This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2007-337814, filed Dec. 27, 2007, the entire contents of which are incorporated herein by reference.
1. Field
One embodiment of the present invention relates to a telephone system in which telephone terminals, software-implemented telephones, etc., transmit and receive packets to actualize voice communication, and a node device and a rerouting method for this kind of the system.
2. Description of the Related Art
Systems which establish voice communication via packet exchange type networks have been known. Above all, a system called a Voice over IP (VoIP) using an Internet Protocol (IP) network has come into practical use. The IP is a general-purpose communication protocol in inter-computer communication. Therefore, using an IP telephone system enables flexibly constructing a cooperation function among telephone terminals and computers. In recent years, constructing extension telephone networks by connecting IP telephone sets to local area networks (LANs) in offices has become used. Meanwhile, a volume-based charging type switched network such as a public network and a private telephone network is still the mainstream, and both the IP network and the switched network coexist nowadays.
From the point of view of a communication cost, it is more advantageous for a user to use the IP network. Thus, a configuration, in which the user mainly uses the IP network and reroutes through the switched network on occurrence of a communication failure has become used. Rerouting packet traffic enables maintenance of a telephone connection without interrupting communication.
A technique regarding the rerouting in the packet exchange network is disclosed in any of Jpn. Pat. Appln. KOKAI Publication No. 2002-252634, Jpn. Pat. Appln. KOKAI Publication No. 2003-229890, and Jpn. Pat. Appln. KOKAI Publication No. 2004-248177. However, recent years, a rerouting technique across the packet exchange network and the switched network that are different kinds of networks has been developed, the technique in each of the given references cannot be applied to such a rerouting technique.
A technique in which the IP network and the switched network are connected by a node device, and rerouting across both networks is realized via the node device is known. However, in such a system, a technique for optimizing a communication cost has not been developed. Therefore, long-distance rerouting frequently occurs on the switched network side. Thus, a cost burden on a user is apt to increase. More specifically, in an enterprise user having bases in a plurality of districts, since communication costs increase due to a volume-based charging system, things come into a serious situation.
A general architecture that implements the various feature of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.
Various embodiments according to the invention will be described hereinafter with reference to the accompanying drawings. In general, according to one embodiment of the invention, a telephone system, comprises a plurality of node devices which are connected to a first network of a packet exchange type and a second network of a volume-based charging type and mutually forms a communication route through at least either the first or the second network; and a plurality of terminal devices which are each connected to any one of the node devices and are configured to mutually perform telephone communication via the communication route. Each of the node devices comprises a detection processing module which monitors a state of the first network to detect a failure in the first network, a reroute processing module which reroutes at least a part of the communication route into the second network via a relay node to be an interface between the first and the second networks so as to avoid the detected failure and a decision processing module which decides a relay node to minimize a cost required for the communication route to pass the second network. The reroute processing module reroutes the communication route via the relay node decided by the decision processing module.
It is assumed that each node device belongs to the same company, a Tokyo head office node is designated by a symbol N1, a Kyoto branch office node is designated by a symbol N2, and an Osaka branch office node is designated by a symbol N3. One IP terminal under the Tokyo head office node N1 is designated by a symbol T1 and set to a call origination terminal T1, and one IP terminal under the Osaka branch office node N3 is designated by a symbol T2 and set to a call termination terminal T2.
In
It is assumed that a call origination is generated from the call origination terminal T1 to the call termination terminal T2 through an extension. Then, according to the existing technique, the node N1 blindly forms a communication route going thorough a public network 200 in all sections without taking the use of the IP network 100 into account. Thereby, although a communication service can be continued, a communication cost is raised due to the volume-based charging in the public network 200. That is, (1) in response to an extension calling from the call origination terminal T1, (2) the node N1 determines that a communication failure is present, (3) and reroutes a call to the node N3 through the public network 200. Then, (4) the call arrives at an extension of the node N3, namely the call termination terminal T2; however, the company bears a heavy cost burden. An embodiment capable of solving such a situation will be described.
According to an embodiment,
The main control module 13 includes a detection processing module 13a, a reroute processing module 13b, and a decision processing module 13c as a processing function regarding the embodiment. A detection processing module 13a periodically or non-periodically monitors the state of the IP network 100 by sequential polling or real time polling to detect a route failure.
A reroute processing module 13b reroutes at least a part of a communication route to a public network side 200 so as to avoid the detected failure for forming the communication route. A node device to be a boundary (interface) between the IP network 100 and the public network 200 is referred to as a relay node. The decision processing module 13c decides a node device to be a relay node for each communication route.
More specifically, the decision processing module 13c decides the relay node so as to the cost when the communication route pass through the public network 200 becomes minimized. At this time, the decision processing module 13c refers a relay node decision table 14a stored in the database 14 to obtain an index for deciding the relay node. The reroute processing module 13b reroutes the communication route so as to go through the relay node decided by the decision processing module 13c.
The various modules of the systems described herein can be implemented as software applications, hardware and/or software modules, or components on one or more computers, such as servers. While the various modules are illustrated separately, they may share some or all of the same underlying logic or code.
In
Then, the node N1 selects a relay node capable of decreasing a communication cost of the public network 200 between the node N1 and the node N3. At this time, the node N1 refers to the decision table 14a of
When receiving the voice call, the node N2 reroutes a call to the node N3 through the public network 200 (5′). Like this, a call from the call origination terminal T1 terminates through an extension to the termination call terminal T2 under the node N3 via a communication route partially rerouting into the public network 200 (6).
When a failure is detected in Block B3, the origination side node selects relay nodes by which the rerouting cost to the determination side node becomes minimized (Block B5), and originates a call for making the selected relay node a request for relay (Block B6). The communication route formed as given above, although partially passes through the public network 200, the communication cost is minimized.
As mentioned above, in this embodiment, each node N1-N3 detects the IP route failure to and from other nodes devices to store the failure. If the IP route failure is present between the origination side node and the termination side node, the origination side node selects candidates of a plurality of relay nodes which can be the rerouting nodes to the public network 200. The origination side node selects the relay node by which the rerouting cost to the public network 200 becomes minimized. The origination side node establishes a communication route via the IP network 100 to the selected relay node, and the relay node reroutes communication to the termination side node through the public network 200.
Since the telephone system is configured as given above, the system enables to dynamically decide the relay node which makes the communication cost minimum for rerouting. Rerouting from the relay nodes decided as mentioned above enables providing a solution to minimize total communication cost. Thus, a telephone connection service may be continuously provided while the communication cost is suppressed.
The invention is not limited to the foregoing embodiment. For instance, in the embodiment, the failure in the IP network 100 is monitored by means of real time polling or sequential polling. As a substitution for this, failure detection processing may be started by the generation of the call origination from the origination side terminal T1 as a trigger. Such starting enables traffic for detecting a failure to be minimized, and a burden on network resources may be reduced.
While the embodiment has decided the relay node by referring to the decision table 14a, the invention is not limited to this way of decision; the telephone system may calculate a required cost between the origination side and the termination side nodes on the basis of a rate system of the public network 200, and select the relay node by which the calculated cost is minimized.
While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2007-337814 | Dec 2007 | JP | national |