The invention relates to a telescopic slide for a refrigeration device as claimed in the preamble of claim 1 and claim 8
Rails of such a telescopic slide, with which the refrigerated goods carrier are to be moved out of the refrigeration device, are to be smooth-running, so that the support can be removed from the refrigeration device with little effort, even when it is heavily laden. Slides of this type generally have stops, which restrict the freedom of movement of the rails in respect of one another so that the rails are not completely pulled apart by accident. During operation, stops of this type are exposed to significant loads in the case of heavily laden supports and careless use can result in damage to the support or stops.
To prevent this, DE 10 2005 021 589.0 already proposed fastening the support to the rails in the direction of motion of the rails in an elastic fashion. As a result, the supports have a certain play in respect of the rails.
The internal widths of refrigeration devices are also subject to large tolerances due to the foamed housing and the different expansions of the materials which results from the large temperature loads. To balance out these tolerances, the supports are fastened to the rails with a lateral play, in other words a play which is perpendicular to the direction of motion of the rails. This loose acceptance of the refrigerated goods carriers on the slide essentially allows damage to the refrigerated goods carriers resulting from use to be avoided. As a result of the play between the support and the slide, it nevertheless ensues that the refrigerated goods carriers wobble from side to side during movement. This results in a reduction in the tangible quality and thus in a decrease in the value of the refrigeration device.
The object underlying the invention is to design a telescopic slide for a refrigeration device such that the refrigerated goods carriers can be moveable in a smooth-running fashion, damage to the refrigerated goods carriers is avoided during normal use, the necessary large tolerances are allowed for by the refrigeration devices, while at the same time the impression of a high-quality system is retained.
The object is achieved in accordance with the invention by a telescopic slide for a refrigeration device with the features of claim 1 and claim 8.
In accordance with the invention, contact surfaces between the supports and the rails are embodied such that large frictional forces prevail between them. Friction surfaces of this type prevent the frame from wobbling about and thus also prevent a possible twisting of the refrigerated goods carriers, which is brought about in the previous design as a result of the play of the refrigerated goods carriers, which is determined by the large tolerances, in respect of the rails. As a result, the lateral displacement of the refrigerated goods carriers during normal use can be completely prevented, as a result of which the tangible quality is significantly improved.
A further advantage is that the friction surfaces produce an attenuation effect, which results in quieter movement noises when removing the refrigerated goods carrier. As a result, a rattling of cheap refrigerated goods carriers made of plastic on the slides can also be prevented, which likewise effects an impression of high quality, although further favorable materials are used.
In accordance with the invention, large frictional forces are understood to mean frictional forces which are greater than the forces developing during the movement of the support, so that a relative movement on the contact surfaces between the supports and the rails is at least largely avoided during a reverse movement of the carrier for instance.
The static friction of the contact surfaces involving friction preferably lies between 0.3 and 1. Through this, a lateral wobbling of the refrigerated goods carrier can be prevented without at the same time significantly restricting the moveability of the slides in the direction of movement. The value for the coefficient of friction ideally lies at 0.7.
In a preferred embodiment of the invention, the rail, on which the support is fastened, is provided with a surface which effects a high adhesive force. As a result of the fact that the friction surface is effected by way of a surface treatment of the rails, the previously proven design and the previously used materials can be retained and only a surface treatment of the rails is necessary. The rails could be provided with a non-slip coating. The surface of the rails could however also be provided with a structure which effects a higher friction. This solution is then particularly advantageous if the refrigerated goods carrier rests directly on the rails of the telescopic slide.
In a further advantageous embodiment, a support retainer, which is used here to fasten the support to the first rail with a measure of tolerance, is produced in at least the contact area with the support made in part of a material with high frictional values, like for instance a soft thermoplastic elastomer, or is provided with a bearing made of such a material. Through this, the embodiment of rails and supports can be retained, attention need only be paid to a large coefficient of friction when selecting the material for the support retainer. This presents a particularly advantageous solution, which requires few structural modifications to the previous design and is simple to guarantee. If only the support surface of the support retainer is manufactured from a soft thermoplastic elastomer, it is advantageous to manufacture the support retainer itself from polyoxymethylene or another high-quality plastic for instance. As a result, the stability of the support retainer and the high non-slip quality of the contact surface is ensured for the support.
In a further advantageous embodiment of the invention, the friction surface is realized on the support itself. In the region of the support, in which the contact to the rail or a support retainer fastened thereto is established, the support is equipped for this purpose with a material with a high frictional value, like for instance a soft thermoplastic elastomer. This can prevent modifications having to be made to the relatively complex rail system of the telescopic slide. The material with a large coefficient of friction is attached to the refrigerated goods carrier itself, which in some circumstances may be a more cost-effective solution.
Further details and advantages of the invention result from the subclaims in conjunction with the description of an exemplary embodiment, which is explained in detail on the basis of the drawings, in which;
The telescopic slides 13, on which the lower pull-out box 5 is supported, each have a pair of interlocking rails. The freedom of movement of these rails in respect of each other amounts to between 50 and 80% of their length; here it is identical to the depth of the pull-out box 4 disposed thereabove, so that when in its position extended as far as the stop, the pull-out box 5 is fully accessible below the box 4 disposed thereabove and over its entire upper surface 2.
A front adapter 19 and a rear adapter 20 made of plastic are fastened to the outer rail 14. The adapters 19 and 20 each have a truncated prism-shaped base body 21, on which a horizontal web 22 resting on the upper bracket of the rail 14 is molded on its upper side. A locking element 23 and/or 24 protrudes in each instance from the upper side of the base body 21.
Whenever the rails 14 and/or 15 come up against a path limitation stop and as a result the pull-out box 4 and thus the support 11 is abruptly halted, the base plate 24 exerts a force on one of the elastic brackets 25 of the locking element 23, which drives this in the direction of the opposite bracket 25. The pull-out box 4 can thus slip on the rail 14 in the direction of movement thereof to the extent that contact with the bracket prevents further deformation. The inertia forces which occur when the rail 14 come up against a stop and the pull-out box 4 is abruptly halted, are thus significantly smaller than with a rigid connection between the pull-out box and rails, so that a light, thin-walled and correspondingly more cost-effective adapter is sufficient to ensure secure mounting of the pull-out box 4 on the telescopic slide 13.
As can be seen on the hole 35 and/or the slots 36 in
To prevent this and/or to restrict this as far as possible, areas 51 and 52 equipped with a soft thermoplastic elastomer are provided on the contact surfaces 50 of the adapter 19 and 20 with the support part 11, as is shown representationally on the basis of the extract shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2006 018 425.4 | Apr 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/053194 | 4/2/2007 | WO | 00 | 10/16/2008 |