The disclosure is directed to a dispensing apparatus having adjustable component, and more particularly, to apparatus for transporting toner material to a development housing.
Apparatuses that form images on a sheet, such as electro-photographic reproduction machine and printers are equipped with mechanisms to rotate a continuous belt at various locations inside the apparatus. The electro-photographic process, and particularly the xerographic process, is well known. This process involves the formation of an electrostatic latent image on a photoreceptor, followed by development of the image with a developer, and subsequent transfer of the image to a suitable substrate. Numerous different types of xerographic imaging processes are known wherein, for example, insulative developer materials or conductive developer particles are selected depending on the development systems used. The materials, compositions and processing for toners, which are particulate materials with colorant and fixing resin and charge control agents in dry form or in a liquid vehicle for development onto a photoreceptor, and for developers, which are materials packages containing toner particles with dry carrier or a liquid vehicle.
A development system consumes toner material in a development process and must be periodically replaced within the development system to sustain continuous operation of the electro-photographic reproduction machine. Various techniques and strategies have been used in the past to replenish such toner material. These techniques rely on the ability to manufacture customized parts, manufacture transport components to unique length, and manufacture of various mechanisms to augment the flow of the toner material from a supplier housing to the development system.
A toner transport apparatus for a printing system in which toner is moved from a toner container to a developer housing. The toner transport apparatus can accommodate different lengths and orientations between the toner container and the developer housing. The apparatus discloses a telescopic component that expands or contracts to extend the toner transport apparatus to a desired length. The toner transport apparatus can assume unique angles per station with a gear mechanism. A flexible auger can be associated with the toner transport apparatus to move material in non-vertical positions. The toner transport apparatus with the telescopic component and flexible auger would provide the ability to reuse components at a variety of positions and angles.
Aspects of the disclosed embodiments relate to dispensing of toner material through a telescopic drop tube with a flexible auger that expands and contracts to the sizes and orientation needed.
The disclosed embodiments include a supplier and receptacle housing for receiving a material. A variable length component couples the respective housings so as to transport and deliver the material. A motor driven flexible auger positioned in the variable length component is used to transport the material when the variable length component is not vertically oriented.
The disclosed embodiments further include a transfer component, telescopic drop tube with rotatable member, and a gear assembly to dispense a material from a supplier to receptacle housing. The telescopic drop tube can expand and contract to a desired length so as to couple supply housing to receptacle housing. The rotatable member is a motor driven flexible auger that transports the material when the telescopic drop tube is not vertically oriented. The rotation of the flexible auger is through the gear assembly. The disclosed embodiment further includes an auger disposed in the transfer component for transporting the material when the component is not in a vertical position.
The disclosed embodiments further include a toner transport apparatus for a printing system comprising a toner container, a developer housing, a dispenser, a variable length component, and gear train assembly. The variable length component can be extended away from the toner container to meet design constraints. The dispenser through the gear train assembly provides different orientations resulting in developer housing placement flexibility.
The term “variable length component”, in the disclosed embodiments, refers to a telescopic component that is extensible or compressible by the sliding of overlapping sections. A “variable length component” may also refer to an accordion tube, malleable tube, or the like that is extensible or compressible to a range of lengths.
In a printing apparatus, such as a printer or copier, and a plurality of developer units. The overall function of a developer unit is to apply marking material, such as toner, onto suitably charged areas forming a latent image on an image receptor such as photoreceptor generally found in a printing system (not shown), in a manner generally known in the art. In various types of printers, there may be multiple such developer units, such as one for each primary color or other purpose. However, those skilled in the art would appreciate that the marking material may be in any color, such as cyan, red, magenta and yellow. If more than one color is processed in the exemplary printing system, a developer for each color may be provided in a universal developer housing.
The main elements of a developer unit are a toner container or supplier housing 105, which functions generally to hold a supply of developer material, a dispenser unit 100, which can variously mix and transports the marking material, and receptacle or developer housing 115, which in this embodiment form to apply developer material to a media to form a latent image. Other types of features for development of latent images, such as donor rolls, paddles, scavengeless-evelopment electrodes, commutators, and the like, are known in the art and could be used in conjunction with the to be described tone transport apparatus. Refilling each developer housing 115 from the associated supplier housing or toner container 105 can include a distribution mechanism, dispenser unit, flexible tube, or toner transport tube or pipe there between having, for example, an auger or spiral member including a spring rotatable within the tube for transporting the toner from each supplier housing to the respective developer housing. Each supplier housing is thus in fluid communication with the respective developer housing. The developer material or toner may then be dispensed into the developer housing 115 during an initial tone up and then during all printing to maintain the proper toner concentration (TC). The quantity, level, or toner concentration may be detected by a TC sensor (not shown). The concentration amount of the toner supplied to developer housing 115 may be controlled to adjust the concentration. Such amount may be determined by the toner concentration detected by the TC sensor to reach a predetermined concentration level based on time interval, specific model type of the printing machine, specific color, and the like, and may be controlled by small increments manually or automatically using a toner dispense motor (not shown).
The effective length, size, and orientation of dispenser unit 100 are key elements. These elements must be selected with regard to concentration and intended running speed, in pages per minute, of the printing system. Typically, but not necessarily, operating a developer unit in accordance with a desired running speed involves rotating one or more of the various rotating members within the developer unit (augers, magnetic rolls, paddles, etc.) at predetermined feed rates or speeds. However, it should be noted that the use of a rotating member to transport the toner is only needed in non-vertical scenarios. Additionally, rotating a rotatable member such as auger at a particular rotational velocity will affect the amount of marking material in the respective housings. Therefore, the length, orientation, and other attributes will have an effect on the overall performance of the developer unit 100 when it is run at a given speed.
Although the illustrated embodiments disclose a monochrome xerographic printer where a toner image is transferred from a photoreceptor directly to a print sheet, a “charge receptor” can also be an intermediate member or belt that accumulates a set of primary-color toner images from a set of photoreceptors in a color printing apparatus. Thus, transfer stations such as generally described and indicated as in the Figures can be used to transfer toner images from such an intermediate member to a print sheet. As used herein, the term “printing apparatus” may refer to a developer unit installable in a printer; to a customer-replaceable unit installable in a printer, including or not including a photoreceptor 10 or a developer supply; to a printer itself; or to a printing module in a larger, multi-engine printer.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.