The present invention relates to methods and system structures for providing public and private telephone service between two terminals over selectable networks of differing types. More particularly the invention relates to providing such telephone service in a manner to permit optimization of a selectable parameter, such as, minimizing cost, maximizing quality, maximizing availability of connection, and the like.
The availability of public and private telephony communication has become so universal in the United States and in other developed countries that it has become critical to the functioning of modern society. At the same time, its very popularity and multipurpose use have led to demands that tax the efficient operation of the varied systems that provide that universality. While multiple types of networks are used for providing telephone service it is not always appreciated to what a large extent those different networks are interrelated. Thus, the very efficacy of one of the interrelated systems in optimizing one parameter may cause the overload or breakdown of an interrelated system, which is necessary to provide end to end service. In order that the nature of these problems may be fully appreciated, it is necessary to have an understanding not only of the factors which determine the inherent parameters of the individual networks, but also the factors which impose limitations on the interlinked networks. To that end there is here presented a brief description of the two networks which are most currently involved. These are the Internet and the public switched telephone network (PSTN).
The Internet is an interconnected global computer network of tens of thousands of packet-switched networks using the Internet protocol (IP). It is a network of networks. For purposes of understanding how the Internet works, three basic types of entities can be identified. These are end users, Internet service providers, and backbone providers. End users access and send information either through individual connections or through organizations such as universities and businesses. End users in this context include both those who use the Internet primarily to receive information, and content creators who use the Internet to distribute information to other end users. Internet service providers (ISPs), such as Netcom, PSI, and America Online, connect those end users to Internet backbone networks. Backbone providers, such as MCI, UUNet, and Sprint, route traffic between ISPs, and interconnect with other backbone providers.
This tripartite division highlights the different functionalities involved in providing Internet connectivity. The actual architecture of the Internet is far more complex. Backbone providers typically also serve as ISPs; for example, MCI offers dial-up and dedicated Internet access to end users, but also connects other ISPs to its nationwide backbone. End users such as large businesses may connect directly to backbone networks, or to access points where backbone networks exchange traffic. ISPs and backbone providers typically have multiple points of interconnection, and the inter-relationships between these providers are changing over time. It is important to appreciate that the Internet has no “center,” and that individual transmissions may be routed through multiple different providers based on a number of factors.
End users may access the Internet though several different types of connections, and unlike the voice network, divisions between “local service” providers and “long-distance” providers are not always clear. Most residential and small business users have dial-up connections, which use analog modems to send data over plain old telephone service (POTS) lines of local exchange carriers (LECs) to ISPs. Larger users often have dedicated connections using high-speed ISDN, frame relay or T1 lines, between a local area network at the customer's premises and the Internet. Although the vast majority of Internet access today originates over telephone lines, other types of communications companies, such as cable companies, terrestrial wireless, and satellite providers, are also beginning to enter the Internet access market.
The roots of the current Internet can be traced to ARPANET, a network developed in the late 1960s with funding from the Advanced Research Projects Administration (ARPA) of the United States Department of Defense. ARPANET linked together computers at major universities and defense contractors, allowing researchers at those institutions to exchange data. As ARPANET grew during the 1970s and early 1980s, several similar networks were established, primarily between universities. The TCP/IP protocol was adopted as a standard to allow these networks, comprised of many different types of computers, to interconnect.
In the mid-1980s, the National Science Foundation (NSF) funded the establishment of NSFNET, a TCP/IP network that initially connected six NSF-funded national supercomputing centers at a data rate of 56 kilobits per second (kbps). NSF subsequently awarded a contract to a partnership of Merit (one of the existing research networks), IBM, MCI, and the State of Michigan to upgrade NSFNET to T1 speed (1.544 megabits per second (Mbps)), and to interconnect several additional research networks. The new NSFNET “backbone,” completed in 1988, initially connected thirteen regional networks. Individual sites such as universities could connect to one of these regional networks, which then connected to NSFNET, so that the entire network was linked together in a hierarchical structure. Connections to the federally-subsidized NSFNET were generally free for the regional networks, but the regional networks generally charged smaller networks a flat monthly fee for their connections.
The military portion of ARPANET was integrated into the Defense Data Network in the early 1980s, and the civilian ARPANET was taken out of service in 1990, but by that time NSFNET had supplanted ARPANET as a national backbone for an “Internet” of worldwide interconnected networks. In the late 1980s and early 1990s, NSFNET usage grew dramatically, jumping from 85 million packets in January 1988 to 37 billion packets in September 1993. The capacity of the NSFNET backbone was upgraded to handle this additional demand, eventually reaching T3 (45 Mbps) speed.
In 1992, the NSF announced its intention to phase out federal support for the Internet backbone, and encouraged commercial entities to set up private backbones. Alternative backbones had already begun to develop because NSFNET's “acceptable use” policy, rooted in its academic and military background, ostensibly did not allow for the transport of commercial data. In the 1990s, the Internet has expanded decisively beyond universities and scientific sites to include businesses and individual users connecting through commercial ISPs and consumer online services.
Federal support for the NSFNET backbone ended on Apr. 30, 1995. The NSF has, however, continued to provide funding to facilitate the transition of the Internet to a privately-operated network. The NSF supported the development of three priority Network Access Points (NAPs), in Northern California, Chicago, and New York, at which backbone providers could exchange traffic with each other, as well as a “routing arbiter” to facilitate traffic routing at these NAPs. The NSF funded the vBNS (Very High-Speed Backbone Network Service), a non-commercial research-oriented backbone operating at 155 megabits per second. The NSF provides transitional funding to the regional research and educational networks, as these networks are now required to pay commercial backbone providers rather than receiving free interconnection to NSFNET. Finally, the NSF also remains involved in certain Internet management functions, through activities such as its cooperative agreement with SAIC Network Solutions Inc. to manage aspects of Internet domain name registration.
Since the termination of federal funding for the NSFNET backbone, the Internet has continued to evolve. Many of the largest private backbone providers have negotiated bilateral “peering” arrangements to exchange traffic with each other, in addition to multilateral exchange points such as the NAPs. Several new companies have built nationwide backbones. Despite this increase in capacity, usage has increased even faster, leading to concerns about congestion. The research and education community, with the support of the White House and several federal agencies, recently announced the “Internet II” or “next-generation Internet” initiative to establish a new high-speed Internet backbone dedicated to non-commercial uses.
As of January 1997 there were over sixteen million host computers on the Internet, more than ten times the number of hosts in January 1992. Several studies have produced different estimates of the number of people with Internet access, but the numbers are clearly substantial and growing. A recent Intelliquest study pegged the number of subscribers in the United States at 47 million, and Nielsen Media Research concluded that 50.6 million adults in the United States and Canada accessed the Internet at least once during December 1996—compared to 18.7 million in spring 1996. Although the United States is still home to the largest proportion of Internet users and traffic, more than 175 countries are now connected to the Internet.
According to a study by Hambrecht & Quist, the Internet market exceeded one billion dollars in 1995, and is expected to grow to some 23 billion dollars in the year 2000. This market is comprised of several segments, including network services (such as ISPs); hardware (such as routers, modems, and computers); software (such as server software and other applications); enabling services (such as directory and tracking services); expertise (such as system integrators and business consultants); and content providers (including online entertainment, information, and shopping).
The value of networks to each user increases as additional users are connected. For example, electronic mail is a much more useful service when it can reach fifty million people worldwide than when it can only be used to send messages to a few hundred people on a single company's network. The same logic applies to the voice telephone network.
However, this increasing value also can lead to congestion. Network congestion is an example of the “tragedy of the commons:” each user may find it beneficial to increase his or her usage, but the sum total of all usage may overwhelm the capacity of the network. With the number of users and host computers connected to the Internet roughly doubling each year, and traffic on the Internet increasing at an even greater rate, the potential for congestion is increasing rapidly. The growth of the Internet, and evidence of performance degradation, has led some observers to predict that the network will soon collapse, although thus far the Internet has defied all predictions of its impending doom.
Two types of Internet-related congestion may occur; congestion of the Internet backbones, and congestion of the public switched telephone network when used to access the Internet. These categories are often conflated, and from an end user standpoint the point of congestion matters less than the delays created by the congestion.
Congestion of the Internet backbones results largely from the shared, decentralized nature of the Internet. Because the Internet interconnects thousands of different networks, each of which only controls the traffic passing over its own portion of the network, there is no centralized mechanism to ensure that usage at one point on the network does not create congestion at another point. Because the Internet is a packet-switched network, additional usage, up to a certain point, only adds additional delay for packets to reach their destination, rather than preventing a transmission circuit from being opened. This delay may not cause difficulties for some services such as E-mail, but could be fatal for real-time services such as video conferencing and Internet telephony. At a certain point, moreover, routers may be overwhelmed by congestion, causing localized temporary disruptions known as “brownouts.”
Backbone providers have responded to this congestion by increasing capacity. Most of the largest backbones now operate at 155 Mbps (OC-3) speeds, and MCI has upgraded its backbone to OC-12 (622 Mbps) speed. Backbone providers are also developing pricing structures, technical solutions, and business arrangements to provide more robust and reliable service for applications that require it, and for users willing to pay higher fees.
Internet backbone congestion raises many serious technical, economic, and coordination issues. Higher-bandwidth access to the Internet will be meaningless if backbone networks cannot provide sufficient end-to-end transmission speeds. Moreover, the expansion of bandwidth available to end users will only increase the congestion pressure on the rest of the Internet. This has significant implications to local exchange carriers. Most residential subscribers reach their ISPs through dial-up connections to LEC networks. A modem at the customer premises is connected to a local loop, which is connected to a switch at a LEC central office. ISPs also purchase connections to the LEC network. In most cases, ISPs either buy analog lines under business user tariffs (referred to as “1MBs”) or 23-channel primary rate ISDN (PRI) service. When a call comes into an ISP, it is received through a modem bank or a remote access server, and the data is sent out through routers over the packet-switched Internet. Both subscribers and ISPs share usage of LEC switches with other customers.
It is becoming increasingly apparent that the current flat charge pricing structure for Internet access contributes to the congestion of LEC networks. Switch congestion can arise at three points in LEC networks—the switch at which the ISP connects to the LEC (the terminating switch), the interoffice switching and transport network, and the originating end user switch. The point of greatest congestion is the switch serving the ISP, because many different users call into the ISP simultaneously.
LECs have engineered and sized their networks based on assumptions about voice traffic. In particular, several decades of data collection and research by AT&T, Bellcore, and others has shown that an average voice call lasts 3-5 minutes, and that the distribution between long and short calls follows a well-established curve. Because very few people stay on the line for very long periods of time, there is no need for LEC switches to support all users of the switch being connected simultaneously. Instead, LEC switches are generally divided into “line units” or “line concentrators” with concentration ratios of typically between 4:1 and 8:1. In other words, there are between four and eight users for every call path going through the switch. Call blockage on the voice network tends to be negligible because a significant percentage of users are unlikely to be connected simultaneously.
The distribution of Internet calls differs significantly from voice calls. In particular, Internet users tend to stay on the line substantially longer than voice users.
Because LEC networks have not been designed for these longer usage patterns, heavy Internet usage can result in switches being unable to handle the load (“switch congestion”). Internet connections tie up a end-to-end call path through the PSTN for the duration of the call. When the average hold time of calls through a switch increases significantly, the likelihood of all available call paths through the switch being in simultaneous use also goes up. If a particular line unit has an 8:1 concentration ratio, only one eighth of the subscriber lines into that line unit need to be connected at one time in order to block all further calls.
Because of the relatively short average duration of voice calls, the primary limiting factor on the capacity of current digital switched for voice calls is the computer processing power required to set up additional calls. Computer processing power can be expanded relatively easily and cheaply, because modern switch central processing units are designed as modular systems that can be upgraded with additional memory and processing capacity. However, Internet usage puts pressure not on the call setup capacity of the switch, but on the number of transmission paths that are concurrently open through the switch.
As may be appreciated from the foregoing the traffic problems that exist with respect to providing reliable telephony communications, particularly long distance communications, involves intertwined limitations that exist separately and in combination in the Internet and in the public switched telephone network.
According to the invention there is provided a switched telephone network arranged in a manner to enable packet voice communication between telephone terminals via multiple redundant packet switched networks. The packet switched networks may utilize different protocols, be operated by different entities, and have primary functions other than voice communication. In one preferred embodiment of the invention packet voice communication may be provided over internetworked networks, such as the Internet, and alternately over a packet switched network whose primary function is control of a circuit switched telephone network. The common channel interoffice switching system (CCIS) of a public switched telephone network (PSTN) is a preferred example.
A voice communication link may be established from telephone terminal to telephone terminal via the Internet, the quality of voice communication may be monitored, and the link may be transferred to the common channel interoffice signaling network if and when the quality of voice communication deteriorates beneath a pre-established norm. The invention provides a means for monitoring the links of the common channel interoffice signaling system carrying the packetized voice communication and collecting the information needed to permit charging for the voice communication by time duration or by cells used to carry the packetized voice signal. The customer may be provided with the option of establishing the norm for diversion of the communication, or may elect which path is to be selected as the primary path.
It is a primary object of the present invention to provide a solution to the foregoing problems.
It is another object of the invention to provide enhanced reliable telephony service through varied redundant networks operating in combination.
It is yet another object of the invention to provide such service through mediated selection of an optimal path through such networks, wherein the mediation may be controlled by selectable parameters.
It is a further object of the invention to provide such service wherein the path is customer selectable.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
Applicant's above identified copending parent application Ser. No. 08/634,543, filed Apr. 18, 1996, Public Internet Protocol Transport Network, describes a dual PSTN and Internet communication system which provides a network and methodology for facilitating telephone use of the Internet by customers on an impromptu basis. Provision is made to permit a caller to set-up and carry out a telephone call over the Internet from telephone station to telephone station without access to computer equipment and without the necessity of maintaining a subscription to any Internet service. Usage is made of CCIS (common channel interoffice signaling) signaling to set up the call and establish the necessary Internet connections and addressing. Calls may be made from telephone station to telephone station, from voice capable computer to voice capable computer, or from telephone to computer or computer to telephone.
Applicant's above-identified copending parent application Ser. No. 08/698,713, filed Aug. 16, 1996, Internet Telephone Service, describes an improved version of that system of networks which enables wireless telephone access to Internet telephony.
Applicant's above identified copending parent application Ser. No. 08/790,888, Internet Telephone Service with Mediation, describes yet another improvement providing dual path customer access to the ISP with traffic mediation to alleviate overload of the local PSTN between the customer and ISP (Internet Service Provider) circuits.
While each of these systems provides significant improvement of previously available Internet telephony service, they do not address the totality of overload conditions described in detail above.
Referring to
The central office switching systems 112 and 114 are SSP equipped and connected to an advanced intelligent network or AIN as represented by STP 130 and ISCP 132. The links between the STP, ISCP, and SSP equipped switching systems comprise packet switched data links carrying signaling system 7 (SS7) protocol signals. The central office switching systems are connected by trunks 134 and tandem switches (not shown).
The Internet access plant of a public Internet service provider (ISP) 136 is connected to the central office switch 112 via a first hunt group of lines 138 and a second hunt group of lines 140. The ISP facility is here shown in simplified form comprising a modem pool 142, a voice server pool of application processing units 144, a host or server 146, and router 148. The router 148 is connected to a gateway router 150 to connect to the Internet, shown as a cloud 152.
A telephone company (Telco) access hub 154 is connected to the central office switching system 114 by a plurality of lines, which may include POTS or plain old telephone service connections as well as ISDN links shown collectively at 156. The Telco's hub 154 may be of the type shown and described in detail in the common assignee's copending application Ser. No. 08/815,363, filed Mar. 11, 1997, and entitled Public IP Transport Network, which application is incorporated herein in its entirety by reference.
The Telco access hub is here shown in simplified fashion as comprising a pool of network access servers (NASs) 158, a pool of voice servers 160, an Ethernet packet switch 162, and a gateway router 164. The gateway router is connected via a Telco switched multimegabit data service (SMDS) network 166 to the Internet 152 via an Internet gateway router 168. The voice servers may have Internet interface processors (not here separately shown) with functionality presently to be described.
The Telco access hub is designed to provide access to the Internet and related IP data transport service for users or customers employing a wide variety of procedures and intranetwork protocols. The hub provides Internet access to widespread local areas served by a public switched telephone network. Customers may obtain the use of various types of ports on the Telco platform such as, by way of example, analog 28.8 Kb/s service, ISDN service, dedicated ports for SMDS (switched multimegabyte data service), frame relay, T1, DDS or other available services. As a matter of convenience the hubs will be collocated with central office switching systems and oftentimes may be sited in the same building. Each hub and its equipment will be operated, maintained and provisioned by Telco personnel.
The current availability of the Telco SMDS service, makes it feasible to provide virtually immediate high speed service to business customers capable of interfacing via SMDS. This facilitates limitation of the load or traffic on the gateway routers in the hubs inasmuch as the SMDS signals may be bypassed around the router.
A key component of Telco provided Internet access for the region which it serves is the LATA hub. One such hub is provided for each LATA. Dedicated access is offered from such LATA hubs and will support connectionless services such as frame relay or SMDS. These are currently tariffed fast packet services which are non-distance sensitive. Other presently tariffed services also will be available from such LATA hubs, such as DDS or T1, however these services involve point to point circuits which require additional hardware and are distance sensitive. The Telco access system would allow Internet service provider customers such as UUNet, PSI, and the like, to provide service and seek additional users, while obtaining immediate transport from an alternate source.
The main module of equipment in the hub is the gateway router. The gateway router is connected via redundant links to the Telco SMDS network or “cloud” and thence to the Internet at large. The SMDS links may be 34 Mb/s or T1 links or any combination thereof or of similar links.
The Internet Protocol Routing Service (IPRS) provided by the hub provides for the collection, concentration and management of the customers traffic, IP Routing Service comprises network routers located at LATA hub sites that will collect the customer's (ISP's) end user traffic and concentrate it for connection and transport over a Telco Exchange Access Switched Multi-Megabit Data Service (XASMDS) Subscriber Network Interface.
The operation of this aspect of the system may be described as follows. A public Internet service provider or ISP, such as the ISP 136, may be increasing its customer base and experiencing circuit overload in the Telco network to its retail customers. By way of example, the overload is evidencing itself most adversely in the occurrence of an objectionably high number of busy signals to dial-up customers. The dial-up customers are within the region of the local exchange carrier (LEC) or Telco operating the PSTN which includes the central office switching systems 112 and 114, The Telco offers a public IP transport service through various contract arrangements. This includes use of its AIN equipped network, access hub, and SMDS network for connection to the Internet.
The ISP arranges with the Telco for the Telco to provide for the ISP a specified number of lines to the Telco's Internet access hub, with a sufficient capacity to provide virtually delay free connection to the Internet. The arrangement between the two companies may constitute a continuous lease of lines and access hub capacity by the ISP, or alternatively, may constitute a guarantee of adequate capacity to handle specified overload. As part of the arrangement the Telco will make available to the ISP an AIN/ISCP/IP monitoring and control functionality to provide transfer of load under conditions specified by the ISP.
Thus the AIN control network in
As is described in further detail in the aforementioned copending application Ser. No. 08/816,227, the Telco installs in storage or databases in the ISCP and in the IP, tables of parameters and processing programs which are provided or specified by the ISP. Such parameters may be set for some or all of the dial-up numbers used by the ISP and served by the Telco in the region. The parameters are used to construct the operating algorithms. The experience of operating with the algorithms permits specification of various thresholds designed to signal imminent overload and to trigger preventive action, such as line redirection. The parameters and thresholds may also specify discontinuing the line redirection based on a change in the subsequent values of the same or additional parameters. Discontinuance of redirection may be predicated on “discontinuance” thresholds supplied by the ISP. In a simple case the ISP may direct discontinuing the line redirection when the threshold which was originally exceeded is no longer being exceeded.
While the foregoing-describes an arrangement which provides significant improvement in minimizing or obviating network overload in a retail customer obtaining dial-up access to the Internet, there remains the problem of overload in the Internet itself, as previously described. Such overload is particularly serious in the case of Internet telephony, where delay time may rapidly produce an unacceptable quality of service.
The common assignee's copending application describes a network and method which addresses this problem by initially checking the quality of telephone service which is currently available on the Internet, and establishing an Internet telephone call only if that quality is acceptable to the prospective calling party. Details of this methodology are explained in detail in above mentioned copending application Ser. No. 08/821,027, which is incorporated by reference herein in its entirety.
However, it is also possible that the quality of telephone service available on the Internet may be acceptable at the time that the call is established, but may deteriorate during the call. The problem created by that situation may be ameliorated in the manner now described in relation to
Using the architecture illustrated in
Each of the central office SSPs 13 and 17 is connected to Internet Module or voice server 92 and 94, respectively, by T1 trunks 96 and 98. Alternatively, the Internet Module hardware may be situated at the central office and associated with the switching system. The Internet Modules or voice servers may be provided with SSP capabilities and connected into the CCIS network directly to an STP or, as illustrated by the links 102 and 104, to the SSPs 13 and 17. The Internet Modules may be linked together for signaling purposes by conventional F links. The Internet Modules are connected to the Internet cloud by T1/T3 trunks 111 and 112.
The functional architecture of one embodiment of an Internet Module which may be utilized in this arrangement is shown diagrammatically in
While message and signaling communication with the common channel signaling network occurs through the GDI, communication of voice data is made through the Channel Serving Unit, Digital Serving Unit (CSU/DSU) 328. This unit, which may physically comprise a digital line card in the processor with standard 24 digital voice line inputs, packetizes voice data received from the telephone central office. The CSU/DSU coordinates with route determination unit 330 to identify packets, termination phone numbers and routes to the network termination gateway router. The route determination information is included in each packet for the data received from the originating central office SSP. The packetized data is compressed in accordance with stored algorithm 332, before being sent to the TCP/IP stack and physical transport layer for transmission to the far end gateway router. To complete transmission to the destination telephone, the termination router decompresses the received packets, depacketizes back to voice data which is then routed to the destination PSTN. Two way capability for each of the functions is provided for communication in both directions. While shown for illustrative purposes as separate blocks, the route determination and compression/decompression functions, as well as the quality test application, may be run, for example, by a UNIX-based computer.
The foregoing arrangements provide for relief from various aspects of the overall network overload problem. Relief for overload in the Internet itself is provided by diverting voice communication via the trunked PSTN. While this is generally acceptable for short haul voice communication it leaves something to be desired in providing relief for long haul traffic. Traffic of that type increases the load on multiple switching systems and interconnecting trunks. By way of example, completing a telephone call over the PSTN in even a limited area, such as the northern Virginia area, may involve the call going through as many as eight to ten offices or switching systems.
Referring to
The distal LEC B is similar to LEC A. LEC B is represented by SSP equipped end offices (SSP/EOs) 540 and 542 connected by a representative trunk or trunks 544. These SSP/EOs serve subscriber stations represented by telephone terminals 546 and 548 and personal computer (PC) 550, and telephone terminals 552 and 554 and PC 556. LEC B also serves an ISP 558 via SSP/EO 540, This ISP also may be of the type illustrated in
The telephone system network shown in
STP 570 is connected to STP 574 by B link 585 and to STP 576 by D link 586. STP 572 is connected to STP 576 by B link 588 and to STP 574 by D link 590. The STPs are connected to SSPs 510, 512, 540, and 542 by A links 592-598.
The SS7 network constitutes a highly redundant data network, generally a 56 K switched data circuit. By way of example, an SS7 message from end office 510 to end office 540 might travel any one of eight possible routes. It could go from 510 to STP 570, from STP 570 to STP 574, STP 574 to SSP or EO 540. One variation on that route would be from STP 570 down the D link 586 to STP 576 to SSP/EO 542, and so forth. In the event a link between STP 570 and SSP/EO 540 was lost, an SS7 route could be established from end office 510 to SSP/EO 542 via STP 570 to STP 574 and the via C link 584 to STP 576 and then via A link 600 to SSP/EO 542. However, that would be an undesirable route unnecessarily using the C link. A links provide direct connectivity while C links provide circuitous routes using extra switches, a situation to be avoided. An alternate route would be from STP 570 via D link 586 to STP 576 via A link 600 to SSP/EO 542.
As is described in detail in the common assignee's above-identified pending application Ser. No. 08/353,281, filed Dec. 5, 1994, and continuation cases above identified, it has been discovered by the applicant that digitized voice may be transported in TCAP format in SS7 signals. It has further been discovered by the applicant that such SS7 voice transport may be carried out in substantially real time through the use of suitable vocoders, PADS, and routers, as described in the aforesaid applications. It is a basic purpose of this invention to utilize the SS7 network as an alternate multi-purpose network for transporting voice signals between calling and called telephone terminals. To this end the SSP/EOs are appropriately enabled as described. The SS7 network may be selected for packetized voice transport as a result of traffic overload in either or both the Internet and/or the PSTN trunked voice network or as a matter of choice.
In normal use of the PSTN the analog voice signal entering the originating end office, such as SSP/EO 512 in
This routing avoids use of the PSTN trunked network and its multiple intervening switching systems. As previously described, use of the PSTN may tie up from 8 to 10 switching offices for a call between two stations in even a limited area. If that same call is handled over the SS7 network it goes directly through that packet network without tying up any switches between the originating office and the terminating office.
This routing also relieves traffic on the lines or trunks used to connect the voice signals to the Telco access hub 534 or the ISP 528, either of which might be used to route the call via the Internet. Still further, this CCIS/SS7 routing reduces traffic in the backbone networks of the Internet and thereby avoids the voice signal degradation which such overload causes.
It is a feature of the invention that the redundancy of the SS7 network and packet switching techniques permits packets traveling different routes to the same destination. This redundancy is utilized as a feature of the invention to enable the existing SS7 network to handle the digital packet voice communication and thereby ameliorate or eliminate traffic overload, without requiring modification of the SS7 system. The SS7 network has been designed to perform its conventional signaling function while utilizing no more than approximately fifty percent of the network capacity. It is a feature of the invention that the availability of spare capacity is determined before diverting voice or other trunk signals into the CCIS SS7 network.
It will be appreciated that this feature of the invention provides a significant degree of solution to the telephone network and Internet congestion or traffic overload problems by opening an entirely new traffic path to carry the load. The amount of traffic diverted from one of the three networks to another may vary depending on fixed or dynamic parameters which may be designed into the network for automatic or manual actuation. The load condition in the CCIS network is monitored prior to the time that traffic is diverted thereby preventing overload of the critical CCIS control network.
According to one embodiment of the invention, there is provided a system and method for utilizing the SS7 or common channel signaling network to perform the still additional function of detecting predetermined events and/or the imminence of predetermined events, and then blocking or controlling those events from their incipiency. In this case it may be desired to divert or redirect calls to a predetermined destination, such as the SS7 network, when the rate of call attempts or calls exceed a specified parameter. One example of such a parameter may be the number of specified occurrences per time period (minute or fraction thereof, hour, etc.).
This is accomplished utilizing the CCIS or SS7 network in conjunction with programmable monitors associated with the CCIS links to the STPs, and control processors for those monitors. According to the invention these monitors are programmed to trap and temporarily record predetermined CCIS signaling data such as call set up messages, associated with specific events, which it is desired to block or control. Call setup messages utilize a call setup protocol known as the Integrated Services Digital Network (ISDN) User Part (ISUP) call setup protocol. The ISUP call setup protocol is described in the Bellcore standards, “TR-NWT 000317, Switching System Generic Requirements for Call Control Using the Integrated Services Digital Network User Part (ISDNUP)”, “TR NWT000394, Switching System Generic Requirements for Interexchange Carrier Interconnection Using the Integrated Services Digital Network User Part (ISDNUP)”, and “TR-NWT000444, Switching System Requirements Supporting ISDN Access Using the ISDN User Part”, which are hereby incorporated by reference.
The monitors on the CCIS links to a specified SSP may be programmed to trap selected call set up messages which inquire as to the availability of a line. The same monitors may be programmed to trap call set up messages which inquire as to the availability of a line and indicate that it is not available. Set up signals which indicate unavailability, such as in the case of a busy line, comprise one indication of the maximum load on the available voice circuits. Such a condition may be relieved by the provision of additional lines from the end office to the Internet server. However it is desired to minimize overloading with the existing network. When the occurrence of line busy conditions approaches or exceeds a pre-specified parameter it may provide an indication of the approach of an unacceptable degree of congestion in the voice circuits.
The monitors provide an output to an event detection center (EDC) processor having an SSP capability which is linked to the STPs. The SS7 signaling to and from the STPs can be monitored to maintain a continuous check on the load status of the CCIS SS7 network. The link to the EDC makes this information available to the EDC. According to one embodiment of the invention, the event detection center processor reacts to this information to block or control (such as diverting) specified calls via the CCIS network, after ascertaining that usable capacity exists in that network.
According to another feature of the invention, the event control processor communicates with the monitors either via the STP CCS links or via connection to a controller for the monitors. In this manner it is possible to predict the development of a traffic overload in one type of circuit, the normal voice circuits, and to divert some or all of that traffic into a different type of network in a unique manner to avoid the actual occurrence of the undesired overload situation. The different network, i.e., the CCIS network, thus acts to perform the multiple functions of handling conventional PSTN network control, activating the monitor network to provide warning signals, acting on warning signals from the monitor network control to and direct diversionary switching through CCIS signaling, transporting the diverted signals via the CCIS network, and billing for the call.
Another feature of the invention lies in the fact that no diversion of signals onto the CCIS network will occur if there exists a possibility that the addition of such diverted signals would cause an overload on the CCIS network. In addition to the foregoing, the invention provides that the SS7 network and event control processor may be arranged to supply the additional function of billing for voice calls via the SS7 network as well as the Internet.
Referring to
Each STP is provided with a series of monitors M with one monitor bridged onto each STP link, each monitor having receive and transmit ports. As will be understood by those skilled in the art, each SSP has a point code comprising a nine-digit code assigned to every node in the network. Each operating company has its own network ID normally represented by three digits in the point code. The point code also contains a three-digit cluster number. A cluster can hold 32 SSPs, the SSPs being designated by the final three numbers. According to the invention the monitors M are addressable and have individual point codes for control and programming purposes.
The monitors include processors and temporary storage, as indicated by way of example at 626, connected to the monitor M 628 in
As described in further detail in the aforesaid Pester Patent, the monitors are controllable from remote stations to set traps which may be customized. Thus the monitors are programmed to trap packets and/or selectable fields and/or field contents on a real time basis to permit extremely rapid response to detected conditions. The system and method of the invention are applicable to not only a localized or regional communications network but also to a virtually unlimited interconnection of such networks. The monitors may comprise monitor circuit cards physically mounted at a monitor controller 630, that holds all monitor cards for that cluster. The monitor controller includes a 486 or the like type controller and memory or storage that keeps track of all 32 monitors and handles any messages.
The controller 630 and its monitors M may be regarded as an interface with the SS7 network. The equipment may be conveniently mounted at or adjacent to the STP with which the monitors are associated. A function of the monitor controller is recording all of the data forwarded by the monitors M.
The controller 630 may be similar to the stage one controller described in the aforesaid Pester Patent. The controller 630 is connected to the event detection center 608 via a data link 634. The monitors may physically constitute a back plane capable of handling multiple cards. The monitor cards themselves include multiple monitors, such as four monitors per card. According to the invention the monitors may be programmed by monitor control signals delivered either via the SS7 or CCS network or via the data link between each monitor M and its associated monitor controller 630. In the first instance control signals may be delivered to specifically addressed monitors over the CCS links 610 and 612 in
The processor in the event detection center 608 may be loaded with the desired program or script via the terminal 614. This script will specify for identified monitors the particular signals or portions of signals to be trapped and the nature of the output signal to be delivered to the monitor controller 630. The monitor controller receives this designated information from all specified monitors in its cluster and provides an output signal to the event detection center processor 608 upon the occurrence of predetermined conditions as specified by the event detection center processor. The event detection processor in turn may respond to the receipt of these output signals from the monitor controller by directing to the SS7 or CCS network over the links 610, 612, routing or other control information to direct the handling of predetermined calls or further process the received signals.
The EDC 608 may be programmed from the terminal 614 or from the ISCP via STPs to trap the desired signals and to react to the receipt of the monitor controller output signal to implement various types of billing. This may be initiated by transmitting a signal to the Automatic Message Accounting (AMA) or Station Message Detail Recording (SMDR) Office for dispatch to the Revenue Accounting Office (RAO) for billing of the service and reporting the events that occurred. Further detail regarding such billing is described in the common assignees copending application Ser. No. 08/547,178, filed Oct. 24, 1995, which application is incorporated by reference herein in its entirety. The arrangement shown in
It will be understood that alternate methods may be used relying on the SS7 signaling to effect billing for SS7 and Internet voice calls. While the data internetwork comprising the Internet has been referred to herein it also will be understood that other data internetworks may be used for voice transport and may be billed in a similar manner. While billing in the public switched telephone network has traditionally been based on time of connection for toll calls, it is within the comprehension of the invention that a “per cell” or the like charge arrangement may be used. This is particularly appropriate for the SS7 or CCIS network when it is used as a backbone packet network in the manner of the present invention. The network which is here provided is particularly suited to such a billing arrangement. Not only is the new system capable of obtaining the necessary data via the SS7 CCIS network, but this also may be obtained on a customized basis from the monitoring and superimposed control that is provided.
The operation of the redundant network system shown in
1. Identify the ISP or Telco access hub to which overload protection is to be implemented. In this example it will be assumed that Telco access hub 638 in
2. Identify the SS7 or CCIS links to the SSP/EO to which that server is connected and identify the addresses of the monitors on those links. In this example those would be the monitors on links 600 and 606.
3. Send monitor set up signals from the EDC computer via either the SS7/CCIS links or the monitor controller to the identified addressed monitors on the specified links.
4. Through such set up signals program those monitors to trap data signals on the specified links which are caused by a call initiation request signal (IAM) requesting a connection to the designated server. The trapped signals will be stored in the temporary storage associated with the monitors.
5. Program the monitors and monitor controller to send to the monitor controller those stored signals which represent IAM signals which encountered a busy condition on the local link 640 to the Telco access hub 638.
6. Set a threshold limit for such busy conditions per time period, i.e., the rate at which such signals are received. When that threshold is reached, the monitor control sends to the event detection control (EDC) a message to take load reduction action.
7. When the EDC receives a signal that load reduction action is indicated it will check the availability of SS7 network capacity to handle overload. An SS7 network available capacity threshold which is necessary to permit diversion of signals onto the SS7 network has previously been set. The links 610 and 612 from the EDC to the STPs provide the EDC with a continuous indication of SS7 network load conditions.
8. When the EDC receives a signal that load reduction action is indicated, and the EDC has determined that excess capacity is available in the SS7 network, it will broadcast a message to all SSP/EOs in LEC-B. Upon receiving this message each SSP/EO sets its program to switch incoming calls bearing an Internet prefix to the SS7 network. This condition of the switches is maintained until a reset signal restores the switches to their former condition.
9. Once the monitor control signals the EDC that the IAM/busy signal threshold has been reached, the monitor control periodically checks its storage to determine if the threshold was reached during the latest predetermined time period. When the monitor control determines that the rate of arrival of IAM/busy signals has dropped below the threshold, it sends a message to the SSP/EOs to reset their programs to discontinue switching incoming Internet calls to the SS7 network.
The operation of the system and method of the invention pursuant to this programming is now described.
In this example an Internet connection is sought to link a calling telephone to a called telephone without using personal or office computer equipment. The subscriber in this example uses a POTS terminal to initiate an Internet call to a called party at a called POTS terminal. The caller goes off-hook and dials *82. This prefix has been established by the Telco offering the service as a predesignated prefix with which the public may initiate an Internet telephone call through a Telco Internet server or access hub. The dialing of the prefix *82 is followed by the dialing of the directory number of the called party.
Alternative to this procedure the Telco may program its switches or SSP/EOs to react to 1+ or O+ dialing to suspend and return to the caller a recorded query such as “Type of long distance call?”. The voice recognition capability of the IPS 579 and 581 may then be utilized to allow the caller to use a voice signal to select between an Internet or telephone network call. The methodology may, for example, be of the type described in further detail in the common assignee's copending application Ser. No. 08/828,781, filed Mar. 27, 1997, entitled Phonetic Voice Activated Dialing. That application is incorporated by reference herein in its entirety. The Telco may also provide the subscribers the option of choosing an SS7 call.
The local SSP/EO to which the calling terminal is connected responds to the off-hook and receives the dialed digits from the calling station. The SSP/EO switching system analyzes the received digits and determines from the prefix *82 that the call is an Internet call. Responsive to its programming it knows that the call must be completed through the Telco access hub, and that further processing is necessary. In this example it is assumed that the Telco access hub must be reached by a different SSP/EO than the SSP/EO to which the calling telephone terminal is connected. Such would be the case in
The originating SSP/EO central office suspends the call and determines whether or not the lines from the destination SSP/EO to the Telco access hub are busy. If the called access hub line is busy, the destination SSP/EO notifies the originating SSP/EO via conventional SS7 signaling, and the originating SSP/EO provides a busy signal to the calling station.
When the receiving or destination SSP/EO notifies the originating SSP/EO that the access hub line is busy, this SS7 signal is noted by the monitor on the SS7 link on which that signal traveled. The initial inquiry to the destination SSP/EO and the busy response would be trapped by that monitor pursuant to its programming. Also pursuant to that programming the monitor would send request and busy signal sequence signals to the monitor control. The monitor control maintains a timed record of the number of request/busy signals received and increments that store. The monitor control ascertains whether the addition of the latest count reaches the predetermined threshold rate for such signals. If the threshold has not been reached the count is maintained but no action taken. If the threshold has been reached the monitor control signals the EDC to that effect. Upon receiving such notification the EDC checks for the availability of SS7 network capacity. If such capacity is not available no action is taken.
If excess capacity exists on the SS7 network the EDC broadcasts a message to all SSP/EOs in the network. Upon receiving this message each SSP/EO sets its program to switch incoming calls bearing the Telco Internet prefix to the SS7 network. This condition of the switches is maintained until a reset signal restores the switches to their former condition.
The processing sequence may be as follows for an Internet telephone call which is made after the switches have been set to divert Internet telephone calls to the SS7 network.
The caller goes off-hook and dials *82.
The central office SSP/EO responds to the off-hook and receives the dialed digits from the calling station.
The SSP/EO switching system analyzes the received digits and determines from the prefix *82 that the call is an Internet call.
The originating SSP/EO central office suspends the call and sends a CCIS query message through one or more of the STPs to the destination SSP/EO, However, this query is directed to the ultimate destination SSP/EO, which was identified by the destination telephone number initially dialed by the calling party. The message traverses the SS7 network between the two SSP/EOs.
The ultimate destination SSP/EO receives the query and determines whether or not the called station is busy. If the called station is busy, the ultimate destination SSP/EO so informs the originating SSP/EO.
The originating SSP/EO provides a busy signal to the calling station.
If the called station is not busy, the receiving ultimate destination SSP/EO busies out the called station line by blocking all calls.
The receiving or ultimate destination SSP/EO then informs the originating SSP/EO office that the called line is available and waiting and may be reached through the SS7 network.
The originating SSP/EO receives this message and a virtual connection of the two SSP/EOs is established through the SS7 network.
A telephony communication path from the calling to the called telephone terminal has now been established via the SS7 network.
If the call had been made from a telephone terminal connected to the same SSP/EO as the Telco access hub, the SSP/EO makes the busy/not busy determination internally. The switch also knows that it is presently programmed to send Internet calls to the SS7 network. Thus the switch internally directs the call to the SS7 network in the manner described in detail in parent application Ser. No. 08/790,888.
The foregoing operation of the system of the invention provides relief from overload in providing Internet voice communication due to overload in the PSTN access. It is also a feature of the invention that relief is provided where the Internet itself is encountering an overload condition which is producing a degradation of the quality of voice communication which is being supplied. This feature has been described in detail in connection with
According to the invention it is possible to provide multiple classes of telephony communication from telephone terminal to telephone terminal. This not only makes it possible to provide an improved quality of service but also provides a more universal guarantee of a user being able to complete a connection. Multiple options may be provided to the users. Thus the user may select his or her preferred routing at initiation of the establishment of the path. The routing may be changed during a communication to maintain quality.
Improved dial-up access to the Internet improves the reliability of that service for voice communication. If the improved service leads to congestion, the path may be diverted to the SS7 or CCIS network. However the CCIS traffic is monitored and that diversion will not be made if there is no available capacity in that network. If the path is diverted to the CCIS network and traffic approaches an overload point, then voice traffic may be diverted to the trunked network. This is an important feature. The CCIS network is now serving as a backbone packet network but its first priority must be controlling the public switched telephone network. Congestion presents a basic problem on any network and may present complex problems where those networks are interrelated.
The present invention provides not only an improved voice communication medium with redundant paths, but also provide a system and methodology for mediating between the redundant paths. This improves certitude of communication along with improved and monitored quality and maximum access to a minimum cost routing.
It will be readily seen by one of ordinary skill in the art that the present invention fulfills all of the objects set forth above. After reading the foregoing specification, one of ordinary skill will be able to effect various changes, substitutions of equivalents and various other aspects of the invention as broadly disclosed herein. It is therefore intended that the protection granted hereon be limited only by the definition contained in the appended claims and equivalents thereof.
This is a continuation of prior co-pending U.S. patent application Ser. No. 11/354,033, filed Feb. 2, 2006, which is a continuation of U.S. patent application Ser. No. 09/617,816, filed Jul. 17, 2000, which is a continuation of U.S. patent application Ser. No. 08/931,985, filed Sep. 17, 1997, which is a continuation-in-part of U.S. patent application Ser. No. 08/634,543, filed Apr. 18, 1996 (now U.S. Pat. No. 6,438,218, “Internet Telephone Service”), Ser. No. 08/698,713, filed Aug. 16, 1996 (now U.S. Pat. No. 6,125,113, “Internet Telephone Service”), and Ser. No. 08/790,888, filed Feb. 3, 1997, (now U.S. Pat. No. 6,122,225, “Internet Telephone Service with Mediation”). This application is also related to application Ser. No. 08/598,767, “Analog Terminal Internet Access,” filed Feb. 2, 1996, which is a continuation-in-part of application Ser. No. 08/353,281, filed Dec. 5, 1994; Ser. No. 08/371,906, filed Jan. 12, 1995; Ser. No. 08/539,952, filed Oct. 6, 1995; Ser. No. 08/557,749, filed Dec. 13, 1995; Ser. No. 08/634,544, filed Apr. 18, 1996, Ser. No. 08/790,888 filed Feb. 3, 1997, Ser. No. 08/815,363, filed Mar. 11, 1997, Ser. No. 08/816,227, filed Mar. 12, 1997, Ser. No. 08/821,027, filed Mar. 19, 1997, and Ser. No. 08/547,178, filed Oct. 24, 1995, which applications are assigned to the assignee of the instant application. The specifications of those applications are incorporated herein by referenced in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4054756 | Comella et al. | Oct 1977 | A |
4100377 | Flanagan | Jul 1978 | A |
4191860 | Weber | Mar 1980 | A |
4201891 | Lawrence et al. | May 1980 | A |
4310727 | Lawser | Jan 1982 | A |
4313035 | Jordan et al. | Jan 1982 | A |
4313036 | Jabara et al. | Jan 1982 | A |
4371751 | Hilligoss et al. | Feb 1983 | A |
4371752 | Matthews et al. | Feb 1983 | A |
4375097 | Ulug | Feb 1983 | A |
4555594 | Friedes et al. | Nov 1985 | A |
4565903 | Riley | Jan 1986 | A |
4577066 | Bimonte et al. | Mar 1986 | A |
4585906 | Matthews et al. | Apr 1986 | A |
4602129 | Matthews et al. | Jul 1986 | A |
4609778 | Franklin et al. | Sep 1986 | A |
4611094 | Asmuth et al. | Sep 1986 | A |
4611096 | Asmuth et al. | Sep 1986 | A |
4625081 | Lotito et al. | Nov 1986 | A |
4630262 | Callens et al. | Dec 1986 | A |
4652700 | Matthews et al. | Mar 1987 | A |
4653045 | Stanley et al. | Mar 1987 | A |
4672700 | Poncy | Jun 1987 | A |
4679190 | Dias et al. | Jul 1987 | A |
4685125 | Zave | Aug 1987 | A |
4710917 | Tompkins et al. | Dec 1987 | A |
4713806 | Oberlander et al. | Dec 1987 | A |
4718005 | Feigenbaum et al. | Jan 1988 | A |
4730071 | Schoenthal et al. | Mar 1988 | A |
4734931 | Bourg et al. | Mar 1988 | A |
4741820 | Coughlin et al. | May 1988 | A |
4747127 | Hansen et al. | May 1988 | A |
4747130 | Ho | May 1988 | A |
4748618 | Brown et al. | May 1988 | A |
4765924 | Inoue et al. | Aug 1988 | A |
4766604 | Axberg | Aug 1988 | A |
4771425 | Baran et al. | Sep 1988 | A |
4782485 | Gollub | Nov 1988 | A |
4788718 | McNabb et al. | Nov 1988 | A |
4790003 | Kepley et al. | Dec 1988 | A |
4821034 | Anderson et al. | Apr 1989 | A |
4827500 | Binkerd et al. | May 1989 | A |
4865763 | Inoue et al. | Sep 1989 | A |
4866763 | Cooper et al. | Sep 1989 | A |
4872157 | Hemmady et al. | Oct 1989 | A |
4872159 | Hemmady et al. | Oct 1989 | A |
4872160 | Hemmady et al. | Oct 1989 | A |
4872197 | Pemmaraju | Oct 1989 | A |
4875206 | Nichols et al. | Oct 1989 | A |
4877949 | Danielson et al. | Oct 1989 | A |
4882476 | White | Nov 1989 | A |
4893302 | Hemmady et al. | Jan 1990 | A |
4894824 | Hemmady et al. | Jan 1990 | A |
4897874 | Lidinsky et al. | Jan 1990 | A |
4899333 | Roediger | Feb 1990 | A |
4899373 | Lee et al. | Feb 1990 | A |
4910794 | Mahany | Mar 1990 | A |
4916691 | Goodman | Apr 1990 | A |
4918722 | Duehren et al. | Apr 1990 | A |
4922348 | Gillon et al. | May 1990 | A |
4922486 | Lidinsky et al. | May 1990 | A |
4933931 | Kokubo | Jun 1990 | A |
4942574 | Zelle | Jul 1990 | A |
4958341 | Hemmady et al. | Sep 1990 | A |
4969184 | Gordon et al. | Nov 1990 | A |
4979206 | Padden et al. | Dec 1990 | A |
4996707 | O'Malley et al. | Feb 1991 | A |
D315573 | Schultz et al. | Mar 1991 | S |
5008906 | Reichwein | Apr 1991 | A |
5008926 | Misholi | Apr 1991 | A |
5009337 | Bimbi | Apr 1991 | A |
5012511 | Hanle et al. | Apr 1991 | A |
5018191 | Catron et al. | May 1991 | A |
5019699 | Koenck | May 1991 | A |
5023868 | Davidson et al. | Jun 1991 | A |
5025254 | Hess | Jun 1991 | A |
5029196 | Morganstein | Jul 1991 | A |
5029199 | Jones et al. | Jul 1991 | A |
5029200 | Haas et al. | Jul 1991 | A |
5031098 | Miller et al. | Jul 1991 | A |
5034975 | Grimes | Jul 1991 | A |
5052020 | Koenck et al. | Sep 1991 | A |
5052943 | Davis | Oct 1991 | A |
5065393 | Sibbitt et al. | Nov 1991 | A |
5068888 | Scherk et al. | Nov 1991 | A |
5070536 | Mahany et al. | Dec 1991 | A |
5098877 | Coughlin et al. | Mar 1992 | A |
5107492 | Roux et al. | Apr 1992 | A |
5113499 | Ankney et al. | May 1992 | A |
5115431 | Williams et al. | May 1992 | A |
5115495 | Tsuchiya et al. | May 1992 | A |
5123064 | Hacker et al. | Jun 1992 | A |
5134647 | Pugh et al. | Jul 1992 | A |
5144282 | Sutterlin et al. | Sep 1992 | A |
5146488 | Okada et al. | Sep 1992 | A |
5146491 | Silver et al. | Sep 1992 | A |
5157390 | Yoshie et al. | Oct 1992 | A |
5157662 | Tadamura et al. | Oct 1992 | A |
5159592 | Perkins | Oct 1992 | A |
5159624 | Makita | Oct 1992 | A |
5163080 | Amoroso et al. | Nov 1992 | A |
5164938 | Jurkevich et al. | Nov 1992 | A |
5180232 | Chadima et al. | Jan 1993 | A |
5185860 | Wu | Feb 1993 | A |
5193110 | Jones et al. | Mar 1993 | A |
5195085 | Bertsch et al. | Mar 1993 | A |
5195086 | Baumgartner et al. | Mar 1993 | A |
5195128 | Knitl | Mar 1993 | A |
5195183 | Miller et al. | Mar 1993 | A |
5199062 | Von Meister et al. | Mar 1993 | A |
5200993 | Wheeler et al. | Apr 1993 | A |
5202817 | Koenck et al. | Apr 1993 | A |
5202825 | Miller et al. | Apr 1993 | A |
5204894 | Darden | Apr 1993 | A |
5206901 | Harlow et al. | Apr 1993 | A |
5208848 | Pula | May 1993 | A |
5215011 | Monney | Jun 1993 | A |
5216233 | Main et al. | Jun 1993 | A |
5218187 | Koenck et al. | Jun 1993 | A |
5218188 | Hanson | Jun 1993 | A |
5223699 | Flynn et al. | Jun 1993 | A |
5223820 | Sutterlin et al. | Jun 1993 | A |
5225071 | Coughlin et al. | Jul 1993 | A |
5226075 | Funk et al. | Jul 1993 | A |
5227614 | Danielson et al. | Jul 1993 | A |
5231492 | Dangi et al. | Jul 1993 | A |
5235317 | Sutterlin et al. | Aug 1993 | A |
5237604 | Ryan | Aug 1993 | A |
5241588 | Babson et al. | Aug 1993 | A |
5243645 | Bissell et al. | Sep 1993 | A |
5243654 | Hunter | Sep 1993 | A |
5247571 | Kay et al. | Sep 1993 | A |
5254971 | Sutterlin et al. | Oct 1993 | A |
5260986 | Pershan | Nov 1993 | A |
5263080 | Jones et al. | Nov 1993 | A |
5265155 | Castro | Nov 1993 | A |
5272749 | Masek | Dec 1993 | A |
5274696 | Perelman | Dec 1993 | A |
5280159 | Schultz et al. | Jan 1994 | A |
5287199 | Zoccolillo | Feb 1994 | A |
5289378 | Miller et al. | Feb 1994 | A |
5289468 | Yoshida | Feb 1994 | A |
5295154 | Meier et al. | Mar 1994 | A |
5303297 | Hillis | Apr 1994 | A |
5305181 | Schultz | Apr 1994 | A |
5308966 | Danielson et al. | May 1994 | A |
5309437 | Perlman et al. | May 1994 | A |
5311583 | Friedes et al. | May 1994 | A |
5313053 | Koenck et al. | May 1994 | A |
5317566 | Joshi | May 1994 | A |
5317691 | Traeger | May 1994 | A |
5318719 | Hughes et al. | Jun 1994 | A |
5322991 | Hanson | Jun 1994 | A |
5325421 | Hou et al. | Jun 1994 | A |
5327421 | Hiller et al. | Jul 1994 | A |
5327486 | Wolff et al. | Jul 1994 | A |
5329520 | Richardson | Jul 1994 | A |
5329578 | Brennan et al. | Jul 1994 | A |
5331580 | Miller et al. | Jul 1994 | A |
5333266 | Boaz et al. | Jul 1994 | A |
5341374 | Lewen et al. | Aug 1994 | A |
5345446 | Hiller et al. | Sep 1994 | A |
5346611 | Coughlin et al. | Sep 1994 | A |
5347633 | Ashfield et al. | Sep 1994 | A |
5349497 | Hanson et al. | Sep 1994 | A |
5349678 | Morris et al. | Sep 1994 | A |
5351286 | Nici | Sep 1994 | A |
5353331 | Emery et al. | Oct 1994 | A |
5359185 | Hanson | Oct 1994 | A |
5361256 | Doeringer et al. | Nov 1994 | A |
5365524 | Hiller et al. | Nov 1994 | A |
5365546 | Koenck et al. | Nov 1994 | A |
5367566 | Moe et al. | Nov 1994 | A |
5371858 | Miller et al. | Dec 1994 | A |
5375068 | Palmer et al. | Dec 1994 | A |
5375159 | Williams | Dec 1994 | A |
5377186 | Wegner et al. | Dec 1994 | A |
5381465 | Carter et al. | Jan 1995 | A |
5384831 | Creswell et al. | Jan 1995 | A |
5384840 | Blatchford et al. | Jan 1995 | A |
5386467 | Ahmad | Jan 1995 | A |
5390175 | Hiller et al. | Feb 1995 | A |
5390335 | Stephan et al. | Feb 1995 | A |
5392344 | Ash et al. | Feb 1995 | A |
5392402 | Robrock | Feb 1995 | A |
5394436 | Meier et al. | Feb 1995 | A |
5396542 | Alger et al. | Mar 1995 | A |
5400393 | Knuth et al. | Mar 1995 | A |
5402478 | Hluchyj et al. | Mar 1995 | A |
5406557 | Baudoin | Apr 1995 | A |
5408237 | Patterson et al. | Apr 1995 | A |
5408382 | Schultz et al. | Apr 1995 | A |
5410141 | Koenck et al. | Apr 1995 | A |
5410754 | Klotzbach et al. | Apr 1995 | A |
5416842 | Aziz | May 1995 | A |
5418844 | Morrisey et al. | May 1995 | A |
5420211 | Hughes et al. | May 1995 | A |
5420916 | Sekiguchi | May 1995 | A |
5422882 | Hiller et al. | Jun 1995 | A |
5422940 | Endo et al. | Jun 1995 | A |
5422941 | Hasenauer et al. | Jun 1995 | A |
5425028 | Britton et al. | Jun 1995 | A |
5425051 | Mahany | Jun 1995 | A |
5425085 | Weinberger et al. | Jun 1995 | A |
5425090 | Orriss | Jun 1995 | A |
5425091 | Josephs | Jun 1995 | A |
5425780 | Flatt et al. | Jun 1995 | A |
5426636 | Hiller et al. | Jun 1995 | A |
5428608 | Freeman et al. | Jun 1995 | A |
5428636 | Meier | Jun 1995 | A |
5430719 | Weisser | Jul 1995 | A |
5430727 | Callon | Jul 1995 | A |
5434852 | La Porta et al. | Jul 1995 | A |
5434913 | Tung et al. | Jul 1995 | A |
5436957 | McConnell | Jul 1995 | A |
5436963 | Fitzpatrick et al. | Jul 1995 | A |
5440563 | Isidoro et al. | Aug 1995 | A |
5440620 | Slusky | Aug 1995 | A |
5440621 | Castro | Aug 1995 | A |
5442690 | Nazif et al. | Aug 1995 | A |
5444709 | Riddle | Aug 1995 | A |
5448633 | Jamaleddin et al. | Sep 1995 | A |
5450411 | Heil | Sep 1995 | A |
5452289 | Sharma et al. | Sep 1995 | A |
5452297 | Hiller et al. | Sep 1995 | A |
5452350 | Reynolds et al. | Sep 1995 | A |
5455821 | Schaeffer et al. | Oct 1995 | A |
5457629 | Miller et al. | Oct 1995 | A |
5459775 | Isono et al. | Oct 1995 | A |
5461611 | Drake et al. | Oct 1995 | A |
5463677 | Bash et al. | Oct 1995 | A |
5465207 | Boatwright et al. | Nov 1995 | A |
5466170 | Pavek | Nov 1995 | A |
5468947 | Danielson et al. | Nov 1995 | A |
5468950 | Hanson | Nov 1995 | A |
5469496 | Emery et al. | Nov 1995 | A |
5469497 | Pierce et al. | Nov 1995 | A |
5469500 | Satter et al. | Nov 1995 | A |
5473608 | Gagne et al. | Dec 1995 | A |
5473677 | D'Amato et al. | Dec 1995 | A |
5475732 | Pester | Dec 1995 | A |
5475737 | Garner et al. | Dec 1995 | A |
5475748 | Jones | Dec 1995 | A |
5475817 | Waldo et al. | Dec 1995 | A |
5477531 | McKee et al. | Dec 1995 | A |
5479494 | Clitherow | Dec 1995 | A |
5481603 | Gutierrez et al. | Jan 1996 | A |
5483527 | Doshi et al. | Jan 1996 | A |
5483549 | Weinberg et al. | Jan 1996 | A |
5483586 | Sussman | Jan 1996 | A |
5483587 | Hogan et al. | Jan 1996 | A |
5483676 | Mahany et al. | Jan 1996 | A |
5487111 | Slusky | Jan 1996 | A |
5488575 | Danielson et al. | Jan 1996 | A |
5490247 | Tung et al. | Feb 1996 | A |
5493568 | Sampat et al. | Feb 1996 | A |
5493573 | Kobayashi et al. | Feb 1996 | A |
5495521 | Rangachar | Feb 1996 | A |
5500859 | Sharma et al. | Mar 1996 | A |
5500889 | Baker et al. | Mar 1996 | A |
5504746 | Meier | Apr 1996 | A |
5506887 | Emery et al. | Apr 1996 | A |
5506893 | Buscher et al. | Apr 1996 | A |
5511111 | Serbetcioglu et al. | Apr 1996 | A |
5513127 | Gard et al. | Apr 1996 | A |
5515303 | Cargin et al. | May 1996 | A |
5517434 | Hanson et al. | May 1996 | A |
5517560 | Greenspan | May 1996 | A |
5520796 | Chen et al. | May 1996 | A |
5521370 | Hanson | May 1996 | A |
5521719 | Yamada | May 1996 | A |
5521924 | Kakuma et al. | May 1996 | A |
5524137 | Rhee | Jun 1996 | A |
5524145 | Parker | Jun 1996 | A |
5526353 | Henley et al. | Jun 1996 | A |
5526416 | Dezonno et al. | Jun 1996 | A |
5526489 | Nilakantan et al. | Jun 1996 | A |
5528539 | Ong et al. | Jun 1996 | A |
5530744 | Charalambous et al. | Jun 1996 | A |
5530852 | Meske et al. | Jun 1996 | A |
5537470 | Lee | Jul 1996 | A |
5539193 | Gibbs et al. | Jul 1996 | A |
5539194 | Miller et al. | Jul 1996 | A |
5539884 | Robrock | Jul 1996 | A |
5539886 | Aldred et al. | Jul 1996 | A |
5541398 | Hanson | Jul 1996 | A |
5541917 | Farris | Jul 1996 | A |
5541927 | Kristol et al. | Jul 1996 | A |
5541930 | Klingman | Jul 1996 | A |
5544010 | Schultz et al. | Aug 1996 | A |
5551025 | O'Reilly et al. | Aug 1996 | A |
5551035 | Arnold et al. | Aug 1996 | A |
5555276 | Koenck et al. | Sep 1996 | A |
5559068 | Chen et al. | Sep 1996 | A |
5559721 | Ishii | Sep 1996 | A |
5559871 | Smith | Sep 1996 | A |
5561670 | Hoffert et al. | Oct 1996 | A |
5563882 | Bruno et al. | Oct 1996 | A |
5568645 | Morris et al. | Oct 1996 | A |
5572583 | Wheeler et al. | Nov 1996 | A |
5575961 | Kuwabara et al. | Nov 1996 | A |
5576529 | Koenck et al. | Nov 1996 | A |
5579472 | Keyworth et al. | Nov 1996 | A |
5583564 | Rao et al. | Dec 1996 | A |
5583920 | Wheeler | Dec 1996 | A |
5583926 | Venier et al. | Dec 1996 | A |
5583929 | Ardon | Dec 1996 | A |
5586175 | Hogan et al. | Dec 1996 | A |
5586177 | Farris et al. | Dec 1996 | A |
5587577 | Schultz | Dec 1996 | A |
5590127 | Bales et al. | Dec 1996 | A |
5590133 | Billstrom et al. | Dec 1996 | A |
5590181 | Hogan et al. | Dec 1996 | A |
5590346 | West et al. | Dec 1996 | A |
5594717 | Watanabe et al. | Jan 1997 | A |
5594769 | Pellegrino et al. | Jan 1997 | A |
5594784 | Velius | Jan 1997 | A |
5594789 | Seazholtz et al. | Jan 1997 | A |
5598464 | Hess et al. | Jan 1997 | A |
5598487 | Hacker et al. | Jan 1997 | A |
5602456 | Cargin et al. | Feb 1997 | A |
5602854 | Luse et al. | Feb 1997 | A |
5603085 | Shedlo | Feb 1997 | A |
5604682 | McLaughlin et al. | Feb 1997 | A |
5604737 | Iwami et al. | Feb 1997 | A |
5608446 | Carr et al. | Mar 1997 | A |
5608447 | Farry et al. | Mar 1997 | A |
5608706 | Park | Mar 1997 | A |
5608786 | Gordon | Mar 1997 | A |
5610910 | Focsaneanu et al. | Mar 1997 | A |
5610972 | Emery et al. | Mar 1997 | A |
5610976 | Uota et al. | Mar 1997 | A |
5610977 | Williams et al. | Mar 1997 | A |
5615251 | Hogan et al. | Mar 1997 | A |
5617343 | Danielson et al. | Apr 1997 | A |
5617422 | Litzenberger et al. | Apr 1997 | A |
5617540 | Civanlar et al. | Apr 1997 | A |
5619555 | Fenton et al. | Apr 1997 | A |
5619557 | Van Berkum | Apr 1997 | A |
5619562 | Maurer et al. | Apr 1997 | A |
5621787 | McKoy et al. | Apr 1997 | A |
5623601 | Vu | Apr 1997 | A |
5625180 | Hanson et al. | Apr 1997 | A |
5625404 | Grady et al. | Apr 1997 | A |
5625407 | Biggs et al. | Apr 1997 | A |
5625555 | Davis | Apr 1997 | A |
5625675 | Katsumaru et al. | Apr 1997 | A |
5625677 | Feiertag et al. | Apr 1997 | A |
5625681 | Butler | Apr 1997 | A |
5625682 | Gray et al. | Apr 1997 | A |
5626682 | Kobari et al. | May 1997 | A |
5627886 | Bowman | May 1997 | A |
5633916 | Goldhagen et al. | May 1997 | A |
5633919 | Hogan et al. | May 1997 | A |
5636216 | Fox et al. | Jun 1997 | A |
5638430 | Hogan et al. | Jun 1997 | A |
5640001 | Danielson et al. | Jun 1997 | A |
5644471 | Schultz et al. | Jul 1997 | A |
5646982 | Hogan et al. | Jul 1997 | A |
5651006 | Fujino et al. | Jul 1997 | A |
5652787 | O'Kelly | Jul 1997 | A |
5654957 | Koyama | Aug 1997 | A |
5657250 | Park et al. | Aug 1997 | A |
5657317 | Mahany et al. | Aug 1997 | A |
5661197 | Villiger et al. | Aug 1997 | A |
5661782 | Bartholomew et al. | Aug 1997 | A |
5661790 | Hsu | Aug 1997 | A |
5661792 | Akinpelu et al. | Aug 1997 | A |
5663208 | Martin | Sep 1997 | A |
5664005 | Emery et al. | Sep 1997 | A |
5664102 | Faynberg | Sep 1997 | A |
5668857 | McHale | Sep 1997 | A |
5669062 | Olds et al. | Sep 1997 | A |
5671436 | Morris et al. | Sep 1997 | A |
5672860 | Miller et al. | Sep 1997 | A |
5673031 | Meier | Sep 1997 | A |
5673080 | Biggs et al. | Sep 1997 | A |
5673263 | Basso et al. | Sep 1997 | A |
5675507 | Bobo | Oct 1997 | A |
5675741 | Aggarwal et al. | Oct 1997 | A |
5679943 | Schultz et al. | Oct 1997 | A |
5680392 | Semaan | Oct 1997 | A |
5680442 | Bartholomew et al. | Oct 1997 | A |
5680446 | Fleischer et al. | Oct 1997 | A |
5680633 | Koenck et al. | Oct 1997 | A |
5682379 | Mahany et al. | Oct 1997 | A |
5687167 | Bertin et al. | Nov 1997 | A |
5689550 | Garson et al. | Nov 1997 | A |
5689553 | Ahuja et al. | Nov 1997 | A |
5692039 | Brankley et al. | Nov 1997 | A |
5694318 | Miller et al. | Dec 1997 | A |
5694463 | Christie et al. | Dec 1997 | A |
5696903 | Mahany | Dec 1997 | A |
5699089 | Murray | Dec 1997 | A |
5699352 | Kriete et al. | Dec 1997 | A |
5699528 | Hogan | Dec 1997 | A |
5701295 | Bales et al. | Dec 1997 | A |
5701465 | Baugher et al. | Dec 1997 | A |
5703935 | Raissyan et al. | Dec 1997 | A |
5703942 | Pinard et al. | Dec 1997 | A |
5706286 | Reiman et al. | Jan 1998 | A |
5708680 | Gollnick et al. | Jan 1998 | A |
5708833 | Kinney et al. | Jan 1998 | A |
5710728 | Danielson et al. | Jan 1998 | A |
5710884 | Dedrick | Jan 1998 | A |
5712903 | Bartholomew et al. | Jan 1998 | A |
5712906 | Grady et al. | Jan 1998 | A |
5712907 | Wegner et al. | Jan 1998 | A |
5712908 | Brinkman et al. | Jan 1998 | A |
5719854 | Choudhury et al. | Feb 1998 | A |
5722067 | Fougnies et al. | Feb 1998 | A |
5724355 | Bruno et al. | Mar 1998 | A |
5724406 | Juster | Mar 1998 | A |
5724412 | Srinivasan | Mar 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5727002 | Miller et al. | Mar 1998 | A |
5727129 | Barrett et al. | Mar 1998 | A |
5729544 | Lev et al. | Mar 1998 | A |
5729599 | Plomondon et al. | Mar 1998 | A |
5732078 | Arango | Mar 1998 | A |
5732213 | Gessel et al. | Mar 1998 | A |
5737333 | Civanlar et al. | Apr 1998 | A |
5737395 | Irribarren | Apr 1998 | A |
5737404 | Segal | Apr 1998 | A |
5737414 | Walker et al. | Apr 1998 | A |
5740075 | Bigham et al. | Apr 1998 | A |
5740164 | Liron | Apr 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5742596 | Baratz et al. | Apr 1998 | A |
5742668 | Pepe et al. | Apr 1998 | A |
5742670 | Bennett | Apr 1998 | A |
5742675 | Kilander et al. | Apr 1998 | A |
5742905 | Pepe et al. | Apr 1998 | A |
5744533 | Iwamoto et al. | Apr 1998 | A |
5747785 | Miller et al. | May 1998 | A |
5747786 | Cargin et al. | May 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5748468 | Notenboom et al. | May 1998 | A |
5748619 | Meier | May 1998 | A |
5751706 | Land et al. | May 1998 | A |
5751707 | Voit et al. | May 1998 | A |
5751961 | Smyk | May 1998 | A |
5754639 | Flockhart et al. | May 1998 | A |
5754641 | Voit et al. | May 1998 | A |
5757784 | Liebowitz et al. | May 1998 | A |
5758281 | Emery et al. | May 1998 | A |
5761294 | Shaffer et al. | Jun 1998 | A |
5763867 | Main et al. | Jun 1998 | A |
5764741 | Barak | Jun 1998 | A |
5768513 | Kuthyar et al. | Jun 1998 | A |
5774530 | Montgomery et al. | Jun 1998 | A |
5774533 | Patel | Jun 1998 | A |
5774535 | Castro | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5774695 | Autrey et al. | Jun 1998 | A |
5778313 | Fougnies | Jul 1998 | A |
5781550 | Templin et al. | Jul 1998 | A |
5781620 | Montgomery et al. | Jul 1998 | A |
5781624 | Mitra et al. | Jul 1998 | A |
5784617 | Greenstein et al. | Jul 1998 | A |
5787160 | Chaney et al. | Jul 1998 | A |
5790172 | Imanaka | Aug 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5790548 | Sistanizadeh et al. | Aug 1998 | A |
5790806 | Koperda | Aug 1998 | A |
5793762 | Penners et al. | Aug 1998 | A |
5793763 | Mayes et al. | Aug 1998 | A |
5793771 | Darland et al. | Aug 1998 | A |
5794043 | Kolb | Aug 1998 | A |
5796790 | Brunner | Aug 1998 | A |
5799072 | Vulcan et al. | Aug 1998 | A |
5799156 | Hogan et al. | Aug 1998 | A |
5802502 | Gell et al. | Sep 1998 | A |
5802510 | Jones | Sep 1998 | A |
5802513 | Bowie | Sep 1998 | A |
5804805 | Koenck et al. | Sep 1998 | A |
5805474 | Danielson et al. | Sep 1998 | A |
5805587 | Norris et al. | Sep 1998 | A |
5805682 | Voit et al. | Sep 1998 | A |
5805807 | Hanson et al. | Sep 1998 | A |
5809128 | McMullin | Sep 1998 | A |
5812534 | Davis et al. | Sep 1998 | A |
5812639 | Bartholomew et al. | Sep 1998 | A |
5812652 | Jodoin et al. | Sep 1998 | A |
5812795 | Horovitz et al. | Sep 1998 | A |
5812834 | Suzuki | Sep 1998 | A |
5812865 | Theimer et al. | Sep 1998 | A |
5818836 | DuVal | Oct 1998 | A |
5818921 | Vander Meiden et al. | Oct 1998 | A |
5825780 | Christie | Oct 1998 | A |
5825862 | Voit et al. | Oct 1998 | A |
5825863 | Walker | Oct 1998 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5826268 | Schaefer et al. | Oct 1998 | A |
5828737 | Sawyer | Oct 1998 | A |
5828740 | Khuc et al. | Oct 1998 | A |
5828844 | Civanlar et al. | Oct 1998 | A |
5832197 | Houji | Nov 1998 | A |
5834753 | Danielson et al. | Nov 1998 | A |
5835723 | Andrews et al. | Nov 1998 | A |
5838665 | Kahn et al. | Nov 1998 | A |
5838682 | Dekelbaum et al. | Nov 1998 | A |
5838686 | Ozkan | Nov 1998 | A |
5838970 | Thomas | Nov 1998 | A |
5841764 | Roderique et al. | Nov 1998 | A |
5844893 | Gollnick et al. | Dec 1998 | A |
5844896 | Marks et al. | Dec 1998 | A |
5845267 | Ronen | Dec 1998 | A |
5848143 | Andrews et al. | Dec 1998 | A |
5850358 | Danielson et al. | Dec 1998 | A |
5850433 | Rondeau | Dec 1998 | A |
5854833 | Hogan et al. | Dec 1998 | A |
5854975 | Fougnies et al. | Dec 1998 | A |
5856364 | Martin | Jan 1999 | A |
5858052 | Kopylov et al. | Jan 1999 | A |
5862171 | Mahany | Jan 1999 | A |
5864604 | Moen et al. | Jan 1999 | A |
5864610 | Ronen | Jan 1999 | A |
5867495 | Elliott et al. | Feb 1999 | A |
5867562 | Scherer | Feb 1999 | A |
5867566 | Hogan et al. | Feb 1999 | A |
5870565 | Glitho | Feb 1999 | A |
5873099 | Hogan et al. | Feb 1999 | A |
5878126 | Velamuri et al. | Mar 1999 | A |
5878130 | Andrews et al. | Mar 1999 | A |
5878212 | Civanlar et al. | Mar 1999 | A |
5881134 | Foster et al. | Mar 1999 | A |
5883891 | Williams et al. | Mar 1999 | A |
5884032 | Bateman et al. | Mar 1999 | A |
5888087 | Hanson et al. | Mar 1999 | A |
5889774 | Mirashrafi et al. | Mar 1999 | A |
5892754 | Kompella et al. | Apr 1999 | A |
5892822 | Gottlieb et al. | Apr 1999 | A |
5892971 | Danielson et al. | Apr 1999 | A |
5895431 | Miller et al. | Apr 1999 | A |
5895906 | Danielson et al. | Apr 1999 | A |
5898668 | Shaffer | Apr 1999 | A |
5898673 | Riggan et al. | Apr 1999 | A |
5901140 | Van As et al. | May 1999 | A |
5903558 | Jones et al. | May 1999 | A |
5905736 | Ronen et al. | May 1999 | A |
5907547 | Foladare et al. | May 1999 | A |
5910946 | Csapo | Jun 1999 | A |
5912887 | Sehgal | Jun 1999 | A |
5914481 | Danielson et al. | Jun 1999 | A |
5915001 | Uppaluru | Jun 1999 | A |
5915005 | He | Jun 1999 | A |
5915008 | Dulman | Jun 1999 | A |
5915012 | Miloslavsky | Jun 1999 | A |
5917175 | Miller et al. | Jun 1999 | A |
5917424 | Goldman et al. | Jun 1999 | A |
5918179 | Foladare et al. | Jun 1999 | A |
5923659 | Curry et al. | Jul 1999 | A |
5926482 | Christie et al. | Jul 1999 | A |
5928292 | Miller et al. | Jul 1999 | A |
5930343 | Vasquez | Jul 1999 | A |
5930700 | Pepper et al. | Jul 1999 | A |
5933425 | Iwata | Aug 1999 | A |
5936958 | Soumiya et al. | Aug 1999 | A |
5937045 | Yaoya et al. | Aug 1999 | A |
5940479 | Guy et al. | Aug 1999 | A |
5940598 | Strauss et al. | Aug 1999 | A |
5940616 | Wang | Aug 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5944795 | Civanlar | Aug 1999 | A |
5946299 | Blonder | Aug 1999 | A |
5946386 | Rogers et al. | Aug 1999 | A |
5949056 | White | Sep 1999 | A |
5949776 | Mahany et al. | Sep 1999 | A |
5949869 | Sink et al. | Sep 1999 | A |
5953322 | Kimball | Sep 1999 | A |
5953338 | Ma et al. | Sep 1999 | A |
5953504 | Sokal et al. | Sep 1999 | A |
5953651 | Lu et al. | Sep 1999 | A |
5956391 | Melen et al. | Sep 1999 | A |
5956482 | Agraharam et al. | Sep 1999 | A |
5956697 | Usui | Sep 1999 | A |
5958016 | Chang et al. | Sep 1999 | A |
5958052 | Bellovin et al. | Sep 1999 | A |
5959998 | Takahashi et al. | Sep 1999 | A |
5962837 | Main et al. | Oct 1999 | A |
5966431 | Reiman et al. | Oct 1999 | A |
5966434 | Schafer et al. | Oct 1999 | A |
5969321 | Danielson et al. | Oct 1999 | A |
5970065 | Miloslavsky | Oct 1999 | A |
5970477 | Roden | Oct 1999 | A |
5974043 | Solomon | Oct 1999 | A |
5974052 | Johnson et al. | Oct 1999 | A |
5978569 | Traeger | Nov 1999 | A |
5978840 | Nguyen et al. | Nov 1999 | A |
5979768 | Koenck | Nov 1999 | A |
5982774 | Foladare et al. | Nov 1999 | A |
5987108 | Jagadish et al. | Nov 1999 | A |
5987499 | Morris et al. | Nov 1999 | A |
5991291 | Asai et al. | Nov 1999 | A |
5991292 | Focsaneanu et al. | Nov 1999 | A |
5991301 | Christie | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
5991864 | Kinney et al. | Nov 1999 | A |
5995503 | Crawley et al. | Nov 1999 | A |
5995606 | Civanlar et al. | Nov 1999 | A |
5995608 | Detampel et al. | Nov 1999 | A |
5999524 | Corbalis et al. | Dec 1999 | A |
5999525 | Krishnaswamy et al. | Dec 1999 | A |
6005926 | Mashinsky | Dec 1999 | A |
6006100 | Koenck et al. | Dec 1999 | A |
6006253 | Kumar et al. | Dec 1999 | A |
6011975 | Emery et al. | Jan 2000 | A |
6012088 | Li et al. | Jan 2000 | A |
6014379 | White et al. | Jan 2000 | A |
6014687 | Watanabe et al. | Jan 2000 | A |
6016307 | Kaplan et al. | Jan 2000 | A |
6016343 | Hogan et al. | Jan 2000 | A |
6018360 | Stewart et al. | Jan 2000 | A |
6018567 | Dulman | Jan 2000 | A |
6021126 | White et al. | Feb 2000 | A |
6021263 | Kujoory et al. | Feb 2000 | A |
6023147 | Cargin et al. | Feb 2000 | A |
6023474 | Gardner et al. | Feb 2000 | A |
6026087 | Mirashrafi et al. | Feb 2000 | A |
6026091 | Christie et al. | Feb 2000 | A |
6028858 | Rivers et al. | Feb 2000 | A |
6029062 | Hanson | Feb 2000 | A |
6029261 | Hartmann | Feb 2000 | A |
6031840 | Christie et al. | Feb 2000 | A |
6035028 | Ward et al. | Mar 2000 | A |
6036093 | Schultz | Mar 2000 | A |
6041109 | Cardy et al. | Mar 2000 | A |
6041117 | Androski et al. | Mar 2000 | A |
6044081 | Bell et al. | Mar 2000 | A |
6046992 | Meier et al. | Apr 2000 | A |
6047051 | Ginzboorg et al. | Apr 2000 | A |
6047326 | Kilkki | Apr 2000 | A |
6049545 | Stephenson et al. | Apr 2000 | A |
6049813 | Danielson et al. | Apr 2000 | A |
6052445 | Bashoura et al. | Apr 2000 | A |
6052450 | Allison et al. | Apr 2000 | A |
6058000 | Koenck et al. | May 2000 | A |
6064653 | Farris | May 2000 | A |
6069890 | White et al. | May 2000 | A |
6075783 | Voit | Jun 2000 | A |
6078582 | Curry et al. | Jun 2000 | A |
6078943 | Yu | Jun 2000 | A |
6081525 | Christie et al. | Jun 2000 | A |
6084867 | Meier | Jul 2000 | A |
6084953 | Bardenheuer et al. | Jul 2000 | A |
6088431 | LaDue | Jul 2000 | A |
6097804 | Gilbert et al. | Aug 2000 | A |
6098094 | Barnhouse et al. | Aug 2000 | A |
6101182 | Sistanizadeh et al. | Aug 2000 | A |
6104645 | Ong et al. | Aug 2000 | A |
6104704 | Buhler et al. | Aug 2000 | A |
6104711 | Voit | Aug 2000 | A |
6108341 | Christie | Aug 2000 | A |
6108704 | Hutton et al. | Aug 2000 | A |
6112206 | Morris et al. | Aug 2000 | A |
6115458 | Taskett | Sep 2000 | A |
6115737 | Ely et al. | Sep 2000 | A |
6118936 | Lauer et al. | Sep 2000 | A |
6122255 | Bartholomew et al. | Sep 2000 | A |
6125113 | Farris et al. | Sep 2000 | A |
6125126 | Hallenst.ang.l | Sep 2000 | A |
6128304 | Gardell et al. | Oct 2000 | A |
6131121 | Mattaway et al. | Oct 2000 | A |
6134235 | Goldman et al. | Oct 2000 | A |
6134433 | Joong et al. | Oct 2000 | A |
6134530 | Bunting et al. | Oct 2000 | A |
6137792 | Jonas et al. | Oct 2000 | A |
6137869 | Voit et al. | Oct 2000 | A |
6141404 | Westerlage et al. | Oct 2000 | A |
6141412 | Smith et al. | Oct 2000 | A |
6144647 | Lopez-Torres | Nov 2000 | A |
6144661 | Katsube et al. | Nov 2000 | A |
6144667 | Doshi et al. | Nov 2000 | A |
6144976 | Silva et al. | Nov 2000 | A |
6149062 | Danielson et al. | Nov 2000 | A |
6154445 | Farris et al. | Nov 2000 | A |
6154777 | Ebrahim | Nov 2000 | A |
6157621 | Brown et al. | Dec 2000 | A |
6157636 | Voit et al. | Dec 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6157823 | Fougnies et al. | Dec 2000 | A |
6163536 | Dunn et al. | Dec 2000 | A |
6169735 | Allen et al. | Jan 2001 | B1 |
6175618 | Shah et al. | Jan 2001 | B1 |
6181690 | Civanlar | Jan 2001 | B1 |
6181695 | Curry et al. | Jan 2001 | B1 |
6181703 | Christie et al. | Jan 2001 | B1 |
6185184 | Mattaway et al. | Feb 2001 | B1 |
6185198 | LaDue | Feb 2001 | B1 |
6188677 | Oyama et al. | Feb 2001 | B1 |
6192050 | Stovall | Feb 2001 | B1 |
6192400 | Hanson et al. | Feb 2001 | B1 |
6195425 | Farris | Feb 2001 | B1 |
6198738 | Chang et al. | Mar 2001 | B1 |
6201812 | Christie | Mar 2001 | B1 |
6205139 | Voit | Mar 2001 | B1 |
6212162 | Horlin | Apr 2001 | B1 |
6212193 | Christie | Apr 2001 | B1 |
6215790 | Voit et al. | Apr 2001 | B1 |
6222919 | Hollatz et al. | Apr 2001 | B1 |
6226273 | Busuioc et al. | May 2001 | B1 |
6226287 | Brady | May 2001 | B1 |
6226678 | Mattaway et al. | May 2001 | B1 |
6230203 | Koperda et al. | May 2001 | B1 |
6233318 | Picard et al. | May 2001 | B1 |
6233604 | Van Horne et al. | May 2001 | B1 |
6236851 | Fougnies et al. | May 2001 | B1 |
6240091 | Ginzboorg et al. | May 2001 | B1 |
6243373 | Turock | Jun 2001 | B1 |
6243374 | White et al. | Jun 2001 | B1 |
6252869 | Silverman | Jun 2001 | B1 |
6260067 | Barnhouse et al. | Jul 2001 | B1 |
6263372 | Hogan et al. | Jul 2001 | B1 |
6266685 | Danielson et al. | Jul 2001 | B1 |
6278693 | Aldred et al. | Aug 2001 | B1 |
6278704 | Creamer et al. | Aug 2001 | B1 |
6279038 | Hogan et al. | Aug 2001 | B1 |
6282192 | Murphy et al. | Aug 2001 | B1 |
6282281 | Low | Aug 2001 | B1 |
6282284 | Dezonno et al. | Aug 2001 | B1 |
6282574 | Voit | Aug 2001 | B1 |
6285745 | Bartholomew et al. | Sep 2001 | B1 |
6289010 | Voit et al. | Sep 2001 | B1 |
6292478 | Farris | Sep 2001 | B1 |
6292479 | Bartholomew et al. | Sep 2001 | B1 |
6292481 | Voit et al. | Sep 2001 | B1 |
6295292 | Voit et al. | Sep 2001 | B1 |
6298057 | Guy et al. | Oct 2001 | B1 |
6298062 | Gardell et al. | Oct 2001 | B1 |
6298064 | Christie | Oct 2001 | B1 |
6298120 | Civanlar et al. | Oct 2001 | B1 |
6301609 | Aravamudan et al. | Oct 2001 | B1 |
6304566 | Schessel | Oct 2001 | B1 |
6304567 | Rosenberg | Oct 2001 | B1 |
6310873 | Rainis et al. | Oct 2001 | B1 |
6310941 | Crutcher et al. | Oct 2001 | B1 |
6314103 | Medhat et al. | Nov 2001 | B1 |
6324264 | Wiener et al. | Nov 2001 | B1 |
6327258 | Deschaine et al. | Dec 2001 | B1 |
6330250 | Curry et al. | Dec 2001 | B1 |
6332023 | Porter et al. | Dec 2001 | B1 |
6335927 | Elliott et al. | Jan 2002 | B1 |
6343115 | Foladare et al. | Jan 2002 | B1 |
6347084 | Hulyalkar et al. | Feb 2002 | B1 |
6347085 | Kelly | Feb 2002 | B2 |
6359880 | Curry et al. | Mar 2002 | B1 |
6363065 | Thornton et al. | Mar 2002 | B1 |
6363349 | Urs et al. | Mar 2002 | B1 |
6373929 | Johnson et al. | Apr 2002 | B1 |
6374302 | Galasso et al. | Apr 2002 | B1 |
6375344 | Hanson et al. | Apr 2002 | B1 |
6381321 | Brown et al. | Apr 2002 | B1 |
6385191 | Coffman et al. | May 2002 | B1 |
6385193 | Civanlar et al. | May 2002 | B1 |
6400702 | Meier | Jun 2002 | B1 |
6407991 | Meier | Jun 2002 | B1 |
6430195 | Christie et al. | Aug 2002 | B1 |
6430275 | Voit et al. | Aug 2002 | B1 |
6438218 | Farris et al. | Aug 2002 | B1 |
6449259 | Allain et al. | Sep 2002 | B1 |
6449356 | Dezonno | Sep 2002 | B1 |
6456617 | Oda et al. | Sep 2002 | B1 |
6480588 | Donovan | Nov 2002 | B1 |
6493353 | Kelly et al. | Dec 2002 | B2 |
6498788 | Emilsson et al. | Dec 2002 | B1 |
6501753 | Lin et al. | Dec 2002 | B1 |
6513066 | Hutton et al. | Jan 2003 | B1 |
6529516 | Parzych | Mar 2003 | B1 |
6539015 | Voit | Mar 2003 | B2 |
6539077 | Ranalli et al. | Mar 2003 | B1 |
6542497 | Curry et al. | Apr 2003 | B1 |
6546003 | Farris | Apr 2003 | B1 |
6546005 | Berkley et al. | Apr 2003 | B1 |
6574216 | Farris et al. | Jun 2003 | B1 |
6574681 | White et al. | Jun 2003 | B1 |
6584093 | Salama et al. | Jun 2003 | B1 |
6594254 | Kelly | Jul 2003 | B1 |
6600733 | Deng | Jul 2003 | B2 |
6600735 | Iwama et al. | Jul 2003 | B1 |
6614768 | Mahany et al. | Sep 2003 | B1 |
6614781 | Elliott et al. | Sep 2003 | B1 |
6621942 | Hacker et al. | Sep 2003 | B1 |
6625170 | Curry et al. | Sep 2003 | B1 |
6633846 | Bennett et al. | Oct 2003 | B1 |
6643362 | Hogan et al. | Nov 2003 | B2 |
6654357 | Wiedeman | Nov 2003 | B1 |
6671285 | Kirkby et al. | Dec 2003 | B1 |
6678718 | Khouri et al. | Jan 2004 | B1 |
6681994 | Koenck | Jan 2004 | B1 |
6687738 | Hutton et al. | Feb 2004 | B1 |
6688523 | Koenck | Feb 2004 | B1 |
6690788 | Bauer et al. | Feb 2004 | B1 |
6694359 | Morris et al. | Feb 2004 | B1 |
6701365 | Hutton et al. | Mar 2004 | B1 |
6704287 | Moharram | Mar 2004 | B1 |
6711241 | White et al. | Mar 2004 | B1 |
6714559 | Meier | Mar 2004 | B1 |
6714983 | Koenck et al. | Mar 2004 | B1 |
6735191 | Hosein | May 2004 | B1 |
6754181 | Elliott et al. | Jun 2004 | B1 |
6760429 | Hung et al. | Jul 2004 | B1 |
6775519 | Wiedeman et al. | Aug 2004 | B1 |
6792256 | Kinney et al. | Sep 2004 | B1 |
6798786 | Lo et al. | Sep 2004 | B1 |
6810033 | Derks | Oct 2004 | B2 |
6823384 | Wilson et al. | Nov 2004 | B1 |
6826165 | Meier et al. | Nov 2004 | B1 |
6829645 | Hutton et al. | Dec 2004 | B1 |
6839340 | Voit et al. | Jan 2005 | B1 |
6870827 | Voit et al. | Mar 2005 | B1 |
6885678 | Curry et al. | Apr 2005 | B2 |
6895419 | Cargin et al. | May 2005 | B1 |
6910632 | Koenck et al. | Jun 2005 | B2 |
6925054 | Atterton et al. | Aug 2005 | B1 |
6990090 | Meier | Jan 2006 | B2 |
7012898 | Farris et al. | Mar 2006 | B1 |
7013001 | Felger et al. | Mar 2006 | B1 |
7079534 | Medhat et al. | Jul 2006 | B1 |
7085362 | Christie et al. | Aug 2006 | B1 |
7088705 | Curry et al. | Aug 2006 | B2 |
7092379 | Singh et al. | Aug 2006 | B1 |
7120319 | Danielson et al. | Oct 2006 | B2 |
7145898 | Elliott | Dec 2006 | B1 |
7149208 | Mattaway et al. | Dec 2006 | B2 |
7170887 | Rosenberg | Jan 2007 | B2 |
7206592 | Gollnick et al. | Apr 2007 | B1 |
7236575 | Kim et al. | Jun 2007 | B2 |
7260060 | Abaye et al. | Aug 2007 | B1 |
7274662 | Kalmanek et al. | Sep 2007 | B1 |
7286562 | Vargo et al. | Oct 2007 | B1 |
7295830 | Lippelt | Nov 2007 | B2 |
7359972 | Jorgensen | Apr 2008 | B2 |
7492886 | Kalmanek et al. | Feb 2009 | B1 |
7502339 | Pirkola et al. | Mar 2009 | B1 |
7693062 | Perkins et al. | Apr 2010 | B2 |
7948968 | Voit et al. | May 2011 | B2 |
20020006137 | Rabenko et al. | Jan 2002 | A1 |
20020064149 | Elliott et al. | May 2002 | A1 |
20020067739 | Wilkes et al. | Jun 2002 | A1 |
20020083166 | Dugan et al. | Jun 2002 | A1 |
20020114324 | Low et al. | Aug 2002 | A1 |
20020159461 | Hamamoto et al. | Oct 2002 | A1 |
20030078006 | Mahany | Apr 2003 | A1 |
20030112767 | Meier | Jun 2003 | A1 |
20030169767 | Christie et al. | Sep 2003 | A1 |
20030189941 | Christie et al. | Oct 2003 | A1 |
20030193933 | Jonas et al. | Oct 2003 | A1 |
20030198218 | Farris et al. | Oct 2003 | A1 |
20030198335 | Porter et al. | Oct 2003 | A1 |
20040005046 | Deo et al. | Jan 2004 | A1 |
20040018851 | Koenck et al. | Jan 2004 | A1 |
20040023651 | Gollnick et al. | Feb 2004 | A1 |
20040038717 | Mahany et al. | Feb 2004 | A1 |
20040039846 | Goss et al. | Feb 2004 | A1 |
20040044667 | Mahany et al. | Mar 2004 | A1 |
20040073933 | Gollnick et al. | Apr 2004 | A1 |
20040090952 | Kubler et al. | May 2004 | A1 |
20040093363 | Cargin et al. | May 2004 | A1 |
20040114567 | Kubler et al. | Jun 2004 | A1 |
20040125753 | Mahany et al. | Jul 2004 | A1 |
20040131018 | Johnson et al. | Jul 2004 | A1 |
20040145775 | Kubler et al. | Jul 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040146037 | Kubler et al. | Jul 2004 | A1 |
20040151150 | Kubler et al. | Aug 2004 | A1 |
20040151151 | Kubler et al. | Aug 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040162889 | Morris et al. | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040165793 | Hacker et al. | Aug 2004 | A1 |
20040166895 | Koenck et al. | Aug 2004 | A1 |
20040169583 | Meier | Sep 2004 | A1 |
20040174841 | Kubler et al. | Sep 2004 | A1 |
20040174842 | Kubler et al. | Sep 2004 | A1 |
20040174843 | Kubler et al. | Sep 2004 | A1 |
20040203834 | Mahany | Oct 2004 | A1 |
20040246940 | Kubler et al. | Dec 2004 | A1 |
20040264442 | Kubler et al. | Dec 2004 | A1 |
20050008002 | Kubler et al. | Jan 2005 | A1 |
20050013266 | Kubler et al. | Jan 2005 | A1 |
20050021713 | Dugan et al. | Jan 2005 | A1 |
20050036467 | Kubler et al. | Feb 2005 | A1 |
20050078647 | Meier et al. | Apr 2005 | A1 |
20050083872 | Kubler et al. | Apr 2005 | A1 |
20050087603 | Koenck et al. | Apr 2005 | A1 |
20050191989 | Plush et al. | Sep 2005 | A1 |
20050195859 | Mahany | Sep 2005 | A1 |
20050232213 | Meier | Oct 2005 | A1 |
20050242192 | Koenck et al. | Nov 2005 | A1 |
20050254475 | Kubler et al. | Nov 2005 | A1 |
20060007951 | Meier | Jan 2006 | A1 |
20060062240 | Meier | Mar 2006 | A1 |
20060131420 | Koenck et al. | Jun 2006 | A1 |
20060233161 | Koenck et al. | Oct 2006 | A1 |
20060251226 | Hogan et al. | Nov 2006 | A1 |
20060268806 | Meier et al. | Nov 2006 | A1 |
20060268807 | Meier | Nov 2006 | A1 |
20060274732 | Allen et al. | Dec 2006 | A1 |
20060274735 | Allen et al. | Dec 2006 | A1 |
20060291752 | Hacker et al. | Dec 2006 | A1 |
20070001007 | Koenck et al. | Jan 2007 | A1 |
20070007353 | Danielson et al. | Jan 2007 | A1 |
20070065046 | Hacker et al. | Mar 2007 | A1 |
20070076687 | Low et al. | Apr 2007 | A1 |
20070086445 | Mattaway et al. | Apr 2007 | A1 |
20070121529 | Meier | May 2007 | A1 |
20070121591 | Donovan | May 2007 | A1 |
20070201515 | Lewis | Aug 2007 | A1 |
20070206576 | Radulovic | Sep 2007 | A1 |
20070263644 | Christie et al. | Nov 2007 | A1 |
20080013531 | Elliott et al. | Jan 2008 | A1 |
20080063161 | Joyce et al. | Mar 2008 | A1 |
20090022147 | Farris et al. | Jan 2009 | A1 |
20110004808 | Anandakumar et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
0235257 | Feb 1987 | EP |
0335562 | Apr 1989 | EP |
0365885 | May 1990 | EP |
0381365 | Aug 1990 | EP |
0559979 | Sep 1993 | EP |
0729281 | Feb 1995 | EP |
0767568 | Oct 1995 | EP |
0802690 | Apr 1996 | EP |
0722237 | Jul 1996 | EP |
0781016 | Jun 1997 | EP |
0812089 | Dec 1997 | EP |
0823809 | Feb 1998 | EP |
09-168051 | Jun 1997 | JP |
09-168063 | Jun 1997 | JP |
09-168064 | Jun 1997 | JP |
09-168065 | Jun 1997 | JP |
09-172459 | Jun 1997 | JP |
09-172462 | Jun 1997 | JP |
9107839 | May 1991 | WO |
9411813 | May 1994 | WO |
9411873 | May 1994 | WO |
9522221 | Aug 1995 | WO |
9529564 | Nov 1995 | WO |
9620448 | Jul 1996 | WO |
9620553 | Jul 1996 | WO |
9632800 | Oct 1996 | WO |
9634341 | Oct 1996 | WO |
9638018 | Nov 1996 | WO |
9714238 | Apr 1997 | WO |
9720424 | Jun 1997 | WO |
9722211 | Jun 1997 | WO |
9723078 | Jun 1997 | WO |
9728628 | Aug 1997 | WO |
9733412 | Sep 1997 | WO |
9812860 | Mar 1998 | WO |
9823080 | May 1998 | WO |
9834391 | Aug 1998 | WO |
Entry |
---|
Rendleman, John, et al., “ATM Goes Into Orbit . . . While IP Gets Speedy in Space,” Communications Week, Mar. 17, 1997, www.commweek.com. |
Miller, Mark A., “Troubleshooting TCP/IP: Analyzing the Protocols of the Internet,” M.and.T Books, pp. 365-389, 1992. |
Platt, Richard, “Why IsoEthernet Will Change the Voice and Video Worlds,” IEEE Communications Magazine, pp. 55-59, Apr. 1996. |
Quicklook, “Internet by Satellite,” 1 page, http://www.netsatx.net, at least as early as 1990. |
Rosalyn, Retkwa, “Telephone Politics,” Internet World, Jun. 1996. |
Schreyer, Oliver, et al., “Least Cost Call Routing—A Brilliant Application for Private IN,” IEEE International Conference on Communications, vol. 2 of 3, Jun. 23-27, 1996. |
Rodriguez Serrano, Inma, “Evolution of a Hybrid Fibre Coaxial Network for Multimedia Interactive Services,” British Telecommunications Egineering, vol. 15, pp. 249-253, Oct. 1996. |
Sunaga, Hiroshi, et al., “A Reliable Communication Switching Platform for Quick Service Provisioning,” IEEE International Conference on Communications, Seattle, WA, Jun. 18-22, 1995. |
Marketing materials re: Workshops on “Telephony on the Internet,” to take place on Sep. 24-25, 1996, at The Drake Hotel, Chicago, Illinois. |
Gralla, Preston, “How the Internet Works,” Ziff-Davis Press, pp. 118-119, 1996. |
Gralla, Preston, “How the Internet Works,” Ziff-Davis Press, pp. 64-67, 1996. |
Tsuchida, Hisazumi, et al., “Intelligent Dynamic Service Provisioning Architecture in the Multimedia Era,” NTT Information and Communication Systems Laboratories, IEEE, pp. 1117-1122, 1996. |
Low, Colin, “Integrating Communication Services,” IEEE Communications Magazine, pp. 164-169, Jun. 1997. |
Fridisch, M., et al., “Terminals for Accessing the Internet—The Internet Telephone,” Alcatel Telecommunications Review, 4th Quarter, pp. 304-309, 1996. |
Hurwicz, Michael, “Switched ATM is fast, but not that smart. Routed IP is smart, but not that fast. Why not combine them?,” http://www.ipsilon.com/, Apr. 1997. |
Diehl, Standford, “Data's New Voice,” BYTE, Special Report, pp. 129-135, Sep. 1996. |
Kahn, Jeffery, “Videoconferencing Debuts on the Internet,” LBL, U.S. Department of Energy, Berkeley, California, University of California, Feb. 28, 1995. |
Braun, Hans-Werner, et al., “A framework for flow-based accounting on the Internet,” National Science Foundation (NCR-9119473), downloaded, Aug. 21, 2008. |
Kelly, Katy, “Up to their laptops in packed powder: Mountaintop office keeps skiers in touch,” USA Today, Final Edition, News, pp. 1A, Feb. 21, 1997. |
Braun, Torsten, “Implementation of an Internet Video Conferencing Application over ATM,” IBM European Networking Center, Heidelberg, Germany, IEEE, pp. 287-294, 1997. |
Sclavos, Jean, et al., “Information Model: From Abstraction to Application,” Telecom Paris, France, pp. 1-13, downloaded, Aug. 21, 2008. |
Black, Uyless D., “OSI: A model for computer communications standards,” Prentice-Hall, Inc., pp. 157-201, 1991. |
Sriram, Kotikalapudi, et al., “Voice Packetization and Compression in Broadband ATM Networks,” IEEE Journal on Selected Areas in Communications, vol. 9, No. 3, pp. 294-304, Apr. 1991. |
Arango, Mauricio, et al., “Guaranteed Internet Bandwith,” IEEE, pp. 862-866, Nov. 18, 1996. |
Lapolla, Stephanie, “Seagate joins the backup vendors' enterprise forays,” PC Week, The National Newspaper of Corporate Computing, vol. 13, No. 33, Aug. 19, 1996. |
Harmer, Julie, et al., “Revised Requirements for Mobile-API-Interim deliverable,” OnTheMove public project, pp. 1-44, Dec. 1996. |
Schulzrinne, Henning, “Personal Mobility for Multimedia Services in the Internet,” IDMS '96 (European Workshop on Interactive Distributed Multimedia Systems and Services), Berlin, Germany, pp. 1-18, Mar. 4-6, 1996. |
Schulzrinne, “Simple Conference Invitation Protocol,” Internet Engineering Task Force, pp. 1-19, Feb. 22, 1996. |
Ash, G.R., et al., “Design and Optimization of Networks With Dynamic Routing,” American Telephone and Telegraph Company, The Bell System Technical Journal, vol. 60, No. 8, pp. 1787-1820, Oct. 1981. |
Prosecution history of U.S. Patent No. 6,332,023, Issued, Dec. 18, 2001. |
The Phone Zone, an online reference cite and catalog of PC based telephony and networking solution for business, http://www.phonezone.com/index2.htm, Oct. 29, 1996. |
“IDT's Net2Phone Launches Phone-to-Phone Technology Via The Internet,” Press release, http://web.net2phone.com/about/press/releases/p2p.asp, Sep. 8, 1997. |
“Vocaltec's telephony gateway—the ultimate intemet telephony solution?,” Computer Telephony, pp. 30, Sep. 1996. |
Cheriton, David R., “Dissemination-Oriented Communication Systems: Final Report,” ARPA contract No. DABT63-91-K-0001, Nov. 26, 1996. |
Johnson, David B., “Scalable Support for Transparent Mobile Host Internetworking,” Proceedings of the Ninth Annual IEEE Worshop on Computer Communications, pp. 1-10, Oct. 1994. |
“Specifications of Signalling System No. 7,” International Telecommunication Union, ITU-T Telecommunication Standardization Sector of ITU, Recommendation, Q.700, Mar. 1993. |
“Integrated Services Digital Network (ISDN) 1.312,” CCITT The International Telegraph and Telephone Consultative Committee, ITU International Telecommunication Union, Recommendation, I.312/Q.1201, Oct. 1992. |
“Interface Recommendation for Intelligent Network CS-1,” International Telecommunication Union, ITU-T Telecommunication Standardization Sector of ITU, ITU-T Recommendation Q.1218, Oct. 1995. |
“Series Q: Switching and Signalling,” Intelligent Network, International Telecommunication Union, ITU-T, Telecommunication Standardization Sector of ITU, Recommendation Q.1218—Addendum 1, Sep. 1997. |
Imielinski, Tomasz, et al., “Mobile Wireless Computing: Solutions and Challenges in Data Management,” Department of Computer Science, Rutgers University, downloaded, Oct. 22, 2008. |
Balmer, R., et al., “A Concept for RSVP Over DiffServ,” Institute of Computer Science and Applied Mathematics, University of Berne, Switzerland, http://www.iam.unibe.ch/˜rvs, pp. 412-417, IEEE, May 2000. |
Ziegler, Jr., K., “A Distributed Information System Study,” IBM Syst J, vol. 18, No. 3, pp. 374-401, 1979. |
Blake, S., et al., “An Architecture for Differentiated Services,” Network Working Group, pp. 1-36, Dec. 1998. |
Walters, Rob, “Computer Telephony Integration,” Second Edition, Artech House, 1999. |
IMTC Voice over IP Forum Service Interoperability Implementation Agreement, Draft 0.91, IMTC Voice over IP Forum Technical Committee, VoIP97-008, Jan. 13, 1997. |
Braden, R., et al., “Integrated Services in the Internet Architecture: an Overview,” Network Working Group, pp. 1-28, Jul. 1994. |
Braun, Torsten, “Internet Protocols for Multimedia Communications,” Part II: Resource Reservation, Transport, and Application Protocols, IEEE MultiMedia, pp. 74-82, Oct.-Dec. 1997. |
Black, Uyless D., “Internet Telephony Call Processing Protocols,” Prentice Hall PTR, www.phptr.com, 2001. |
Briere, Daniel D., et al., “Internet Telephony for Dummies,” 2nd Edition, IDG Books Worlwide, Inc., 1997. |
Vin, Harrick M., et al., “Multimedia Conferencing in the Etherphone Environment,” Xerox Palo Alto Research Center, IEEE, pp. 69-79, Oct. 1991. |
Detti, Andrea, et al., “Supporting RSVP in a Differentiated Service Domain: an Architectural Framework and a Scalability Analysis,” http://www-st.inf.tu-dresden.de/elisa/, downloaded, Oct. 27, 2008. |
Bernet, Yoram, “The Complementary Roles of RSVP and Differentiated Services in the Full-Service QoS Network,” QoS Mechanisms, Microsoft, downloaded, Oct. 27, 2008. |
Herzog, S., et al., “COPS Usage for RSVP,” Network Working Group, pp. 1-15, Jan. 2000. |
Sebestyen, Istvan, “What is the position of Q.2, Q.3/15 on Internet Telephony for the IMTC—VoIP Forum Meeting in Seattle,” ITU Telecommunication Standardization Sector, Study Group 15, pp. 1-5, Dec. 5, 1996. |
Daniele, M., et al., “Textual Conventions for Internet Network Addresses,” Nework Working Group, pp. 1-16, Jun. 2000. |
Handley, M., et al., “SIP: Session Initiation Protocol,” Internet Engineering Task Force, pp. 1-30, Dec. 2, 1996. |
Weinstein, Clifford J., “The Experimental Integrated Switched Network—a System-Level Network Test Facility,” IEEE, pp. 449-456, Jan. 1983. |
“Computer Telephony and the Internet,” pp. 1-8, downloaded, Jul. 14, 2009. |
Jitian, Xiao, et al., “Sharing Model of Netware Node Resources and Real-Time Scheduling,” Mini-Micro Systems, vol. 16, No. 12, pp. 54-59, Dec. 1995. |
Swinehart, D.C. et al., “Adding Voice to an Office Computer Network”, IEEE GLOBECOM '83 Conference Record, vol. 1, Nov. 28, 1983, p. 392-398. |
Vijay K. Varma et al., “Architecture for Interworking Data over PCS,” IEEE Communications Magazine, Sep. 1996, 124-130. |
Jonathan Rosenberg et al., “SIP for Presence,” 41st IETF, Apr. 3, 1998. |
Overview, NetSpeak Corporation, Apr. 8, 1997, printed from Edgar Online. |
NetSpeak Corporation to Exhibit First Release of Voice Over IP, IP-to-PSTN Networking Products, Business Wire, Jun. 2, 1997. |
Handley et al., “Session Invitation Protocol”, Internet Engineering Task Force, draft-ietf-mmusic-sip-00, Feb. 22, 1996. |
Camelot Announces Internet Voice Communication Technology Breakthrough, HighBeamTM Encyclopedia, From: PR Newswire, http://www.encyclopedia.com/doc/1G1-16452259.html?Q=Caml, Feb. 13, 1995, 2 pages. |
1979 Annual Technical Report, “A Research Program in Computer Technology”, Oct. 1978-Sep. 1979, Prepared for the Defense Advanced Research Projects Agency, University of Southern California, ISI-SR-80-17. |
Cohen et al., “A Network Voice Protocol NVP-11”, Lincoln Laboratory Massachusetts Institute of Technology, Apr. 1, 1981, ISI/RR-81-90. |
1982 Annual Technical Report, “A Research Program in Computer Technology”, Jul. 1981-Jun. 1982, University of Southern California, ISI/SR-83-23. |
Annual Report to the Defense Communications Agency, “Network Speech Systems Technology Program”, Massachusetts Institute of Technology Lincoln Laboratory, Oct. 1, 1980-Sep. 30, 1981, issued Feb. 4, 1982. |
Heggestad et al., “Voice and Date Communication Experiments on a Wideband Satellite/Terrestrial Internetwork System”, IEEE International Conference on Communications, Integrating Communication for World Progress, Jun. 19-22, 1983. |
Annual Report to the Defense Communications Agency, “Defense Switched Network Technology and Experiments Technology”, Massachusetts Institute of Technology Lincoln Laboratory, Oct. 1, 1981-Sep. 30, 1982, issued Feb. 5, 1983. |
Merritt, “Providing Telephone Line Access to a Packet Voice Network”, University of Southern California, Feb. 1983, ISI/RR-83-107. |
Weinstein, “The Experimental Integrated Switched Networks—A System Level Network Text Facility”, Proceedings of 1983 IEE Military Communications Conference, Washington, DC, Oct. 31-Nov. 2, 1983. |
Cesner et al., “Wideband Communications”, 1984 Annual Technical Report, University of Southern California, ISI/SR-85-150, Jul. 1983-Jun. 1984. |
Annual Report to the Defense Communications Agency, “Defense Switched Network Technology and Experiments Technology”, Massachusetts Institute of Technology Lincoln Laboratory, Oct. 1, 1982-Sep. 30, 1983, issued Feb. 29, 1984. |
Gross, “Proceedings of the Oct. 15-17, 1988 Joint Meeting of the Internet Engineering and Internet Architecture Task Forces”, Fourth IETF, The Mitre Corporation. |
Corley, “Bellsouth Trial of Wideband Packet Technology”, Bellsouth Services, 1990 IEEE, CH2829-0/90/0000-1000. |
Inoue et al., “Evolution Scenario of Broadband Services Based on Granulated Broadband Network Concept”, IEEE Region 10 Conference, Tencon 92, Nov. 11-13, 1992. |
Inoue et al., “Granulated Broadband Network Applicable to B-ISDN and PSTN Services”, IEEE Journal on Selected Areas in Communiations, vol. 10, No. 9, Dec. 1992. |
Cert et al., “A Protocol for Packet Network Intercommunication”, IEEE Transactions on Communications, No. 8, May 1974. |
Cole, “Dialing in the WB Network”, Information Sciences Institute University of Southern California, Dialing-Cole.83, Apr. 30, 1981. |
Hapgood, “Dialing Without Dollars”, Jul. 1995, vol. 17, No. 4, pp. 18, Journal Code, INO. |
Yang, “INETPhone: Telephone Services and Servers on Internet”, Network Working Group, RFC 1798, Apr. 1995, http://ds.internic.net/rfc/rfc1798.txt. |
Chen et al., “Integrated Voice/Data Switching”, IEEE Communication Magazine, Jun. 1988, vol. 26, No. 6. |
Frezza, “The Internet Phone is Poised to Conquer”, Communications Week, Dec. 11, 1995, http://techweb.cmp.com/cw/current. |
Internet Access: Internet Phone-to-Phone Technology Now a Reality . . . , Edge Publishing, Aug. 12, 1996. |
Internet Phone Saves 50% on Long Distance, 411 Newsletter, Aug. 5, 1996, vol. 17, No. 15, United Communications Group. |
Internet Phone Calls are Cheap but Limited, New Media Markets, Feb. 23, 1995, Financial Times Business Information, Ltd., ISSN:0265-4717. |
Internet Telephony Seems to be Evolving East, But is There Anyone on the Line?, Computergram International, Aug. 19, 1996, No. 2980, ISSN: 0268-716X. |
Internet's International Phone Calls are Cheap But Limited, Telecom Markets, Financial Times Business Information ID, Mar. 2, 1995, ISSN: 0267-1484. |
Mills, The Washington Post, “Phone Service Via the Internet May Slash Rates”, Aug. 11, 1996. |
Sears, “The Effect of Internet Telephone of the Long Distance Voice Market”, Jan. 14, 1995. |
National Technical Information Service, Wideband Integrated Voice/Data Technology, ADA132284, Mar. 31, 1983, Massachusetts Inst. of Tech., Lexington, Lincoln Lab. |
Detreville et al., “A Distributed Experimental Communications System”, Advances in Local Area Networks, IEEE Press, 1987. |
Borden et al., “Integration of Real-Time Services in an IP-ATM Network”, Internet RFC/STD/FYI/BCP ARchives, Aug. 1995. |
Laubach, “Classical IP and ARP over ATM” Hewlett-Packard Laboratories, Jan. 1994, http://www.faqs.org/rfc/rfc1577.txt. |
Corner, “Internetworking with TCP/IP”, vol. 1, Principles, Protocols, and Architecture, Department of Computer Sciences, 1995. |
Perez et al., “ATM Signaling Support for IP Over ATM”, Network Working Group, RFC 1765, Feb. 1995, http:/www.ietf.org/rfc/rfc1765.txt. |
Zellweger, Polle T., et al., “An overview of the etherphone system and its applications,” Xerox Palo Alto Research Center, pp. 160-168, Apr. 1988. |
Ng, L.J., et al., “Distributed architectures and databases for intelligent personal communication networks,” Department of Electrical Engineering, U. of British Columbia, pp. 300-304, Feb. 1992. |
Malyan, Andrew D., et al., “Network architecture and signaling for wireless Personal communications,” IEEE Journal on Selected Areas in Communications, vol. 11, No. 6, pp. 830-841, Aug. 1993. |
Malyan, Andrew D., et al. “A Microcellular Interconnection Architecture For Personal Communications Networks,” Department of Electrical Engineering, University of British Columbia Vancouver, B.C., V6T 1W.5, Canada, pp. 502-505, Feb. 1992. |
Bakre, Ajay, et al., “M-RPC: A Remote Procedure Call Service for Mobile Clients,” Department of Computer Science Rutgers, The State University of New Jersey Piscataway, NJ, pp. 97-110, 1995. |
O'Malley, Sean W., “A Dynamic Network Architecture,” Department of Computer Science, University of Arizona, ACM Transactions on computer systems, vol. 10, No. 2, pp. 110-143, May 1992. |
Cheshire, Stuart, et al., “Internet Mobility 4 by 4,” SIGCOMM 96—Stanford, California, USA, pp. 1-2, Aug. 1996. |
Chang, Rong N., et al., “A Service Acquisition Mechanism for the Client/Service Model in Cygnus,” IBM Canada Laboratory Technical Report TR 74.059, pp. 323-345. |
Arao, Shinya, et al., “Component-based policy deployment for service level differentiation in converging communication networks,” IEEE, pp. 1388-1392, 1999. |
Goyal, Pawan, et al., “Integration of call signaling and resource management for IP telephony,” IEEE Network, pp. 24-32, May/Jun. 1999. |
Delatore, J.P., et al., “The 5ESS switching system: Fatory system testing,” AT+T Technical Journal, vol. 64, No. 6, Jul.-Aug. 1985. |
Mills, M. (Jan. 23, 1996) “It's the Net's Best Thing to Being There: With Right Software, Computer Becomes Toll-Free Telephone”, The Washington Post, sec. C, pp. 1,5. |
Welcome to the Phone Zone, Pacific Telephony Design, http://www.phonezone.com/index2.htm, pp. 1-6. |
Computer Telephony And The Internet, Stylus Innovation, http://www.stylus.com/hvml.htm. |
Lougheed et al., “A Border Gateway Protocol (BGP)”, Jun. 1990, http://www.internic.net/rfc/rfc1163.txt, pp. 1-26. |
S. Deering, “Host Extensions for IP Multicasting”, Aug. 1989, http://www.internic.net/rfc/rfc1112.txt, pp. 1-16. |
Sebestyn, I., ITU Telecommunication Standardization Sector, Study Group 15, Q;2.and.3/15 Rapporteur Meeting, Document AVC-1086, v1, Dec. 5, 1996. |
Schulzrinne, Henning, et al., “Interaction of Call Setup and Resource Reservation Protocols in Internet Telephony,” pp. 1-13, Jun. 11, 1999, downloaded, Aug. 21, 2008. |
Rosen, E., et al., “Memo re: BGP/MPLS VPNs,” Networking Group, pp. 1-25, Mar. 1999. |
Waksberg, M., “Axe 10 and the Intelligent Network,” Commutation .and. Transmission, No. 4, pp. 67-76, Dec. 1993. |
Niitsu, Yoshihiro, et al., “Computer-aided stepwise service creation environment for intelligent network,” NTT Communication Switching Laboratories, Tokyo, Japan, IEEE, pp. 454-458, 1992. |
Morgan, Michael J., et al., “Service creation technologies for the intelligent network,” At.and.t Technical Journal, Summer 1991. |
Fujioka, Masanobu, et al., “Universal service creation and provision environment for intelligent network,” XIII International Switching Symposium, Stockholm, Sweden, Proceedings vol. III, pp. 149-156, May 27-Jun. 1, 1990. |
Moy, J., “OSPF Version 2,” Network Working Group, Proteon, Inc., Jul. 1991. |
Lantz, Keith A., “Towards a universal directory service,” Operating Systems Review, vol. 20, No. 2, Apr. 1986. |
Fang, Wenjia, “Building An Accounting Infrastructure for the Internet,” Princeton University, IEEE, pp. 105-109, 1996. |
Aidarous, Salah, et al., “The role of the element management layer in network management,” 1994 IEEE Network Operations and Management Symposium, Feb. 14-17, 1994. |
Gareiss, Robin, “Voice over the internet,” Data Communications, pp. 93-100, Sep. 1996. |
Bethoney, Herb, “HAHTSite Gives Pros Everything They Need,” PC Week, p. 36, Mar. 10, 1997. |
Kolarov, Aleksandar, et al., “End-to-end Adaptive Rate Based Congestion Control Scheme for ABR Service in Wide Area ATM Networks,” IEEE International Conference on Communications, Seattle, Washington, pp. 138-143, Feb. 1995. |
Chen, Larry T., et al., “ATM and Satellite Distribution of Multimedia Educational Courseware,” 1996 IEEE International Conference on Communications, pp. 1133-1137, Jun. 23-27, 1996. |
Civanlar, M. Reha, et al., “FusionNet: Joining the Internet .and. Phone Networks for Multimedia Applications,” ACM Multimedia 96, pp. 431-432, 1996. |
Cobbold, Christopher, et al., “Enhancement for Integrated Wireless Personal Communications over Metropolitan Area Networks,” 1996 IEEE International Conference on Communications, pp. 1370-1376, Jun. 23-27, 1996. |
Comer, Douglas E., “Internetworking With TCP/IP,” 3rd ed., V. 1. Principles, protocols, and architecture, Prentice-Hall, Inc., 1995. |
Mahadevan, I., et al., “Quality of service achitectures for wireless networks: IntServ andDiffServ models,” http://ieeexplore.ieee.org/xpllabsprintf.jsp?arnumber==778974.and.page..., Aug. 6, 2002. |
Ahmadi, H., et al., “NBBS Traffic management overview,” IBM Systems Journal, vol. 34, No. 4, pp. 604-628, 1995. |
Stoica, Ion, et al., “LIRA: An Approach for Service Differentiation in the internet,” sponsored by DARPA under contract Nos. N66001-96-C-8528 and NOOI74-96-K-0002, and by a NSF Career Award under grant No. NCR-9624979. Additional support was provi. |
Duan, Juan, et al., “Efficient Utilization of Multiple Channels between two Switches In ATM Networks,” IEEE, pp. 1906-1911, 1995. |
Ejiri, Masayoshi, et al., “For Whom the Advancing service/network management,” IEEE, pp. 422-433, 1994. |
Lee, Whay Chiou, et al., “Integrated Packet Networks With Quality of Service Constraints,” Globecom, IEEE, pp. 8A.3.1-8A.3.5, 1991. |
Elia, Carlo, et al., “Skyplex: Distributed Up-link for Digital Television via Satellite,” IEEE Intelligent Network workshop IN, Melbourne, Australia, Apr. 21-24, 1996. |
Ely, Tom, “The Service Control Point as a Cross Network Integrator,” Bellcore, IEEE, pp. 1-8, 1996. |
Mamais, G., et al., “Efficient buffer management and scheduling in a combined IntServand DiffServ architecture: a performance study,” ATM, 1999. ICATM '99. 1999 2nd International Conference on, pp. 236-242, Jun. 21-23, 1999. |
Baumgartner, F., et al., “Differentiated services: a new approach for quality of service in the Internet,” Proceedings of Eighth International Conference on High Performance Networking, pp. 255-273, Sep. 21-25, 1998. |
Sibal, Sandeep, et al., “Controlling Alternate Routing in General-Mesh Packet Flow Networks,” SIGCOMM 1994, London, England, pp. 168-179, Aug. 1994. |
Jajszczyk, A., et al., “Bringing information to People,” IEEE INFOCOM '95, Proceedings, vol. 3, Apr. 2-6, 1995. |
CT and the 'Net, “Webphone,” Computer Telephony pp. 219-221, Mar. 1996. |
Sisalem, Dorgham, et al., “The Network Video Terminal,” IEEE Proceedings of HPDC-5, pp. 3-10, 1996. |
Baumgartner, H., et al., “Middleware for a New Generation of Mobile Networks: The ACTS OnTheMove Project,” http://www.isoc.org/inet96/proceedings/a6/a6—3.htm, pp. 1-4, Apr. 14, 2008. |
“Talk Talk,” tele.com, pp. 68-72, Jun. 1996. |
Kreller, Birgit, et al., “UMTS: A Middleware Architecture and Mobile API Approach,” IEEE Personal Communications, pp. 32-38, Apr. 1998. |
Low, Colin, et al., “WebIN—An Architecture for Fast Deployment of IN-based Personal Services,” IEEE, 1996. |
Grami, A., et al., “The Role of Satellites in the Information Superhighway,” IEEE International Conference on Communications, pp. 1577-1581, Jun. 18-22, 1995. |
Gupta, Ranabir, et al., “Technical Assessment of (T)INA—TMN—OSI Technology for Service Management Applications,” IEEE Network Operations and Management Symposium, vol. 3, pp. 877-887, Feb. 14-17, 1994. |
Inamori, Hisayoshi, et al., “Applying TMN to a Distributed Communications Node System with Common Platform Software,” NTT Network Service Systems Laboratories, Tokyo, Japan, pp. 83-87, IEEE International Conference on Communications, Seattle, WA, Jun. 18. |
Clark, David D., et al., “Supporting Real-Time Applications in an Integrated Services Packet Network: Architecture and Mechanism,” COMM'92, MD, USA, pp. 14-26, Aug. 1992. |
Peeren, Rene, “IN in the Hybrid Broadband Network The Intelligent Web,” Presentation, Ericsson, IEEE 1996. |
Jain, Surinder K., “Evolving Existing Narrowband Networks Towards Broadband Networks with IN Capabilities,” Bellcore Intelligent Networks, IEEE, Apr. 22, 1996. |
Matta, Ibrahim, et al, “Type-of-Service Routing in Dynamic Datagram Networks,” Department of Computer Science, University of Maryland, pp. 992-999, IEEE 1994. |
Yeager, Nancy J., et al., “Web Server Technology: The Advanced Guide for World Wide Web Information Providers,” National Center for Supercomputing Applications, pp. 250, Morgan Kaufman Publishers, Inc., 1996. |
Kishimoto, Ryozo, “Agent Communication System for Multimedia Communication Services,” IEEE INFOCOM, Fifteenth Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 10-17, Mar. 24-28, 1996. |
Willebeek-LeMair, Marc H., “Videoconferencing over Packet-Based Networks,” IEEE Journal on Selected Areas in Communications, vol. 15. No. 6, pp. 1101-1114, Aug. 1997. |
Kumar, Vinay, “Internet Multicasting: Internet's Next Big Thing,” ICAST Corporation, pp. 1-13, Sep. 23, 1997. |
The Wall Street Journal article on: “MCI's New Service for Corporate Use Sets 1 Line for Net, Phone,” pp. B16, Jan. 30, 1997. |
Sharp, C.D., et al., “Advanced Intelligent Networks—now a reality,” Electronics .and. Communication Engineering Journal, pp. 153-162, Jun. 1994. |
Pezzutti, David A., “Operations Issues for Advanced Intelligent Networks,” IEEE Communications Magazine, pp. 58-63, Feb. 1992. |
Oppen, Derek C., et al., “The Clearinghouse: A Decentralized Agent for Locating Named Objects in a Distributed Environment,” ACM Transactions on Office Information Systems, vol. 1, No. 3, Jul. 1983, pp. 230-253. |
Kumar, Vijay P., et al., “Beyond Best Effort: Router Architectures for the Differentiated Services of Tomorrow's Internet,” IEEE Communications Magazine, pp. 152-164, May 1998. |
Pan, Ping, et al., “Diameter-SIP,” Internet Draft, pp. 1-15, Nov. 15, 1998. |
Neilson, Rob, et al., “A Discussion of Bandwidth Broker Requirements for Internet2 Qbone Deployment,” Intemet2 Qbone BB Advisory Council, Version 0.7, pp. 1-30, Aug. 1999. |
Stojsic, Goran, et al., “Formal Definition of SIP Proxy Behavior,” IEEE, pp. 289-292, Feb. 2001. |
Bhuyan, L., et al., “Impact of switch Design on the Application Performance of Cache-Coherent Multiprocessors,” Dept. of Computer Science, Texas A.and.M University and Intel Corp., pp. 1-9, Nov. 15, 2005. |
Product Overview, “IP Highway product overview,” http://iphighway.com/prod/, pp. 1-4, Sep. 22, 1999. |
Rosenberg, Jonathan, et al., “Internet telephony gateway location,” IEEE, pp. 488-496, Feb. 1998. |
Wright, S., et al., “IP “Telephony” vs. ATM: What is There to Discuss?,” IEEE, pp. 400-409, Feb. 1998. |
Wedlund, Elin, et al., “Mobility support using SIP,” WoWMoM, Jan. 1999. |
Aiken, B., et al., “Network Policy and Services: A report of a Workshop on Middleware,” Network Working Group, pp. 1-26, Feb. 2000. |
Aspnes, James, et al., “On-Line Routing of Virtual Circuits willi Applications to Load Balancing and Machine Scheduling,” pp. 486-504, Journal of the ACM, vol. 44, No. 3, May 1997. |
Salsano, Stefano, et al., “QoS Control by Means of COPS to Support SIP-Based Applications,” IEEE Network, Mar./Apr. 2007. |
White, Paul P., “RSVP and Integrated Services in the Internet: A Tutorial,” IEEE Communications Magazine, pp. 100-106, May 1997. |
Beck, Christopher J., et al., “Scheduling alternative activities,” http://www.aaai.org/home.html, 1999. |
Flykt, P., et al., “SIP Services and Interworking IPv6,” 3G Mobile Communication Technologies, Mar. 26-28, 2001, Conference Publication No. 477. |
Schulzrinne, Henning, et al., “Signaling for internet telephony,” Columbia University, Dept. of Computer Science Technical Report CUCS-005-98, Feb. 2, 1998. |
Barzilai, Tsipora, et al., “Design and Implementation of an RSVP-based Quality of Service Architecture for Integrated Services Internet,” IEEE, May 1997. |
Hubaux, Jean-Pierre, et al., “The impact of the Internet on telecommunication architectures,” Computer Networks 31 (1999). |
Roberts, Erica, “The New Class System,”http://www.data.com/roundups/class—system.html, pp. 1-14, Sep. 22, 1999. |
Wroclawski, J., “The Use of RSVP with IETF Integrated Services,” ftp://ftp.isi.edu/in-notes/rfc2210.txt, Sep. 22, 1999. |
Sloman, Morris, et al., “Distributed Management for the Networked Millennium,” Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated Network Management—Boston, MA, U.S.A., May 24-28, 1999. |
Schulzrinne, Henning, “MIME-Version: 1.0,” email communication dated Oct. 10, 1995. |
Garrahan, James J., et al., “Marching toward the global intelligent network,” IEEE Communications Magazine, vol. 31, No. 3, pp. 30-36, Mar. 1993. |
Gys, L, et al., “Intelligence in the Network,” Alcatel Telecommunications Review, pp. 13-22, 1st Quarter 1998. |
Yang, C., “INETPhone Telephone Services and Servers on Internet,” Network Working Group, pp. 1-6, Apr. 1995. |
Perret, Stephane, et al., “MAP: Mobile Assistant Programming for Large Scale Communication Networks,” IEEE, pp. 1128-1132, Apr. 1996. |
Plunkett, Bill, “ISCP Service Capacity Improvements,” Bellcore, Feb. 29, 1996. |
Murray, Dave, “High speed signalling link interface for ISCP version 6.0,” Bellcore, Feb. 29, 1996. |
Evans, Jeff, “Alternative Approaches for Multi-ISCP Locator,” Bell Atlantic, Mar. 13, 1996. |
Performance Task Force, “Off-Line Engineering Tool,” Bellcore, Sep. 3, 1996. |
Jones, Doug R., “Advanced intelligent network delivering control of network routing,” Bell Atlantic, downloaded, Aug. 20, 2008. |
Gorton, Dave, “ISCP Evolution overview,” Telcordia Technologies Inc., Jun. 5, 2001. |
Brown, Kathryn C., “Telecom Convergence,” PowerPoint presentation, downloaded Aug. 21, 2008. |
Cohen, Danny, “Specifications for the Network Voice Protocol (NVP),” http://www.rfc-archive.org/getrfc.php?rfc=741, Nov. 22, 1977. |
Low, Colin, “The Internet Telephony Red Herring,” Hewlett Packard, pp. 1-15, May 15, 1996. |
de la Fuente, L.A., et al., “Application of the TINA-C Management Architecture,” Bellcore, Red Bank, NJ, downloaded, Aug. 21, 2008. |
Finseth, C. “An access control protocol, sometimes called TACACS,” Network Working Group, University of Minnesota, pp. 1-21, Jul. 1993. |
Buchanan, Ken, et al., “IMT-2000: Service Provider's Perspective,” IEEE Personal Communications, pp. 8-13, Aug. 1997. |
Pontailler, Catherine, “TMN and New Network Architectures,” IEEE Communications Magazine, pp. 84-88, Apr. 1993. |
Mills, Mike, “Phone service via the internet may slash rates,” The Washington Post, A Section; p. A01, Sunday, Final Edition, Aug. 11, 1996. |
Chapman, Martin, et al, “Overall Concepts and Principles of TINA,” TINA-C, Version 1.0, Feb. 17, 1995. |
Kahane, Opher, et al, “Call Management Agent System Specification,” Voice over IP Forum Technical Committee in Chicago, Aug. 14, 1996. |
Verjinski, Richard D., “PHASE, A Portable Host Access System Environment,” IEEE, May 1989. |
Verizon Services Corp., et al., v. Cox Fibernet Virginia, Inc., et al., Report of Herman J. Helgert, Ph.D., Exhibit D, downloaded, Aug. 21, 2008. |
Verizon Services Corp., et al., v. Cox Fibernet Virginia, Inc., et al., Report of Herman J. Helgert, Ph.D., Exhibit E, downloaded, Aug. 21, 2008. |
Verizon Services Corp., et al., v. Cox Fibernet Virginia, Inc., et al., Report of Herman J. Helgert, Ph.D., Exhibit F, downloaded, Aug. 21, 2008. |
The Jeff Pulver Blog: Free World Dialup and Verizon's patent on “name translation,” http://pulverblog.pulver.com/archives/006846.html, pp. 1-19, Apr. 23, 2007. |
Lipoff, Stuart, “Operations Support System Framework for Data Over Cable Services,” Data Over Cable Technical Reports, MCNS Holdings, L.P., Oct. 16, 1996. |
Sinnreich, H., et al., “Interdomain IP communications with QoS, authorization and usage reporting,” http:www.cs.columbia.edu/-hgs/sip/drafts/draft-sinnreich-sip-qos-osp, Feb. 2000. |
Pan, Ping, et al., “Diameter: Policy and Accounting Extension for SIP,” Internet Engineering Task Force, Internet Draft, pp. 1-17, Nov. 15, 1998. |
McConnell, Brian, “How to build an internet PBX,” Pacific Telephony Design, http://www.phonezone.com/ip-phone.htm, pp. 1-9, Oct. 28, 1996. |
Sears, Andrew, “Innovations in Internet Telephony: The Internet as the Competitor to the POTS Network,” Innovation in Internet Telephony: The Internet as the Successor to the POTS Network, pp. 1-6, Feb. 28, 1996. |
“Supercharging the web with computer telephony,” CT and the 'Net, Mar. 1996. |
Anand, Surinder S., et al., “Accounting architecture for cellular networks,” ICPWC '96, IEEE, pp. 184-189, 1996. |
Karttunen, Jari, et al., “Cost structure analysis and reference model for SCALEABLE network services,” The Institution of Electrical Engineers, pp. 1-9, 1996. |
Jennings, Barbara J., “End-User Requirements for High-Integrity Directory,” Sandia National Laboratories, Albuquerque, IEEE, pp. 1793-1796, 1996. |
Botvich, D., et al., “On Charging for Internet Services provided over an A.TIVI network,” IEEE, pp. 669-679, 1997. |
Estrin, Deborah, et al., “Design Considerations for Usage Accounting and Feedback In Internetworks,” downloaded, Aug. 19, 2008. |
Li, Chung-Sheng, et al., ““Time-driven Priority” Flow Control for Real-time Heterogeneous Internetworking,” IBM T. J. Watson .and.esearch Center, IEEE, pp. 189-197, 1996. |
Edell, RJ., et al., “Billing users and pricing for TCP,” IEEE Journal on Selected Areas in Communications, vol. 13, Issue 7, pp. 1162-1175, Sep. 1995. |
Margulies, Ed, “CT's Cyberdate With the 'Net,” Computer Telephony Periscope, pp. 28-29, Aug. 1996. |
Inamori, Hisayoshi, et al., “Common Software Platform for Realizing a Strategy for Introducing the TMN,” Network Operations and Management Symposium, vol. 2, pp. 579-589, Feb. 1998. |
Rajan, R., et al., “A policy framework for integrated and differentiated services inthe Internet,” Network, IEEE, vol. 13, Issue 5, pp. 36-41, Sep./Oct. 1999. |
Louth, Nick, “MCI Communications Corp. vaults phone-data divide,” Reuters Limited, News article, Jan. 29, 1998. |
Eriksson, Hans, “MBONE: The Multicast Backbone,” fileIIICI/Documents%20and%20Settings/ralbertJDesktopIMBONE%2OThe%20Multicast%20Backbone.htm (1 of 13)Mar. 7, 2008 4:06:17 PM. |
Macedonia, Michael R., et al., “MBone Provides Audio and Video Across the Internet,” file:///CI/Documents%20and%20Settings/ralbert/Deskt...20Audio%20and%20Video%20Across%20the%20Intern.htm (1 of 13) Mar. 10, 2008 9: 34:00 AM. |
Lapolla, Stephanie, “Net call centers, voice to merge,” News, PC Week, Mar. 31, 1997. |
Bohn, Roger, et al., “Mitigating the coming Internet crunch: multiple service levels via precedence,” San Diego Supercomputer Center, Mar. 22, 1994. |
Weiss, W., “QoS with differentiated services,” Bell Labs Technical Journal vol. 3, No. 4, pp. 48-62, Oct.-Dec. 1998. |
Hartanto, Felix, et al., “Policy-Based Billing Architecture for Internet Differentiated Services,” Proceedings of IFIP Fifth International Conference on Broadband Communications (BC '99), Hong Kong, Nov. 10-12, 1999. |
Mahadevan, I., et al., “Parallel Architectures, Algorithms, and Networks,” (I-SPAN '99) Proceedings. Fourth InternationalSymposium, pp. 420-425, Jun. 23-25, 1999. |
Schulzrinne, H., et al., “A Transport Protocol for Real-Time Applications,” Network Working Group, Audio-Video Transport Working Group, pp. 1-151, Mar. 10, 2008. |
Schulzrinne, H., “RTP Profile for Audio and Video Conferences with Minimal Control,” Network Working Group, Audio-Video Transport Working Group, pp. 1-18, Jan. 1996. |
Kim, Gary, “Talk is cheap voice over the internet,” America's Network, pp. 34-39, Jul. 15, 1996. |
Newton, Harry, “Notes from the field: The personal side of CT,” 12 Computer Telephony, Jan. 1997. |
Venditto, Gus, “Internet phones the future is calling,” Internet World Magazine, Jun. 1996. |
Crowcroft, Jon, et al., “Pricing internet services,” Department of Computer Science, UCL, Gower Street, London, UK, pp. 1-16, downloaded, Aug. 19, 2008. |
Newton, Harry, “Telephony Messaging on the Internet,” http://www.dialogweb.com/cgi/dwclient?req=1205770063076 (1 of 5) Mar. 17, 2008 12:08:09 PM. |
Maruyama, Katsumi, et al., “A Concurrent Object-Oriented Switching Program in Chill,” 2460 IEEE Communications Magazine, Jan. 29, 1991, No. 1, pp. 60-68, New York. |
Rajkumar, R., et al., “A resource allocation model for QoS management,” Proceedings. The 18th IEEE Real-Time Systems Symposium (Cat.No. 97CB36172) p. 298-307, Dec. 2-5, 1997. |
Weinrib, A., et al., “Decentralized resource allocation for distributed systems,” IEEE INFOCOM '87. The Conference on Computer Communications. Proceedings. Sixth Annual Conference—Global Networks: Concept to Realization (Cat. No. 87CH2412-5) p. 328-36, M. |
Shabana, Mohamed, et al., “Intelligent switch architecture,” 8081 Proceedings of the National Communications Forum 42 Sep. 30, 1988, No. 2, Chicago, IL., pp. 1312-1319. |
Nagarajan, Ramesh, et al., “Local Allocation of End-to-End Quality-of-Service in High-Speed Networks,” National Research Foundation under grant NCR-9116183 and the Defense Advanced Projects Research Agency under contract NAG2-578, pp. 1-28, downloaded, A. |
Elixmann, Martin, et al., “Open Switching—Extending Control Architectures to Facilitate Applications,” ISS Symposium, pp. 239-243, Apr. 23, 1995. |
Chandra, P., et al., “Network support for application-oriented QoS,” (IWQoS 98) 1998 Sixth International Workshop on Quality of Service, pp. 187-195, May 18-20, 1998. |
Klein, Rachelle S., et al., “Minimax Resource Allocation With Tree Structured Substitutable Resources,”Operations Research, vol. 39, No. 2, pp. 285-295, Mar.-Apr. 1991. |
Nyong, D., et al., “Resource based policies for design of interworking heterogeneous service networks,” Interoperable Communications Networks, vol. 1, Nos. 2-4, pp. 571-580, 1998. |
Kabay, S., et al., “The service node—an advanced IN services element,” 8438 BT Technology Journal vol. 13 Apr. 1995, No. 2, pp. 64-72. |
Mayer, Robert L, et al., “Service Net-2000: An intelligent network evolution,” 8010 At.and.T Technical Journal 70 (1991) Summer, No. 3/4, pp. 99-110, Short Hills, NJ. |
Gupta, Amit, “Resource sharing for multi-party real-time communication,” Proceedings of the Fourteenth Annual Joint Conference of the IEEE Computer and Communication Societies (INFOCOM '95), pp. 1230-1237, 1995. |
Kausar, Nadia, et al., “A Charging Model for Sessions on the Internet,” IEEE, pp. 32-38, Apr. 1999. |
Schutzrinne, Henning, “A comprehensive multimedia control architecture for the Internet,” IEEE, pp. 65-76, Sep. 1997. |
Tsaoussidis, V., et al., “A CORBA-based Application Service Middleware Architecture and Implementation,” State University, of NY at Stony Brook, pp. 1-7, downloaded, Aug. 19, 2008. |
Bernet, Y., et al., “A Framework for Differentiated Services,” The Internet Society, pp. 1-35, Sep. 22, 1999. |
Gleeson, B., et al., “A Framework for IP Based Virtual Private Networks,” The Internet Society, pp. 1-62, Feb. 2000. |
Yavatkar, Raj, et al., “A Framework for Policy-based Admission Control,” Internet Engineering Task Force, pp. 1-19, Apr. 1999. |
Ekstein, Ronnie, et al., “AAA Protocols: Comparison between RADIUS, DIAMETER and COPS,” Internet Engineering Task Force (IETF), pp, 1-17, Aug. 1999. |
Hussmann, H., et al., “An edge device for supporting internet integrated services over switched ATM networks,” pp. 1-10, downloaded, Aug. 19, 2008. |
Sinnreich, H., et al., “Interdomain IP communications with QoS, authorization and usage reporting,” http:www.ietf.org/internet-drafts..., Jan. 2000. |
Mascolo, Cecilia, et al., “An XML based Programmable Network Platform,” Dept. of Computer Science, University College London, pp. 1-5, Jun. 10, 2005. |
Oran, Dave, “Dial plan mapping for voice-over-IP,” Access Engineering, Apr. 11, 1996. |
Getting started guide for Internet Phone release 4, http://www.vocaltec.com, 1993-1996 VocalTec Inc. |
VocalTec desktop dialer version 3.0, User reference, http://www.vocaltec.com, 1997 VocalTec Ltd. |
“Vocaltec's telephony gateway software captures 1996 product of the year honors from computer telephony magazine,” Herzliya, Israel, Dec. 18, 1996, VocalTec, Ltd. |
“Introduction to VTG,” Northvale, NJ 07647, Tel. 201-768-9400, info@vocaltec.com, www.vocaltec.com, posted not earlier than Dec. 24, 1996. |
Kahane, Opher, et al., “IMTC VoIP Forum Contribution.” Subject: Call management agent system requirements function architecture and protocol, VoIP97-010, pp. 1-44, Seattle, Jan. 1, 1997. |
Kahane, Opher, “Introduction to VocalTec's CMA system,” Intelligent switching for a new era of telecom, Nov. 7, 1996. |
Newton, Harry, “Newton's Telecom Dictionary,” 22nd edition, pp. 728, 2006. |
Braden, R., et al., “Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification,” Network Working Group, pp. 1-224, Univ. of Michigan, Sep. 1997. |
Keiser, Bernhard E., et al., “Digital Telephony and Network Integration,” downloaded Jul. 1, 2008. |
Boyle, Jim, et al., “The COPS (Common Open Policy Service) Protocol,” http://www.ietf.orgiintemet-drafts/draft-ietf-rap-cops-07.txt, pp. 1-35, Aug. 16, 1999. |
Bellamy, John, “Digital telephony,” Dallas, TX, Oct. 1981. |
Open and standardized—the world of IP Protocols, “H.323: The Leading Standard in Voice over IP,” downloaded Jul. 1, 2008. |
“Inside APPN—The Essential Guide to the Next-Generation SNA,” IBM, International Technical Support Organization Raleigh Center, Raleigh, NC, Jun. 1997. |
Friedes, A., et al. “Integrating the world through communications,” IEEE ICC, vol. 1 of 3, Jun. 22-25, 1986. |
Huitema, Christian, “Routing in the internet,” Prentice Hall, Englewood Cliffs, NJ, 1995. |
Lucky, R.W., “Applications of communications theory,” Fundamentals of digital switching, AT+T Laboratories, Second Edition, downloaded, Jul. 3, 2008. |
Bellamy, John, “Digital telephony,” Second Edition, Wiley Series in Telecommunications, downloaded, Jul. 3, 2008. |
Stallings, William, “ISDN and Broadband ISDN with frame relay and ATM,” Prentice Hall, Upper Saddle River, NJ, downloaded, Jul. 3, 2008. |
GR-1298-CORE, AINGR: Switching Systems, Telcordia Technologies, Issue 10, Nov. 2004. |
GR-2863-CORE, CCS Network Interface Specification (CCSNIS) Supporting Advanced Intelligent Network (AIN), Bellcore, Bell Communications Research, Issue 2, Dec. 1995. |
GR-246-CORE, Telcordia technologies specification of signalling system No. 7, Telcordia Technologies, Issue 10, Dec. 2005. |
GR-1280-CORE, Advanced intelligent network (AIN) service control point (SCP) generic requirements, Telcordia Technologies, Issue 1, Aug. 1993. |
Morris, Christopher, Academic Press Dictionary of Science and Technology, Academic Press, downloaded, Jul. 3, 2008. |
GR-1428-CORE, CCS Network Interface Specification (CCSNIS) Supporting Toll-Free Service, Bellcore, Issue 2, May 1995. |
Mockapetris, P., “Domain names—concepts and facilities,” Network working group, Nov. 1987. |
Mockapetris, P., “Domain names—implementation and specification,” Network Working Group, Nov. 1987. |
Finseth, C. “An access control protocol, sometimes called TACACS,” Network Working Group, University of Minnesota, pp. 1-20, Jul. 1993. |
Carrel, D., “The TACACS+ Protocol,” Network Working Group, Cisco, Oct. 1996. |
ITU-T, “Line transmission of non-telephone signals,” Recommendation H.323, May 28, 1996. |
Product releases webpage, VocalTec, info@vocaltec.com, Aug. 26, 1996. |
Tutorial on “H.323,” by The International Engineering Consortium, http://www.iec.org, pp. 1-30, downloaded, Jul. 3, 2008. |
Everhart, C., et al., “New DNS RR Definitions,” Network Working Group, University of Maryland, pp. 1-11, Oct. 1990. |
Handley, M., et al., “SIP: Session Initiation Protocol,” Network Working Group, The Internet Society, Mar. 1999. |
Rosenberg, J., et al., “SIP: Session Initiation Protocol,” Network Working Group, The Internet Society, Jun. 2002. |
Brannen, Lynn, et al., “Next generation switch,” MCI Telecommunications, May 16, 1997. |
Shen, Yi-Shang, “Communications network with flexible call routing and resource allocation,” MCI Invention Disclosure Form, Jan. 8, 1998. |
Kahane, Opher, et al, “Call management agent system specification,” VoIP Forum Technical Committee Contribution, Chicago, IL, Aug. 14, 1996. |
Pulver, Jeff, “The internet telephone tookit,” Wiley Computer Publishing, New York, NY, 1996. |
Haley, James E., “Pay-per-call blocking using LIDB,” AIN Service Description, Bell Atlantic Easy Number Call Routing Service, Oct. 1996. |
American National Standard for Telecommunications—Signalling System No. 7 (SS7)—Signalling Connection Control Part (SCCP), American National Standards Institue, Inc., ANSITI.112-1992, Oct. 26, 1992. |
American National Standard for Telecommunications—Signalling System No. 7 (SS7)—Message Transfer Part (MTP), American National Standards Institue, Inc., Mar. 14, 1996. |
American National Standard for Telecommunications—Signalling System No. 7 (SS7)—Signalling Connection Control Part (SCCP), American National Standards Institue, Inc., ANSITI.110-1992, Jun. 2, 1992. |
Gasman, Lawrence, “Broadband networking,” Van Nostrand Reinhold, Jun. 13, 1994. |
Balkovich, Ed, et al., “Project clarity: First internal trial,” Readiness Review, Bell Atlantic Confidential and proprietary, Jul. 21, 1997. |
Grigonis, Richard “Zippy,” “Computer telephony over the Internet,” CT and the 'Net, Mar. 1996. |
Park, Myung Ah, et al., “Dial-up internet access service system with automatic billing mechanism,” ICICS 1997, Electronics .and. Telecommunications Research Institute, pp. 148-151, Singapore, Sep. 9-12, 1997. |
Ei-Gendy, Hazem, et al., “Computer-supported routing for intelligent networks and personalized wired communications,” ICCS 1994, pp. 1027-1033, Aug. 1994. |
“Audio and video over the Internet,” CT and the 'Net, Mar. 1996. |
Malamud, Carl, et al., “Internet talk radio: Geek of the week,” Mobile IP Networking, O'Reilly .and. Associates, Inc., transcript of interview, Nov. 1993. |
U.S. Appl. No. 60/023,891, filed Aug. 16, 1996. |
Mills, M. (Mar. 8, 1996) “Freebie Heebie-Jeebies: New Long-Distance Calling Via the Internet Scares Small Phone Firms”, The Washington Post, sec. F, pp. 1-2. |
Hughes, D.T. (Feb. 21, 1995) “What Hath (Net) God Wrought?”, The Journal [Fairfax, Virginia], sec. B, pp. 1-2. |
Hughes, D.T. (May 28, 1996) “WebPhone Heading for Serious Telephony”, The Journal, [Fairfax, Virginia], sec. A, p. 8. |
Mills, M. (Jan. 23, 1996) “It's the Net's Best Thing to Being There: With Right Software, Computer Becomes Toll-Free Telephone”, The Washington Post, sec. C, pp. 1, 5. |
Hughes, D.T. (Jan. 2, 1996) “Internet Phone Wars Heating Up: Companies Improve and Encourage Users to Test Products”, The Journal, [Fairfax, Virginia], sec. A, p. 6. |
Yang, C. (Feb. 12, 1995), “INETPhone: Telephone Services and Serves on Internet”, RFC 1789 http://ds.internic.net/rfc/rfc/rfc1789.txt. |
Kuehn, Richard A. (Jul. 1994) “The Voice of Technology”, [Online text only] Credit World, vol. 82, No. 6, pp. 20-23. |
Margulies, Edwin (Aug. 1996) Understanding the Voice-Enabled Internet, Flatiron Publishing, Inc., pp. 4-42 and 12-1 to 12-3. |
C. Low, “The Internet Telephony Red Herring,” Hewlett-Packard Laboratories, (May 15, 1996), pp. 1-15. |
C. Low et al., WebIN-an architecture for fast deployment of IN-based personal services, Intelligent Network Workshop, 1996, IN '96, IEEE, (Apr. 21-24, 1996), vol. 2, 196+258. |
Cady et al., “Mastering the Internet”, Sybex Inc., Alameda, CA 1994, ISBN 94-69309. |
Stevens, “TCPIP Illustrated”, vol. 1, 1994, Addison-Wesley, pp. 12-122 and inside cover. |
Keiser et al., “Digital Telephony and Network Integration”, 1995, Chapman Hall, Second Edition, pp. 426-428. |
Chopra, Manvinder, Exploring Intelligent Peripheral Configuration, Universal Personal Communications, 1994. Record., 1994 Third Annual International Conference on, Sep. 27-Oct. 1, 1994, pp. 635-639. |
Weisser et al. “The Intelligence Network and Forward-Looking Technology” IEEE COMM magazine, Dec. 1988, pp. 64-69. |
Shah et al. “Application of a New Network Concept for Faster Service Deployment” International Conference on COMM. 88 Jun. 12-15, 1988, IEEE Comm. Soc. Conference. Record, vol. 3, pp. 1327-1329. |
Audio Messaging Interchange Specification (AMIS)—Analog Protocol, Version 1, Issue 2, Feb. 1992. |
Jabbari, B., “Common Channel Signaling System No. 7 for ISDN and Intelligent Networks”, Proceedings of the IEEE, vol. 79, No. 2, Feb. 1991, pp. 155-169. |
Supercharging the Web with Computer Telephony, CT and the 'Net, Mar. 1996. |
Audio and Video Over the Internet, CT and the 'Net, Computer Telephony, Mar. 1996. |
Grigonis, Richard, “Computer Telephony Over the Internet”, CT and the Net, Mar. 1996. |
Geek of the Week: Carl Malamud Interviews Phil Karn .and. Jun Murai, Internet Talk Radio, Mobile IP Networking, Nov. 1993. |
McConnell, Brian, “How to Build an Internet PBX”, Pacific Telephony Design, printed from http://www.phonezone.com/ip-phone.htm Mar. 5, 1997. |
Welcome to the Phone Zone, Pacific Telephony Design, http://www.phonezone.com/index2.htm, pp. 1-6, Oct. 28, 1996. |
Sears, Andrew, “Innovations in Internet Telephony: The Internet as The Competitor to The Pots Network”, Innovations in Internet Telephony: The Internet as the Successor to the Pots Network, Feb. 28, 1996, pp. 1-6. |
Computer Telephony And The Internet, Stylus Innovation, http://www.stylus.com/hvml.htm, 1997. |
Hedrick, C., “Routing Information Protocol”, Jun. 1988, http://www.internic.net/rfc/rfc1058.txt, pp. 1-30. |
Mills, D.L., “An Experimental Multiple-Path Routing Algorithm”, Mar. 1986, http://www.internic.net/rfc/rfc981.txt, pp. 1-20. |
Lougheed et al., “A Border Gateway Protocol (BGP)”, Jun. 1990, http://www.internic.nethic/rfc1163.txt, pp. 1-26. |
S. Deering, “Host Extensions for IP Multicasting”, Aug. 1989, http://www.internic.netlitc/rfc1112.txt, pp. 1-16. |
Waitzman et al., “Distance Vector Multicast Routing Protocol”, Nov. 1988, http://www.internic.net/rfc/rfc1075.txt, pp. 1-22. |
Hinden et al., “The DARPA Internet Gateway”, Sep. 1982, http://www.internic.net/rfc/rfc823.txt, pp. 1-41. |
VocalTec's Telephony Gateway—The Ultimate Internet Telephony Solution?, Computer Telephony Magazine, Sep. 1996. |
A Call to Phones, Wired Magazine, Issue 4.03, http://www.wired.com/wired/archive/4.03/updata.html (Mar. 1996). |
Mascoli, Cicchetti .and. Listanti, “Alternative Scenarios for Data Applications Via Internet-Mobile and DECT-ATM Interworkin,” 4th IEEE International Conference on Universal Personal Communications, pp. 788-792, Nov. 6-10, 1995 published Apr. 1995. |
Blackwell et al. “Secure Short-Cut Routing for Mobile IP,” USENIX Summary 1994 Technical Conferences, Jun. 6-10, 1994. |
Okada et al. “Mobile Communication Using PHS [Personal Handy Phone System] Communications Server,” National Technical Report, vol. 42, No. 1, pp. 46-54 (Feb. 1996). |
Sattler, Michael, “Nautilus Voice Encryption,” May 10, 1995. |
Chernov , Andrey A. “SpeakFreely” software, Apr. 18, 1996. |
Netspeak Corporation Introduces Webphone, Industry's First Internet-Based Telephony Solution for Business Users, PC Forum, Mar. 18, 1996. |
Free World Dialup Beta 2.0a Client, Feb. 12, 1996. |
Kahane et al., “VocalTec IP Forum Contribution”, VocalTec Inc., Seattle, WA, Jan. 15, 1997. |
Handley et al., “SIP: Session Initiation Protocol”, Internet Engineering Task Force, Internet Draft, Jul. 31, 1997, draft-ietf-mmusic-sip-03.txt, Jul. 31, 1997. |
Internet Telephony for Dummies 2nd Edition, Chapters 14-16, 1997. |
Kahane et al., “Call Management Agent System Specification” VoIP Forum Technical Committee, Aug. 14, 1996. |
IMTC Voice over IP Forum Service Interoperability Implementation Agreement, Draft 0.91, Document VoIP-008, Jan. 13, 1997. |
Sebestyn, I., ITU Telecommunication Standardization Sector, Study Group 15, Q;2 .and. 3/15 Rapporteur Meeting, Document AVC-1086, v1, Dec. 5, 1996. |
Oppen et al., “The Clearinghouse: A Decentralized Agent for Locating Named Objects in a Distributed Environment”, ACM Transactions on Office Information Systems, vol. 1, No. 3, Jul. 1983, pp. 230-253. |
Anthony R. Noerpel et al., “PACS: Personal Access Communications System—A Tutorial,” IEEE Personal Communications, Jun. 1996. |
USDC For the Eastern Distric of Virginia, Alexandria Division, “Claim Construction of the Patents-In-Suit” Civil Action No. 08-0157, dated Sep. 3, 2008. |
Number | Date | Country | |
---|---|---|---|
20090022147 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11354033 | Feb 2006 | US |
Child | 12240565 | US | |
Parent | 09617816 | Jul 2000 | US |
Child | 11354033 | US |