlays the flow path and/or potential flow paths on one or more images of the environment 1700 representative of the heatmap(s). For example, an actual flow path of the coolant can be indicated by a solid line in the image and potential flow paths can be indicated by dashed lines in the image. In some examples, the heatmap generation circuitry 1930 indicates the flow path and/or potential flow paths of the coolant via a numerical order in which the respective edge devices 1702, 1718, 1720, 1726 and the CDUs 1704, 1721, 1724 encounter the coolant in the cooling strategy and/or cooling parameter(s). In some examples, the heatmap generation circuitry 1930 indicates a flow rate of the fluid with the flow path in the heatmap(s). In some examples, the telemetry analysis circuitry 1708 accesses the compute performance telemetry and/or SLAs associated with the edge devices 1702, 1718, 1720, 1726. For example, the heatmap generation circuitry 1930 can access compute performance telemetry and/or SLAs associated with the compute device(s) 1726 via the interface circuitry 1910 and the SLA datastore 1980, respectively. In some examples, the telemetry analysis circuitry 1708 indicates the compute performance telemetry and/or the SLAs in the heatmap(s). For example, the heatmap generation circuitry 1930 can indicate the compute performance telemetry and/or the SLAs in the heatmap(s). In some examples, the heatmap generation circuitry 1930 updates the compute performance telemetry and/or the SLAs in the heatmap(s) in response to a metric in the telemetry and/or the SLAs changing. In some examples, the heatmap generation circuitry 1930 flags an area(s) in the heatmap in which the metric associated with the coolant and/or the edge devices 1702, 1718, 1720, 1726 does not satisfy a threshold associated with the SLA of the edge devices 1702, 1718, 1720, 1726. In some examples, the heatmap generation circuitry 1930 indicates a difference between the metric and the threshold in the heatmap(s).
At block 2610, the telemetry analysis circuitry 1708 determines whether to update the heatmap(s). In response to the telemetry analysis circuitry 1708 determining to update the heatmap(s) (e.g., block 2612 returns a result of YES based on, for example, newly received sensor telemetry), control returns to block 2602. Otherwise, in response to the telemetry analysis circuitry 1708 determining not to update the heatmaps(s) (e.g., block 2612 returns a result of NO), control terminates.
At block 2704, the telemetry analysis circuitry 1708 determines target cooling and/or performance parameters for the compute devices 1726. For example, the cooling strategy determination circuitry 1950 can determine target parameters of the coolant that the compute device(s) 1726 are to be exposed to for cooling based on a thermal footprint of the workload and/or compute performance telemetry associated with the compute device(s) 1726. In some examples the cooling strategy determination circuitry 1950 determines the target parameters based on a power (e.g., in Watts) expected to be consumed by the CDU(s) 1704, 1721, 1724 to implement the cooling strategy and/or cooling parameter(s), the power draw of the compute device(s) 1726, and/or an available power supply. In some examples the cooling strategy determination circuitry 1950 determines the target parameters based on an average power draw, a peak power draw, a stock-keeping unit (SKU) type, and/or a number of processor cores utilized by the compute device(s) 1726. In some examples, the cooling strategy determination circuitry 1950 determines the target parameters based on a target throughput, a target latency, a target number of instructions per second, etc., associated with the SLA of the compute device(s) 1726 and/or an actual or incoming throughput, latency, instructions per second, etc., associated with the workload. In some examples the cooling strategy determination circuitry 1950 determines the target parameters based on historical data associated with operation of the edge devices 1702, 1718, 1720, 1726. In some examples the cooling strategy determination circuitry 1950 determines the target parameters based on a difference between a current workload and a previous workload and/or an incoming workload associated with the compute device(s) 1726.
At block 2706, the telemetry analysis circuitry 1708 analyzes the heatmap(s) associated with the environment 1700. For example, the cooling strategy determination circuitry 1950 can analyze the heatmap(s) to determine current (e.g., substantially real-time) thermal parameters (e.g., coolant parameters, temperatures of the compute devices 1726) in the environment 1700. In some examples, the cooling strategy determination circuitry 1950 compares the current thermal parameters to the target parameters. In some examples, the compute performance analysis circuitry 1940 identifies or flags area(s) in the heatmap(s) to be monitored based on a difference(s) between the current thermal parameters and the target parameters.
At block 2708, the telemetry analysis circuitry 1708 evaluates an effectiveness and/or an efficiency of the cooling strategy and/or cooling parameter(s) (e.g., the cooling strategy and/or cooling parameter(s) determined at block 2508 of
At block 2710, the telemetry analysis circuitry 1708 determines whether the cooling strategy and/or cooling parameter(s) are to be adjusted. For example, the cooling strategy determination circuitry 1950 can determine adjustments to the cooling strategy and/or cooling parameter(s) implemented in the environment 1700 or a portion thereof based on the computed cooling strategy and/or cooling parameter(s) effectiveness, the computed cooling strategy and/or cooling parameter(s) efficiency, the comparison between the current thermal parameters and the target parameters, and/or a flag(s) in the heatmap(s). In some examples, the cooling strategy determination circuitry 1950 determines the cooling strategy and/or cooling parameter(s) are to be adjusted in response to one or more score(s) associated with the computed cooling strategy and/or cooling parameter(s) effectiveness and/or efficiency not satisfying (e.g., being less than, being less than or equal to) one or more associated threshold(s). In some examples, the cooling strategy determination circuitry 1950 determines the cooling strategy and/or cooling parameter(s) are to be adjusted in response to the current thermal parameters not satisfying (e.g., being greater than, being greater than or equal to, being less than, being less than or equal to) one or more thermal thresholds associated with the target parameters. For example, the thresholds associated with the target parameters can define a range within which the current thermal parameters are to be to be within a threshold range of the target with the change in the workload. In some examples, the cooling strategy determination circuitry 1950 determines the cooling strategy and/or cooling parameter(s) are to be adjusted based on a duration and/or a severity of the flag(s) (e.g., area(s) warranting additional attention) identified in the heatmap(s). In response to the telemetry analysis circuitry 1708 determining the cooling strategy and/or cooling parameter(s) are to be adjusted (e.g., block 2710 returns a result of YES), control proceeds to block 2712. Otherwise, in response to the telemetry analysis circuitry 1708 determining the cooling strategy and/or cooling parameter(s) are not to be adjusted (e.g., block 2710 returns a result of NO), control skips to block 2714.
At block 2712, the telemetry analysis circuitry 1708 adjusts the cooling strategy and/or cooling parameter(s). For example, the cooling strategy determination circuitry 1950 can cause one or more of the CDU(s) 1704, 1721, 1724 to adjust a flow rate and/or direction (e.g., a velocity, an acceleration) of the coolant, a temperature of the coolant, a density of the coolant, and/or a chemical property associated with the coolant. In some examples, the cooling strategy determination circuitry 1950 determines a redistribution of a workload(s) associated with the compute device(s) 1726 when the determined target parameters are not expected to be attained within a threshold period of time. For example, the cooling strategy determination circuitry 1950 can cause the workload associated with the first compute device(s) 1726A to be redistributed to the second compute device(s) 1726B in response to outputs of the sensors 1707 associated with the first compute device(s) 1726A not satisfying a threshold set by the target parameters within a threshold period. In some examples, the cooling strategy determination circuitry 1950 redistributes a portion of a workload currently being executed by the compute device(s) 1726A and/or a full workload yet to be executed by the compute device(s) 1726A. In some examples, the cooling strategy determination circuitry 1950 schedules the workload execution and associated distribution. For example, when the determined target parameters are not expected to be attained for the first compute device(s) 1726A in view of the workload(s) being executed and/or scheduled to be executed by the first compute device(s) 1726A, the cooling strategy determination circuitry 1950 can delay execution of the workload(s) by the first compute device(s) 1726A and/or schedule execution of the workload(s) by the second compute device(s) 1726B at a time when the execution of the workload(s) by the second compute device(s) 1726B would enable the determined target parameters to be met. In some examples, the interface circuitry 1910 transmits signal(s) to the CDU(s) 1704, 1721, 1724 that causes the CDU(s) 1704, 1721, 1724 to control flow of the coolant in the environment 1700 based on the adjustment to the cooling strategy and/or cooling parameter(s).
At block 2714, the telemetry analysis circuitry 1708 determines whether to continue monitoring and/or updating the cooling strategy and/or cooling parameter(s). In response to the telemetry analysis circuitry 1708 determining to continue monitoring (e.g., block 2714 returns a result of YES), control returns to block 2702. Otherwise, in response to the telemetry analysis circuitry 1708 determining not to continue monitoring (e.g., block 2714 returns a result of NO), control terminates.
At block 2804, the infrastructure monitoring circuitry 1710 determines a thermal energy consumption (e.g., consumption of coolant, consumption of heated fluid) by the edge devices 1702, 1718, 1720, 1726 and/or the heat consumers 1705. For example, the thermal usage monitor circuitry 2115 can determine the heat consumption by the heat consumers 1705 based on the heatmaps. In some examples, the thermal usage monitor circuitry 2115 determines the cooling consumption by the edge devices 1702, 1718, 1720, 1726 based on, for example, cooling strategy information and/or cooling parameter(s) obtained from the telemetry analysis circuitry 1708. In some examples, the thermal usage monitor circuitry 2115 determines an amount of heating or cooling fluid that originated from a renewable source. In some examples, the thermal usage monitor circuitry 2115 determines an amount of heat that was passively provided to the heat distribution pipe 1714 from natural resources, such as solar energy, ambient air, etc. For example, the pipe(s) 1714, 1716 may receive different thermal treatment based on a location thereof, a time of day, etc. In such examples, the thermal usage monitor circuitry 2115 can determine the amount of heat from the natural resources that was consumed by the heat consumers 1705 as compared to heated fluid resulting from, for example, fluid provided by third parties. In some examples, the thermal usage monitor circuitry 2115 determines an amount of cooling that was passively provided to the cooling distribution pipe 1716 as a result of a temperature encountered by an exterior of the cooling distribution pipe 1716. In such examples, the heat usage processor circuitry can determine the amount of cooling from the natural resources that was consumed by the edge devices 1702, 1718, 1720, 1726.
At block 2806, the infrastructure monitoring circuitry 1710 meters the thermal energy usage of the edge devices 1702, 1718, 1720, 1726 and/or the heat consumers 1705. For example, the thermal usage monitor circuitry 2115 can meter the heat consumed by the heat consumers 1705. In some examples, the thermal usage monitor circuitry 2115 determines the heat consumption by the heat consumers 1705 based on the heating that the heat consumers 1705 received from natural resources. For example, the thermal usage monitor circuitry 2115 can identify the heating that the heat consumers 1705 received from natural resources (e.g., from a temperature encountered by an external surface of the heat distribution pipe) for purposes of monitoring, metering, and/or billing.
At block 2808, the infrastructure monitoring circuitry 1710 generates and/or updates a thermal energy usage subscription associated with the edge devices 1702, 1718, 1720, 1726 and/or the heat consumers 1705. For example, the thermal usage monitor circuitry 2115 can update amount(s) of available cooling and/or heated fluid available and/or a subscription (e.g., a cost over time) associated therewith. In some examples, the thermal usage monitor circuitry 2115 updates the thermal energy usage subscription for the heat consumers 1705 and/or the edge devices 1702, 1718, 1720, 1726 based on patterns in the heat consumed by the heat consumers 1705 and/or heat dissipated by the edge devices 1702, 1718, 1720, 1726. In some examples, the thermal energy usage monitor circuitry 2115 updates the thermal energy subscriptions for the heat consumers 1705 based on patterns in the heating received by the heat consumers 1705 from natural resources. In some examples, the thermal energy usage monitor circuitry 2115 updates the thermal energy subscriptions for the edge devices 1702, 1718, 1720, 1726 based on coolant intake for cooling purposes and/or the cooling that the edge devices 1702, 1718, 1720, 1726 received from natural resources, updates to the CDUs, and/or other changes in the environment 1700.
At block 2810, the infrastructure monitoring circuitry 1710 determines whether a thermal energy usage policy associated with one or more of the edge devices 1702, 1718, 1720, 1726 is to be adjusted. For example, the thermal usage monitor circuitry 2115 can determine whether a heat consumption associated with the heat consumers 1705 was within a threshold range of the thermal energy subscription currently associated with the heat consumers 1705. In response to determining that the heat consumption is not within the threshold range, the thermal usage monitor circuitry 2115 determines the usage policy is to be adjusted for the heat consumers 1705. Otherwise, in response to determining that the heat consumption is within the range, the thermal usage monitor circuitry 2115 determines the usage policy is not to be adjusted for the heat consumers 1705. Additionally or alternatively, the thermal usage monitor circuitry 2115 can determine whether a heat dissipation associated with and/or coolant consumption for cooling of the edge devices 1702, 1718, 1720, 1726 was within a threshold range of the thermal energy subscription currently associated with the edge devices 1702, 1718, 1720, 1726. In response to determining that the heat dissipation is not within the threshold range, the thermal usage monitor circuitry 2115 determines the usage policy is to be adjusted for the edge devices 1702, 1718, 1720, 1726. Otherwise, in response to determining that the heat consumption is within the range, the thermal usage monitor circuitry 2115 determines the usage policy is not to be adjusted for the edge devices 1702, 1718, 1720, 1726. In response to determining that the usage policy is to be adjusted (e.g., block 2810 returns a result of YES), control proceeds to block 2812. Alternatively, in response to determining that the heat consumption is not within the range (e.g., block 2810 returns a result of NO), control proceeds to block 2812.
At block 2812, the infrastructure monitoring circuitry 1710 adjusts and outputs the thermal energy usage policy associated with heat consumers 1705 and/or the one or more edge devices 1702, 1718, 1720, 1726. For example, the thermal usage monitor circuitry 2115 can adjust the thermal energy usage policy based on a difference between the heat consumption of the heat consumers 1705 and the threshold range associated with the subscription previously associated with the heat consumers 1705. In some examples, the thermal usage monitor circuitry 2115 adjusts the thermal energy usage policy based on a difference between coolant intake of the edge devices 1702, 1718, 1720, 1726 and the threshold range associated with the subscription previously associated with the edge devices 1702, 1718, 1720, 1726. Accordingly, the heat usage processor circuitry can adapt the subscription to the heat consumption of the heat consumers and/or the heat dissipation associated with the edge devices 1702, 1718, 1720, 1726. The adjusted thermal energy usage policy can be output for implementation in the environment 1700 via the interface circuitry 2110.
At block 2814, the infrastructure monitoring circuitry 1710 determines whether to continue monitoring and/or adjusting the thermal energy usage policies. In response to the infrastructure monitoring circuitry 1710 determining to continue monitoring (e.g., block 2814 returns a result of YES), control returns to block 2802. Otherwise, in response to the infrastructure monitoring circuitry 1710 determining not to continue monitoring (e.g., block 2814 returns a result of NO), control terminates.
At block 2904, the infrastructure monitoring circuitry 1710 assigns anonymous identification values to the compute device(s) 1726 and associated ones of the sensor circuitry 1706. For example, the anonymization circuitry 2130 can remove any information associated with an owner or a tenant associated with the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1706 in the device grouping datastore 2180. In some examples, the anonymization circuitry 2130 associates the sensor telemetry and/or the compute performance telemetry with an anonymous identifier provided only to the owner or tenant associated with the compute device(s) 1726, the CDU(s) 1704, 1721, 1724, and/or the sensor(s) 1706. In some examples, the SLA associated with the compute device(s) 1726 is maintained with the anonymized data to enable anonymized performance evaluation.
At block 2906, the infrastructure monitoring circuitry 1710 accesses compute device operating parameters and/or sensor telemetry via a blockchain (e.g., the blockchain 2300 of
At block 2908, the infrastructure monitoring circuitry 1710 determines whether an event (e.g., an SLA failure) associated with cooling and/or performance of the compute device(s) 1726 has been detected. For example, the event detection circuitry 2150 can determine when the sensor telemetry indicates that a temperature of the compute device(s) 1726 exceeded a temperature identified in the SLA associated with the compute device(s) 1726. In response to an event being detected (e.g., block 2908 returns a result of YES), control proceeds to block 2910. Otherwise, in response to an event not being detected (e.g., block 2908 returns a result of NO), control skips to block 2918.
At block 2910, the infrastructure monitoring circuitry 1710 analyzes telemetry of the respective compute device(s) 1726 and/or the related sensor circuitry 1706 where the event occurred. For example, the event determination circuitry 2160 can analyze compute performance telemetry associated with the compute device(s) 1726 that encountered the event. In some examples, the event determination circuitry 2160 determines compute parameters associated with the compute device(s) 1726 caused the event in response to one or more of the compute parameters satisfying respective thresholds. For example, such compute parameter thresholds can be set based on the SLA and the temperature at which the compute device(s) 1726 are to be maintained. In some examples, event determination circuitry 2160 analyzes compute parameters and/or sensor telemetry of other compute device(s) 1726. In such examples, the event determination circuitry 2160 identifies the other compute device(s) 1726 via the device grouping datastore 2180. In some examples, the event determination circuitry 2160 analyzes the compute performance and/or sensor telemetry of the other compute device(s) 1726 via the blockchain datastore 2190. As such, the event determination circuitry 2160 can determine what operation(s) and, in turn, which of the compute device(s) 1726 caused, likely caused, or contributed to the event. In some examples, the event determination circuitry 2160 determines coolant parameters (e.g., temperature, density, chemical composition, etc.) contributed to the event in response to one or more of the coolant parameters satisfying respective thresholds. For example, the coolant parameter thresholds can be set based on thermal capabilities (e.g., a maximum temperature for operation) of the compute devices 1726.
At block 2912, the infrastructure monitoring circuitry 1710 determines whether cause(s) or potential cause(s) of the event have been identified. In response to the infrastructure monitoring circuitry 1710 determining that the cause(s) of the event have been identified (e.g., block 2912 returns a result of YES), control proceeds to block 2914. Otherwise, in response to the infrastructure monitoring circuitry 1710 determining that the event has not been identified (e.g., block 2912 returns a result of NO), control skips to block 2916.
At block 2914, the infrastructure monitoring circuitry 1710 determines and outputs adjustment(s) to the cooling parameter(s) for the compute device(s) 1726 and/or the cooling strateg(ies) based on the identified cause or potential cause of the event. In some examples, the adjustment determination circuitry 2170 determines limits to be placed on compute parameters (e.g., a power draw) associated with the compute device(s) 1726 identified as the cause or the potential cause of the event. In some examples, the adjustment determination circuitry 2170 determines cooling parameter adjustments and/or cooling strategy adjustments that may have prevented the event. In some examples, the adjustment determination circuitry 2170 can determine certain ones of the electronic component(s) 1726 should be re-located spatially within the environment 1700 in an effort to facilitate efficient cooling of the devices. The interface circuitry 2110 transmits instructions and/or data (e.g., reports) associated with identified cause or potential cause events and/or workload adjustments to the telemetry analysis circuitry 1708, the CDUs 1704, 1721, 1724, and/or the compute device(s) 1726 of
At block 2916, the infrastructure monitoring circuitry 1710 determines whether to continue monitoring. In response to the infrastructure monitoring circuitry 1710 determining to continue monitoring (e.g., block 2918 returns a result of YES), control returns to block 2902. Otherwise, in response to the infrastructure monitoring circuitry 1710 determining not to continue monitoring (e.g., block 2918 returns a result of NO), control terminates.
The programmable circuitry platform 3000 of the illustrated example includes programmable circuitry 3012. The programmable circuitry 3012 of the illustrated example is hardware. For example, the programmable circuitry 3012 can be implemented by one or more integrated circuits, logic circuits, FPGAs, microprocessors, CPUs, GPUs, DSPs, and/or microcontrollers from any desired family or manufacturer. The programmable circuitry 3012 may be implemented by one or more semiconductor based (e.g., silicon based) devices. In this example, the programmable circuitry 3012 implements the metric determination circuitry 1840, the location identification circuitry 1850, and the metric linking circuitry 1860.
The programmable circuitry 3012 of the illustrated example includes a local memory 3013 (e.g., a cache, registers, etc.). The programmable circuitry 3012 of the illustrated example is in communication with main memory 3014, 3016, which includes a volatile memory 3014 and a non-volatile memory 3016, by a bus 3018. The volatile memory 3014 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®), and/or any other type of RAM device. The non-volatile memory 3016 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 3014, 3016 of the illustrated example is controlled by a memory controller 3017. In some examples, the memory controller 3017 may be implemented by one or more integrated circuits, logic circuits, microcontrollers from any desired family or manufacturer, or any other type of circuitry to manage the flow of data going to and from the main memory 3014, 3016.
The programmable circuitry platform 3000 of the illustrated example also includes interface circuitry 3020. The interface circuitry 3020 may be implemented by hardware in accordance with any type of interface standard, such as an Ethernet interface, a universal serial bus (USB) interface, a Bluetooth® interface, a near field communication (NFC) interface, a Peripheral Component Interconnect (PCI) interface, and/or a Peripheral Component Interconnect Express (PCIe) interface. In this example, the interface circuitry 3020 implements the interface circuitry 1810.
In the illustrated example, one or more input devices 3022 are connected to the interface circuitry 3020. The input device(s) 3022 permit(s) a user (e.g., a human user, a machine user, etc.) to enter data and/or commands into the programmable circuitry 3012. The input device(s) 3022 can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a trackpad, a trackball, an isopoint device, a temperature sensor, a pressure sensor, a density sensor, a chemical composition sensor, a flow rate sensor, and/or other sensors for measuring properties of fluid and/or other sensors for measuring properties (e.g., thermal properties) of electronic components.
One or more output devices 3024 are also connected to the interface circuitry 3020 of the illustrated example. The output device(s) 3024 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube (CRT) display, an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer, and/or speaker. The interface circuitry 3020 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip, and/or graphics processor circuitry such as a GPU.
The interface circuitry 3020 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) by a network 3026. The communication can be by, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a beyond-line-of-site wireless system, a line-of-site wireless system, a cellular telephone system, an optical connection, etc.
The programmable circuitry platform 3000 of the illustrated example also includes one or more mass storage discs or devices 3028 to store firmware, software, and/or data. Examples of such mass storage discs or devices 3028 include magnetic storage devices (e.g., floppy disk, drives, HDDs, etc.), optical storage devices (e.g., Blu-ray disks, CDs, DVDs, etc.), RAID systems, and/or solid-state storage discs or devices such as flash memory devices and/or SSDs. In this example, the mass storage discs or devices 3028 implements the datastore 1870.
The machine readable instructions 3032, which may be implemented by the machine readable instructions of
The programmable circuitry platform 3100 of the illustrated example includes programmable circuitry 3112. The programmable circuitry 3112 of the illustrated example is hardware. For example, the programmable circuitry 3112 can be implemented by one or more integrated circuits, logic circuits, FPGAs, microprocessors, CPUs, GPUs, DSPs, and/or microcontrollers from any desired family or manufacturer. The programmable circuitry 3112 may be implemented by one or more semiconductor based (e.g., silicon based) devices. In this example, the programmable circuitry 3112 implements the infrastructure map generation circuitry 1920, the heatmap generation circuitry 1930, the compute performance analysis circuitry 1940, the cooling strategy determination circuitry 1950, and the cooling effect tracking circuitry 1960.
The programmable circuitry 3112 of the illustrated example includes a local memory 3113 (e.g., a cache, registers, etc.). The programmable circuitry 3112 of the illustrated example is in communication with main memory 3114, 3116, which includes a volatile memory 3114 and a non-volatile memory 3116, by a bus 3118. The volatile memory 3114 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®), and/or any other type of RAM device. The non-volatile memory 3116 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 3114, 3116 of the illustrated example is controlled by a memory controller 3117. In some examples, the memory controller 3117 may be implemented by one or more integrated circuits, logic circuits, microcontrollers from any desired family or manufacturer, or any other type of circuitry to manage the flow of data going to and from the main memory 3114, 3116.
The programmable circuitry platform 3100 of the illustrated example also includes interface circuitry 3120. The interface circuitry 3120 may be implemented by hardware in accordance with any type of interface standard, such as an Ethernet interface, a universal serial bus (USB) interface, a Bluetooth® interface, a near field communication (NFC) interface, a Peripheral Component Interconnect (PCI) interface, and/or a Peripheral Component Interconnect Express (PCIe) interface. In this example, the interface circuitry 3120 implements the interface circuitry 1910.
In the illustrated example, one or more input devices 3122 are connected to the interface circuitry 3120. The input device(s) 3122 permit(s) a user (e.g., a human user, a machine user, etc.) to enter data and/or commands into the programmable circuitry 3112. The input device(s) 3122 can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a trackpad, a trackball, an isopoint device, and/or a voice recognition system.
One or more output devices 3124 are also connected to the interface circuitry 3120 of the illustrated example. The output device(s) 3124 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube (CRT) display, an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer, and/or speaker. The interface circuitry 3120 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip, and/or graphics processor circuitry such as a GPU.
The interface circuitry 3120 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) by a network 3126. The communication can be by, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a beyond-line-of-site wireless system, a line-of-site wireless system, a cellular telephone system, an optical connection, etc.
The programmable circuitry platform 3100 of the illustrated example also includes one or more mass storage discs or devices 3128 to store firmware, software, and/or data. Examples of such mass storage discs or devices 3128 include magnetic storage devices (e.g., floppy disk, drives, HDDs, etc.), optical storage devices (e.g., Blu-ray disks, CDs, DVDs, etc.), RAID systems, and/or solid-state storage discs or devices such as flash memory devices and/or SSDs. In this example, the mass storage discs or devices 3128 implements the location datastore 1970, the SLA datastore 1980, and the historic heatmap datastore 1990.
The machine readable instructions 3132, which may be implemented by the machine readable instructions of
The programmable circuitry platform 3200 of the illustrated example includes programmable circuitry 3212. The programmable circuitry 3212 of the illustrated example is hardware. For example, the programmable circuitry 3212 can be implemented by one or more integrated circuits, logic circuits, FPGAs, microprocessors, CPUs, GPUs, DSPs, and/or microcontrollers from any desired family or manufacturer. The programmable circuitry 3212 may be implemented by one or more semiconductor based (e.g., silicon based) devices. In this example, the programmable circuitry 3212 implements the thermal usage monitor circuitry 2115, the device grouping circuitry 2120, the anonymization circuitry 2130, the blockchain generator circuitry 2140, the event detection circuitry 2150, the event determination circuitry 2160, and the adjustment determination circuitry 2170.
The programmable circuitry 3212 of the illustrated example includes a local memory 3213 (e.g., a cache, registers, etc.). The programmable circuitry 3212 of the illustrated example is in communication with main memory 3214, 3216, which includes a volatile memory 3214 and a non-volatile memory 3216, by a bus 3218. The volatile memory 3214 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®), and/or any other type of RAM device. The non-volatile memory 3216 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 3214, 3216 of the illustrated example is controlled by a memory controller 3217. In some examples, the memory controller 3217 may be implemented by one or more integrated circuits, logic circuits, microcontrollers from any desired family or manufacturer, or any other type of circuitry to manage the flow of data going to and from the main memory 3214, 3216.
The programmable circuitry platform 3200 of the illustrated example also includes interface circuitry 3220. The interface circuitry 3220 may be implemented by hardware in accordance with any type of interface standard, such as an Ethernet interface, a universal serial bus (USB) interface, a Bluetooth® interface, a near field communication (NFC) interface, a Peripheral Component Interconnect (PCI) interface, and/or a Peripheral Component Interconnect Express (PCIe) interface. In this example, the interface circuitry 3220 implements the interface circuitry 2110.
In the illustrated example, one or more input devices 3222 are connected to the interface circuitry 3220. The input device(s) 3222 permit(s) a user (e.g., a human user, a machine user, etc.) to enter data and/or commands into the programmable circuitry 3212. The input device(s) 3222 can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a trackpad, a trackball, an isopoint device, and/or a voice recognition system.
One or more output devices 3224 are also connected to the interface circuitry 3220 of the illustrated example. The output device(s) 3224 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube (CRT) display, an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer, and/or speaker. The interface circuitry 3220 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip, and/or graphics processor circuitry such as a GPU.
The interface circuitry 3220 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) by a network 3226. The communication can be by, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a beyond-line-of-site wireless system, a line-of-site wireless system, a cellular telephone system, an optical connection, etc.
The programmable circuitry platform 3200 of the illustrated example also includes one or more mass storage discs or devices 3228 to store firmware, software, and/or data. Examples of such mass storage discs or devices 3228 include magnetic storage devices (e.g., floppy disk, drives, HDDs, etc.), optical storage devices (e.g., Blu-ray disks, CDs, DVDs, etc.), RAID systems, and/or solid-state storage discs or devices such as flash memory devices and/or SSDs. In this example, the mass storage discs or devices 3228 implements the device grouping datastore 2180, the blockchain datastore 2190, and the SLA datastore 2195.
The machine readable instructions 3232, which may be implemented by the machine readable instructions of
The cores 3302 may communicate by a first example bus 3304. In some examples, the first bus 3304 may be implemented by a communication bus to effectuate communication associated with one(s) of the cores 3302. For example, the first bus 3304 may be implemented by at least one of an Inter-Integrated Circuit (I2C) bus, a Serial Peripheral Interface (SPI) bus, a PCI bus, or a PCIe bus. Additionally or alternatively, the first bus 3304 may be implemented by any other type of computing or electrical bus. The cores 3302 may obtain data, instructions, and/or signals from one or more external devices by example interface circuitry 3306. The cores 3302 may output data, instructions, and/or signals to the one or more external devices by the interface circuitry 3306. Although the cores 3302 of this example include example local memory 3320 (e.g., Level 1 (L1) cache that may be split into an L1 data cache and an L1 instruction cache), the microprocessor 3300 also includes example shared memory 3310 that may be shared by the cores (e.g., Level 2 (L2 cache)) for high-speed access to data and/or instructions. Data and/or instructions may be transferred (e.g., shared) by writing to and/or reading from the shared memory 3310. The local memory 3320 of each of the cores 3302 and the shared memory 3310 may be part of a hierarchy of storage devices including multiple levels of cache memory and the main memory (e.g., the main memory 3014, 3016, 3114, 3116, 3214, 3216 of
Each core 3302 may be referred to as a CPU, DSP, GPU, etc., or any other type of hardware circuitry. Each core 3302 includes control unit circuitry 3314, arithmetic and logic (AL) circuitry (sometimes referred to as an ALU) 3316, a plurality of registers 3318, the local memory 3320, and a second example bus 3322. Other structures may be present. For example, each core 3302 may include vector unit circuitry, single instruction multiple data (SIMD) unit circuitry, load/store unit (LSU) circuitry, branch/jump unit circuitry, floating-point unit (FPU) circuitry, etc. The control unit circuitry 3314 includes semiconductor-based circuits structured to control (e.g., coordinate) data movement within the corresponding core 3302. The AL circuitry 3316 includes semiconductor-based circuits structured to perform one or more mathematic and/or logic operations on the data within the corresponding core 3302. The AL circuitry 3316 of some examples performs integer based operations. In other examples, the AL circuitry 3316 also performs floating-point operations. In yet other examples, the AL circuitry 3316 may include first AL circuitry that performs integer-based operations and second AL circuitry that performs floating-point operations. In some examples, the AL circuitry 3316 may be referred to as an Arithmetic Logic Unit (ALU).
The registers 3318 are semiconductor-based structures to store data and/or instructions such as results of one or more of the operations performed by the AL circuitry 3316 of the corresponding core 3302. For example, the registers 3318 may include vector register(s), SIMD register(s), general-purpose register(s), flag register(s), segment register(s), machine-specific register(s), instruction pointer register(s), control register(s), debug register(s), memory management register(s), machine check register(s), etc. The registers 3318 may be arranged in a bank as shown in
Each core 3302 and/or, more generally, the microprocessor 3300 may include additional and/or alternate structures to those shown and described above. For example, one or more clock circuits, one or more power supplies, one or more power gates, one or more cache home agents (CHAs), one or more converged/common mesh stops (CMSs), one or more shifters (e.g., barrel shifter(s)) and/or other circuitry may be present. The microprocessor 3300 is a semiconductor device fabricated to include many transistors interconnected to implement the structures described above in one or more integrated circuits (ICs) contained in one or more packages.
The microprocessor 3300 may include and/or cooperate with one or more accelerators (e.g., acceleration circuitry, hardware accelerators, etc.). In some examples, accelerators are implemented by logic circuitry to perform certain tasks more quickly and/or efficiently than can be done by a general-purpose processor. Examples of accelerators include ASICs and FPGAs such as those discussed herein. A GPU, DSP and/or other programmable device can also be an accelerator. Accelerators may be on-board the microprocessor 3300, in the same chip package as the microprocessor 3300 and/or in one or more separate packages from the microprocessor 3300.
More specifically, in contrast to the microprocessor 3300 of
In the example of
In some examples, the binary file is compiled, generated, transformed, and/or otherwise output from a uniform software platform utilized to program FPGAs. For example, the uniform software platform may translate first instructions (e.g., code or a program) that correspond to one or more operations/functions in a high-level language (e.g., C, C++, Python, etc.) into second instructions that correspond to the one or more operations/functions in an HDL. In some such examples, the binary file is compiled, generated, and/or otherwise output from the uniform software platform based on the second instructions. In some examples, the FPGA circuitry 3400 of
The FPGA circuitry 3400 of
The FPGA circuitry 3400 also includes an array of example logic gate circuitry 3408, a plurality of example configurable interconnections 3410, and example storage circuitry 3412. The logic gate circuitry 3408 and the configurable interconnections 3410 are configurable to instantiate one or more operations/functions that may correspond to at least some of the machine readable instructions of
The configurable interconnections 3410 of the illustrated example are conductive pathways, traces, vias, or the like that may include electrically controllable switches (e.g., transistors) whose state can be changed by programming (e.g., using an HDL instruction language) to activate or deactivate one or more connections between one or more of the logic gate circuitry 3408 to program desired logic circuits.
The storage circuitry 3412 of the illustrated example is structured to store result(s) of the one or more of the operations performed by corresponding logic gates. The storage circuitry 3412 may be implemented by registers or the like. In the illustrated example, the storage circuitry 3412 is distributed amongst the logic gate circuitry 3408 to facilitate access and increase execution speed.
The example FPGA circuitry 3400 of
Although
It should be understood that some or all of the circuitry of
In some examples, some or all of the circuitry of
In some examples, the programmable circuitry 3012, 3112, 3212 of
A block diagram illustrating an example software distribution platform 3505 to distribute software such as the example machine readable instructions 30 to other hardware devices (e.g., hardware devices owned and/or operated by third parties from the owner and/or operator of the software distribution platform) is illustrated in
From the foregoing, it will be appreciated that example systems, apparatus, articles of manufacture, and methods have been disclosed that improve an observability of an infrastructure including multiple compute appliances while facilitating efficient cooling capabilities and heat re-use capabilities. Examples disclosed herein facilitate dynamic adjustments to distribution of coolant for improved resource utilization based on sensor outputs across the infrastructure and performance of the compute devices. Additionally, systems disclosed herein facilitate metering of heat consumption by the compute appliances and other end points.
Example methods, apparatus, systems, and articles of manufacture to monitor cooling of compute components are disclosed herein. Further examples and combinations thereof include the following:
Example 1 includes an apparatus comprising interface circuitry, machine-readable instructions, and programmable circuitry to at least one of instantiate or execute the machine-readable instructions to generate a heatmap based on outputs of one or more sensors in an environment, the environment including a first compute device, the sensor outputs including a metric associated with a property of a coolant and a location of the sensor in the environment, identify a compute performance metric of the first compute device, determine a cooling parameter for the first compute device based on the heatmap and the compute performance metric, and cause a cooling distribution unit to control flow of the coolant in the environment based on the cooling parameter.
Example 2 includes the apparatus of example 1, wherein the programmable circuitry is to determine the cooling parameter based on a service level agreement associated with the first compute device.
Example 3 includes the apparatus of example 1 or 2, wherein, to determine the cooling parameter, the programmable circuitry is to identify a workload to be performed by the first compute device, and determine a target property of coolant to be provided to the location based on the workload, the heatmap, and the compute performance metric.
Example 4 includes the apparatus of any of examples 1-3, wherein the sensors include a first sensor generating first outputs, and the programmable circuitry is to compare the first outputs to a temperature threshold for the coolant, and in response to the first outputs failing to satisfy the temperature threshold, determine an adjustment to the cooling parameter that redistributes a flow of the coolant between the first compute device and a second compute device.
Example 5 includes the apparatus of any of examples 1-4, wherein the programmable circuitry is to redistribute a workload to be performed by the first compute device to a second compute device based on the cooling parameter.
Example 6 includes the apparatus of any of examples 1-5, wherein the sensors include a first sensor associated with a first compute device in a first chassis, a second sensor associated with a second compute device in the first chassis, a third sensor associated with a third compute device in a second chassis, and a fourth sensor associated with a heat distribution pipe that conveys the coolant, wherein the programmable circuitry is to generate the heatmap based on outputs from the first sensor, the second sensor, the third sensor, and the fourth sensor.
Example 7 includes the apparatus of any of examples 1-6, wherein the outputs of the sensors are associated with a first time and the programmable circuitry is to detect a change in the property of the coolant based on outputs of the one or more sensors at a second time, and cause the cooling parameter to be adjusted based on the change.
Example 8 includes the apparatus of any of examples 1-7, wherein the programmable circuitry includes one or more of at least one of a central processor unit, a graphics processor unit, or a digital signal processor, the at least one of the central processor unit, the graphics processor unit, or the digital signal processor having control circuitry to control data movement within the programmable circuitry, arithmetic and logic circuitry to perform one or more first operations corresponding to machine-readable data, and one or more registers to store a result of the one or more first operations, the machine-readable data in the apparatus, a Field Programmable Gate Array (FPGA), the FPGA including logic gate circuitry, a plurality of configurable interconnections, and storage circuitry, the logic gate circuitry and the plurality of the configurable interconnections to perform one or more second operations, the storage circuitry to store a result of the one or more second operations, or Application Specific Integrated Circuitry (ASIC) including logic gate circuitry to perform one or more third operations.
Example 9 includes a non-transitory machine readable storage medium comprising instructions to cause programmable circuitry to at least identify a location of a sensor in an environment responsive to outputs of the sensor, the output of the sensor indicative of a property of a coolant associated with the location, correlate the location of the sensor with a compute device in the environment, determine a cooling parameter for the compute device based on the outputs of the sensor sand one or more workloads to be performed by the compute device, and cause a cooling distribution unit to control the coolant based on the cooling parameter for cooling the compute device.
Example 10 includes the non-transitory machine readable storage medium of example 9, wherein the instructions cause the programmable circuitry to generate a heatmap indicative of the property of the coolant at the location relative to one or more other locations in the environment.
Example 11 includes the non-transitory machine readable storage medium of example 9 or 10, wherein the location is a first location, the compute device is a first compute device, and the instructions cause the programmable circuitry to identify, based on the heatmap, a second location in which the property of the coolant does not satisfy a parameter associated with at least one of performance of a second compute device at the second location or a service level agreement for the second compute device, and determine an adjustment to the cooling parameter responsive to the identification at the second location.
Example 12 includes the non-transitory machine readable storage medium of any of examples 9-11, wherein the instructions cause the programmable circuitry to meter an amount of coolant consumed by an appliance including the compute device based on the heatmap.
Example 13 includes the non-transitory machine readable storage medium of any of examples 9-12, wherein the instructions cause the programmable circuitry to determine the cooling parameter based on a service level agreement associated with the compute device.
Example 14 includes the non-transitory machine readable storage medium of any of examples 9-13, wherein the property of the coolant is associated with a first time and wherein the instructions cause the programmable circuitry to determine that the property of the coolant does not satisfy a target property for the coolant defined by the service level agreement at a second time, and adjust the cooling parameter in response to the determination.
Example 15 includes a system comprising a first sensor to generate outputs indicative of a first property of a fluid at a first location in an environment, the first location including a first compute device, a second sensor to generate outputs indicative of a second property of the fluid at a second location in the environment, the second location including a second compute device, the second location different than the first location, interface circuitry, machine-readable instructions, and programmable circuitry to at least one of instantiate or execute the machine-readable instructions to identify a first performance metric associated with the first compute device and a second performance metric associated with the second compute device, and cause a flow of the fluid to the first compute device to be adjusted relative to a flow of fluid to the second compute device based on the first performance metric, the second performance metric, the first fluid property, and the second fluid property.
Example 16 includes the system of example 15, further including a third sensor to generate outputs indicative of a third property of the fluid at a third location in the environment, the third location including a fluid distribution pipe, and a fourth sensor to generate outputs associated with a cooling distribution unit, the cooling distribution unit to control the flow of the fluid.
Example 17 includes the system of example 15 or 16, wherein the programmable circuitry is to generate a heatmap based on the outputs of the first sensor and the second sensor.
Example 18 includes the system of any of examples 15-17, wherein, to generate the heatmap, the programmable circuitry is to identify coordinates of the first sensor and the second sensor relative to the environment, associate locations of the first compute device and the second compute device with the outputs of the sensors, and correlate the first property of the fluid and second property of the fluid with the respective locations.
Example 19 includes the system of any of examples 15-18, wherein the heatmap indicates a temperature, a density, a chemical property, or a heat dissipation potential of the fluid at one or more locations in the environment, the locations including the first location and the second location.
Example 20 includes the system of any of examples 15-19, wherein the first property is a first temperature of the fluid, the second property is a second temperature of the fluid, and further including a third sensor to generate outputs indicative of a third temperature of the fluid downstream of the first sensor and the second sensor, the third temperature higher than the first temperature and the second temperature, and wherein the programmable circuitry is to determine an amount of the fluid having the third temperature to be provided to a third location in the environment, the third location different than the first location and the second location.
Example 21 includes the system of any of examples 15-20, wherein the programmable circuitry is to group the first compute device and the second compute device based on the first location and the second location, detect a performance event associated with the first compute device based on a third performance metric of the first compute device and a service level agreement associated with the first compute device, and cause the flow of the fluid to the first compute device to be adjusted responsive to the performance event.
Example 22 includes the system of any of examples 15-21, wherein the programmable circuitry is to access the outputs of the first sensor and the second sensor via a blockchain.
Example 23 includes an apparatus comprising means for generating a heatmap based on outputs of one or more sensors in an environment, the environment including a first compute device, the sensor outputs including a metric associated with a property of a coolant and a location of the sensor in the environment, means for analyzing compute performance telemetry to identify a compute performance metric of the first compute device, means for determining a cooling parameter for the first compute device based on the heatmap and the compute performance metric, and means for causing a cooling distribution unit to control flow of the coolant in the environment based on the cooling parameter.
Example 24 includes the apparatus of example 23, wherein the means for determining is to determine the cooling parameter based on a service level agreement associated with the first compute device.
Example 25 includes the apparatus of example 23 or 24, wherein the means for analyzing is to identify a workload to be performed by the first compute device, and determine a target property of coolant to be provided to the location based on the workload, the heatmap, and the compute performance metric.
Example 26 includes the apparatus of any of examples 23-25, wherein the sensors include a first sensor generating first outputs, wherein the means for determining is to compare the first outputs to a temperature threshold, and determine an adjustment to the cooling parameter that redistributes a workload associated with the first compute device to a second compute device in response to the first outputs satisfying the temperature threshold for at least a threshold period of time.
Example 27 includes the apparatus of any of examples 23-26, wherein the means for determining is to redistribute a workload to be performed by the first compute device to a second compute device based on the cooling parameter.
Example 28 includes the apparatus of any of examples 23-27, wherein the sensors include a first sensor associated with a first area of a first compute device in a first chassis, a second sensor associated with a second compute device in the first chassis, a third sensor associated with a third compute device in a second chassis, and a fourth sensor associated with a heat distribution pipe that conveys the coolant to a first tenant and a second tenant, wherein the means for generating is to generate the heatmap based on outputs from the first sensor, the second sensor, the third sensor, and the fourth sensor.
Example 29 includes the apparatus of any of examples 23-28, wherein the outputs of the sensors are associated with a first time and the means for determining is to detect a change in the property of the coolant based on outputs of the one or more sensors at a second time, and cause the cooling parameter to be adjusted based on the change.
Example 30 includes a method comprising generating a heatmap based on outputs of one or more sensors in an environment, the environment including a first compute device, the sensor outputs including a metric associated with a property of a coolant and a location of the sensor in the environment, identifying a compute performance metric of the first compute device, and determining a cooling parameter for the first compute device based on the heatmap and the compute performance metric, and causing a cooling distribution unit to control flow of the coolant in the environment based on the cooling parameter.
Example 31 includes the method of example 30, further including determining the cooling parameter based on a service level agreement associated with the first compute device.
Example 32 includes the method of example 30 or 31, further including identifying a workload to be performed by the first compute device, and determining a target property of coolant to be provided to the location based on the workload, the heatmap, and the compute performance metric.
Example 33 includes the method of any of examples 30-32, wherein the sensors include a first sensor generating first outputs, and further including a second compute device, further including comparing the first outputs to a temperature threshold, and in response to the first outputs satisfying the temperature threshold for at least a threshold period of time, determining an adjustment to the cooling parameter that redistributes a workload associated with the first compute device to the second compute device.
Example 34 includes the method of any of examples 30-33, further including redistributing a workload to be performed by the first compute device to a second compute device based on the cooling parameter.
Example 35 includes the method of any of examples 30-34, wherein the sensors include a first sensor associated with a first area of a first compute device in a first chassis, a second sensor associated with a second area of the first compute device, a third sensor associated with a third compute device in a second chassis, and a fourth sensor associated with a heat distribution pipe that conveys the coolant to a first tenant and a second tenant, wherein generating the heatmap includes generating the heatmap based on outputs from the first sensor, the second sensor, the third sensor, and the fourth sensor.
Example 36 includes the method of any of examples 30-35, wherein the outputs of the sensors are associated with a first time, further including detecting a change in the property of the coolant based on outputs of the one or more sensors at a second time, and causing the cooling parameter to be adjusted based on the change.
Example 37 includes a system comprising a first sensor to generate outputs associated with a first compute device, a second sensor to generate outputs associated with a second compute device, a third sensor to generate outputs associated with fluid flowing through a heat distribution pipe, memory, machine-readable instructions, and programmable circuitry to execute the machine-readable instructions to cause a flow of coolant to one or more of the first compute device or the second compute device to be adjusted to affect the fluid flowing through the heat distribution pipe based on the outputs of the first sensor, the second sensor, and the third sensor.
Example 38 includes the system of example 37, further including a fourth sensor to generate outputs associated with a cooling distribution unit, the cooling distribution unit to control flow of the coolant.
Example 39 includes the system of example 37 or 38, wherein the heat distribution pipe is fluidly coupled to the cooling distribution unit, the heat distribution pipe to direct the fluid flowing through the heat distribution pipe to a first tenant and a second tenant.
The following claims are hereby incorporated into this Detailed Description by this reference. Although certain example systems, apparatus, articles of manufacture, and methods have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all systems, apparatus, articles of manufacture, and methods fairly falling within the scope of the claims of this patent.
Number | Date | Country | Kind |
---|---|---|---|
202241077283 | Dec 2022 | IN | national |