The invention relates to a telescopic rail system, in particular for refrigerator units and/or freezer units.
In refrigerator units and/or freezer units, drawers are guided in known solutions e.g. on the aluminum evaporator or on a glass plate. The abutment of the drawer takes place via the compartment of the refrigerator unit and/or freezer unit and the drawer itself. Drawers of this type applied to plates cant easily when being pushed in and pulled out. In addition, wear is created at the drawer body.
It is the object of the present invention to provide a telescopic rail system which is very flexible and can be handled simply and reliably. This object is satisfied using a telescopic rail system having the features of claim 1 and a refrigerator unit and/or a freezer unit having the features of claim 33. Advantageous aspects form the subject of dependent claims.
The telescopic rail system in accordance with the invention has a support plate for the fixing in the inner compartment of the refrigerator unit and/or freezer unit. Telescopic rails are arranged opposite one another on thee side regions of the support plate. In the pushed together state, these rails have e.g. approximately the length of a side of the support plate. A drawer or a plate which can be pulled out can be placed or set onto the telescopic rails. A sliding on the plate is therefore no longer necessary. The system can nevertheless be used easily since no modifications with respect to conventional solutions are necessary at the inner compartment of the refrigerator unit and/or freezer unit. The telescopic rails are provided on the support plate itself which can be inserted into the unit like a normal shelf plate. In this respect, it is also possible in a simple manner to arrange the element to be pulled out, e.g. the drawer, either above or beneath the support plate. To change the arrangement, the support plate only has to be turned round so that the telescopic rails are no longer arranged on the support plate, but beneath the support plate.
The telescopic rail system in accordance with the invention can be used in a simple manner. The support plate can thus e.g. be supplied to an installation location of the refrigerator unit and/or freezer unit with the telescopic rails pre-assembled.
A reliable pull-out operation is possible by the arrangement of the telescopic rails directly on the support plate. A bulging of the inner space occurs as a rule due to the thermal strain on the body of the refrigerator and/or freezer. A conventional telescopic rail whose one part is firmly fastened in the inner side wall of the unit and whose other part is connected to the pull-out part would cant at such thermal strains. With the solution in accordance with the invention, however, the complete telescopic rail is supported at the support plate itself. Only the support plate itself is held e.g. in rails in the unit without strain. A thermal bulging of the inner space of the refrigerator unit and/or freezer unit therefore does not result in any strain at the telescopic rail which would result in canting.
With a telescopic rail system in accordance with the invention in which the telescopic rails are arranged on a surface of the support plate, the further advantage also results that the support plate can be used as a normal shelf plate by simply being turned around.
The telescopic rails can be fastened to the edge of the support plate. An arrangement of the telescopic rails on the surface of the support plate is particularly advantageous so that the support plate can be pushed into the refrigerator unit and/or freezer unit without hindrance.
In a particular aspect, the telescopic rails are releasably fastened to the support plate. In this manner, the support plate can also be used conventionally as a shelf plate.
The telescopic rails can be fastened to the support plate in a varied manner. In a preferred embodiment, the telescopic rails include, at a first end preferably at the rear in the direction of pulling out, a hook-like element which engages around the support plate and which can be pushed onto the one first edge, preferably the rear edge, of the support plate. The hook-like element secures the telescopic rail against a lifting off from the support plate, on the one hand, and against sliding in the pulling-out direction, on the other hand. A drawer fastened to the telescopic rail can therefore be pulled out without there being any risk of the telescopic rail sliding along.
In the following description, embodiments are described for a simpler representation in which the first edge of the support plate corresponds to the rear edge of the support plate in the refrigerator unit and/or freezer unit. Embodiments are moreover described in which the first end of the telescopic rails corresponds to the end of the telescopic rails at the rear in the pulling-out direction. However, embodiments are equally covered by the scope in which the first edge of the support plate corresponds e.g. to the front edge and the first end of the telescopic rail corresponds e.g. to the end of the telescopic rail at the front in the pulling-out direction.
A hold rail is advantageously provided at the rear edge of the support plate and comes to lie between the hook-like element and the support plate. The holding rail can e.g. be made from plastic or from another material which prevents the direct contact of the telescopic rail or of its hook-like element with the support plate. This is in particular of advantage when the support plate is made of glass and is therefore easier to damage.
Such holding rail can e.g. extend along the total rear edge of the support plate and thus be arranged between the hook-like element of the first telescopic element of the first telescopic rail and the support plate as well as between the hook-like element of the second telescopic rail and the support plate. Such an integral holding piece is simple to fit and is robust. It only has to be pushed onto the rear edge of the support plate once.
The holding rail advantageously has abutments at its ends which contact the side edges of the support plate such that the holding rail is secured against lateral slipping.
Other embodiments have two holding rails which can be pushed onto oppositely disposed ends of the rear edge of the support plate. Such an embodiment requires a lower material effort. Systems with two such holding rails pushed on at the ends of the rear edge of the support plate can also be configured such that the holding rails are secured against slipping with the aid of an abutment at the lateral edge of the support plate.
Provision is made in another embodiment for the support plate to be completely molded around with plastic and for the insert molding to represent a holding rail at a first edge of the support plate, with said holding rail being arranged between the support plate and the respective hook-like element of the respective telescopic rail. Such an embodiment ensures a particularly reliable holding of the holding rail to the support plate.
The holding rail can include a recess facing away from the support plate which is configured such that the telescopic rail comes to lie in this recess in the state pushed onto the holding rail so that the rear end of the telescopic rail is protected against lateral slipping.
Holding elements can be provided at the support plate for the fastening of the telescopic rails and can be fastened to the support plate and serve the holding of the telescopic rails at the support plate. Holding plates can be provided in the front region of the support place specifically with embodiments in which the telescopic rails have a hook-like element at the rear end to engage around the support plate. With such embodiments, the telescopic rail is held at its rear end by the engagement of the hook-like element and of the support plate and at its front end by the holding elements.
In a simple embodiment, the holding elements are adhesively bonded to the support plate. Holding elements are particularly secure which are configured as latch noses which can be inserted into corresponding openings of the support plate. Such holding elements can be clipped onto the support plate very easily. The holding elements can e.g. have abutments which contact the lateral edge of the support plate such that the holding element is secured against lateral slipping.
An alternative embodiment comprises a support plate which is completely molded around with plastic, with this insert molding already including the holding elements. A separate fastening of the holding elements to the support plate is then no longer necessary.
The telescopic rails can be fastened to the support plate using a corresponding number of holding elements. Provision can, however, also be made with an embodiment having holding elements which are integrated into an insert molding of the support plate for the telescopic rails to be hooked in at the rear edge of the support plate using hook-like elements and for only holding elements to be provided for the holding of the front end of the telescopic rails.
Glass is e.g. suitable as the material for the support plate because it has a very low longitudinal coefficient of expansion. No strains occur, or only low strains occur in this manner, even at great temperature differences, which could result in a canting of the telescopic rails.
Support plates which are e.g. made from sheet metal can be equipped with hangers and fastening parts in order likewise to hold telescopic rails.
With support plates which are e.g. made from plastic, preferably as an injection molded part, fastening elements for the telescopic rails can, on the other hand, be directly molded on. With such an injection molded support plate, the rear edge can thus be configured as a holding rail which serves the pushing on of the hook-like element of a correspondingly configured telescopic rail. A holding rail formed integrally with the support plate as an injection molded part can also include a recess facing away from the support plate, with the telescopic rail being received in said recess in the pushed on state such that the end of the telescopic rail is secured against lateral slipping.
Provision is made in a further embodiment for the plastic support plate to include holding elements which are already integrally shaped and which serve the holding of the telescopic rails. The total support plate is here manufactured with all holding elements in one workstep as an injection molded part. In an embodiment of the telescopic rail system in accordance with the invention having telescopic rails which comprise a hook-like element, holding elements are only necessary in the front region of the support plate since the telescopic rails are held by the pushed on hook-like element at the rear edge of the support plate.
The holding element can have projections for the connection of the telescopic rail to the respective holding element which are formed parallel to and spaced apart from the support plate, which face perpendicular to the pulling-out direction of the telescopic rail and which can latch into corresponding openings of the telescopic rails. The projections and the corresponding openings of the telescopic rails can be configured such that they cooperate in the manner of a snap connection. With such an embodiment, specifically with a telescopic rail having a hook-like element for the fastening of the rear end of the telescopic rail to the support plate, the hook-like element of the telescopic rail can first be pushed onto the support plate from the rear. A lateral displacement of the front end of the support plate then effects the latching of the projection into the corresponding opening of the telescopic rail.
In another embodiment, the holding elements have projections parallel to the support plate and face rearwardly in the pulling-out direction and the telescopic rails have corresponding openings. Such an embodiment permits the pushing of the telescopic rail with the hook-like element onto the support plate from the rear with a simultaneous latching of the projection into the corresponding opening of the telescopic rail.
An embodiment in accordance with the invention in which the support plate is insert molded with plastic and the fixed parts of the telescopic rails are injected along therewith for holding at the support plate manages completely without holding elements. Finally, the support plate can also be configured as an injection molded part which integrally includes the fixed parts of the telescopic rails such that the fixed parts of the telescopic rails and the support plate can be manufactured in a single injection molding step.
The telescopic rail system in accordance with the invention can be arranged above or below the support plate depending on whether the pull-out element should be moved above or below the support plate.
Embodiments of the telescopic rail system in accordance with the invention will be explained in detail with reference to the Figures. There are shown:
A holding rail 5 made of plastic, which will be explained in detail with reference to
In
In
The embodiment of
The drawer 13 can now be pushed in and out easily with the aid of the telescopic rails. A direct contact of the drawer 13 with the glass plate 3 is avoided.
If maintenance should become necessary, the telescopic rail 4 can be removed from the glass plate 3 very easily so that the system in accordance with the invention proves to be very flexible.
With a corresponding configuration, the telescopic rail can also be used for other elements to be pushed in, e.g. for shelf plates to be pulled out. Turning the support plate 3 over has the effect that the telescopic rail 4 is no longer arranged above the support plate 3, but beneath it. With a corresponding configuration of the drawer, a draw can thus also be arranged beneath the support plate.
The installation process of the telescopic rail 40 on the glass plate 30 and the interaction of the individual fastening elements are shown in
The telescopic rail is first lowered onto the glass plate 30 in the direction f. The opening 34 also lowers over the holding element 39. Displacement in the direction d effects the hooking of the hook 33 into the recess of the holding rail 35.
On the displacement of the telescopic rail 40 in the direction g, the projection 40 moreover hooks into the opening 34. The telescopic rail 40 is fixedly fastened to the glass plate 30 in this manner. In an analogous manner, a second telescopic rail is fastened to the side of the glass plate 30 not shown in
The described embodiments have separate holding elements and separate holding rails. In other embodiments, which are not shown, the holding rail and/or the holding elements form part of a plastic insert molding of the support plate. A further embodiment, which is not shown, comprises a support plate which is injection molded completely from plastic, with the holding rail and the holding elements being an integral component and being injection molded together with the support plate in one step. It is equally possible for the part of the telescopic rail which is fixed with respect to the support plate to be molded onto the support plate at the same time.
Number | Date | Country | Kind |
---|---|---|---|
20 2004 017 136.8 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/011835 | 11/4/2005 | WO | 00 | 11/14/2007 |