1. Field of the Invention
The invention relates to a telescopically rotatable mop, and more particularly to a structure that ensures a smooth operation in dewatering the mop with one hand only and without use of the feet.
2. Description of the Related Art
After a mop has been used, it is necessary to wring dirty water from mop fabrics (or cotton strips) of the mop before soaking clean water again to facilitate washing a floor, and mopping is obviously a tiresome job. Therefore, related manufacturers have developed various different dewatering devices for the mop, such as a dewatering device disclosed in R.O.C. Pat. No. 347146, wherein a pedal is provided for driving a gear to rotate a dewatering tank at a fast speed, so as to wring cotton strips of the mop placed in the dewatering tank. Although the aforementioned device can improve the inconvenient way of wringing the mop fabrics by hands, yet the operation still requires a user to step on the pedal continuously by one foot, and keep the user's body in balance by another foot. Such arrangement not only involves an inconvenient operation, but also endangers the safety of users when the users fail to stand stably or fall. Therefore, it is necessary to develop a mop with an easy, convenient and safe operation in dewatering.
An object of the invention is to provide a telescopically rotatable mop that permits a convenient operation with less effort when the internal and external rods rotate in a telescopic way. In this way, the operation failure may be minimized and the service life may be increased.
In order to achieve the above-mentioned objects, the invention includes:
a) an internal rod having a hollow body;
b) an external rod having a hollow body with a bottom portion in a telescopic connection with a top portion of the internal rod;
c) an engaging element positioned within the opening at the top of the internal rod, the engaging element having at the bottom thereof a through hole and at the internal bottom rim a plurality of driven teeth;
d) a driving element formed in an elongated shape and positioned within the external rod in such a way that the driving element is moved up and down synchronically with the external rod;
e) an actuating element positioned within the engaging element with a threaded sleeve at the top thereof for accommodating the driving element, the actuating element having at the bottom thereof a plurality of driving teeth corresponding to the driven teeth of the engaging element for driving the engaging element in a single direction when the actuating element is rotated by the driving element;
f) a fixing cap having a through hole for the insertion of the driving element, the fixing cap being mounted on the opening of the engaging element;
g) a disc body secured to the bottom of the internal rod and having mop yarns;
h) a locking mechanism mounted on the external rod for locking the internal rod and the external rod in place or for unlocking them in a telescopic state,
wherein the engaging element is constructed as a cylindrical body with the middle and lower parts secured to the inside of the internal rod, and an annular element rotatable clockwise and counterclockwise at 360° is mounted on the top portion of the engaging element projecting in an exposed manner from the internal rod, and the external diameter D1 of the annular element is greater than the external diameter D2 of the internal rod, but smaller than is almost the same to the internal diameter φ1 of the external rod;
wherein the length L1 of the driving element 50 is smaller than the length L2 of the inside of the engaging element; and
wherein the bottom of the fixing cap is extended and secured to the opening of the engaging element in such a way that a gap S is provided between the fixing cap and the top of the actuating element, and the fixing cap includes at the top thereof a projecting flange (whose external diameter is greater than the external diameter D2 of the internal rod, but smaller than the external diameter D1 of the annular element) for positioning the annular element on the periphery of the top portion of the engaging element without affecting the rotation of the annular element within the external rod.
Accordingly, the actuating element is rotated by a linear motion of the driving element when the external rod is moved up-and-down. Moreover, the engaging element is driven in rotation in one direction only, thereby creating a continuous rotation of the internal rod and the disc body in the same direction by the inertia force. As a result, a centrifugal force is produced to throw away the water absorbed in the mop yarns.
The accomplishment of this and other objects of the invention will become apparent from the following descriptions and its accompanying figures of which:
First of all, referring to
The internal rod 10 is constructed as a hollow circular tube and made by metal or non-metal material. Therefore, it can be an aluminum tube or a plastic tube.
The external rod 20 includes a bottom portion in a telescopic connection with a top portion of the internal rod 10. According to the embodiment, the operator can hold on the external rod 20 to conduct a telescopic motion on the internal rod 10.
The engaging element 30 is positioned within the opening at the top of the internal rod 10. According to this embodiment, an annular element 33 and a fixing cap 34 are mounted and fixed on the engaging element 30 after the engaging element 30 is placed within the top of the internal rod 10. The upper portion of the engaging element 30 is externally provided with a flange 31. The fixing cap 34 includes a through hole 341 at the top thereof and a projecting flange 342 at the external rim thereof. The bottom of the fixing cap 34 fits into an opening 32 of the engaging element 30 in place. As shown in
The driving element 50 is formed in an elongated shape and positioned within the external rod 20 in such a way that the driving element 50 is moved up and down synchronically with the external rod 20. According this embodiment, the driving element 50 includes a fixing block 51 fastened by a fixing element (not shown) or in a riveting way within the top end of the external rod 20. Moreover, a protection sleeve 22 is mounted on the external rod 20.
The actuating element 40 is positioned within the engaging element 30 for accommodating the driving element 50. The driving element 50 is constructed as a worm or a threaded piece. As a result, the internal wall of the actuating element 40 has to be formed to be a threaded sleeve 41. According to the structure of the worm or the threaded piece, the actuating element 40 is correspondingly provided with a worm thread or an elongated groove such that the driving element 50 may impart a rotary motion to the actuating element 40 by means of the up-and-down linear movement of the external rod 20. According to this embodiment, the driving element 50 is constructed as a threaded piece. As a result, the threaded sleeve 41 at the internal end of the actuating element 40 is constructed as an elongated groove such that the up-and-down movement of the driving element 50 in the threaded sleeve 41 may impart a rotary motion to the actuating element 40 within the engaging element 30. As shown in
The disc body 60 is secured to the bottom of the internal rod 10 and includes mop yarns 61.
The locking mechanism 70 is mounted on the external rod 20 for locking the internal rod 10 and the external rod 20 in place or for unlocking them in a telescopic state. As shown in
The internal clamping sleeve 70a includes an internal tube 71 at the top thereof. The bottom of the external rod 20 is introduced into the internal tube 71 and fastened there in place. The fastening effect may be achieved in the clamping, locking, hooking, or screwing way. The fastening technique belongs to the prior art so that no further descriptions thereto are given hereinafter. Both sides of the internal clamping sleeve 70a are provided with positioning holes 72. Moreover, the bottom portion of the internal clamping sleeve 70a is constructed as a conic body 73 (extending or expanding from the top to the bottom) with an indentation 74. The indentation 74 is extended in axial direction. Preferably, there are at least two indentations 74.
The external clamping sleeve 70b is mounted on the periphery of the internal clamping sleeve 70a. The upper portion of the external clamping sleeve 70b is provided with an external tube 75 corresponding to the internal tube 71. The external tube 75 includes at both sides thereof two mounting holes 76 in alignment with the positioning holes 72 of the internal tube 71. According to the embodiment, the mounting holes 76 are formed as a non-circular and rectangular hole, but should be limited thereto. The mounting holes 76 and the positioning holes 72 are not concentrically positioned such that cams 78 within the mounting holes 76 tend to conduct an eccentric push action. A bell mouth 77 is formed at the lower portion of the external clamping sleeve 70b for fitting over the conic body 73.
The U-shaped lever 70c includes a swivel protrusion 79 and an eccentric cam 78 at the internal wall of both sides thereof for fitting into the positioning holes 72 of the internal clamping sleeve 70a and the mounting holes 76 of the external clamping sleeve 70b. Besides, the eccentric cams 78 are positioned within the mounting holes 76. According to this embodiment, the swivel protrusions 79 together with the eccentric cams 38 and the U-shaped locking arm 30c are formed by the injection-molding process. However, it should not be restricted thereto. In other words, the swivel protrusion 39 can be replaced by a processed metal post.
Based upon the above-mentioned structure, when the U-shaped lever 70c swivels on the swivel protrusion 79, the eccentric cams 78 are offset within the mounting holes 76, thereby moving the external clamping sleeve 70b on the periphery of the internal clamping sleeve 70a upward or downward. As shown in
As shown in
As shown in
Furthermore, when the external rod 20 is pulled upward, as depicted above, the internal rod 10 won't be acted upon thereby and remains to rotate in the same direction due to the action of the inertia force. In this way, the internal rod 10 and the disc body 60 may be rotated more than 10 times within a dewatering basket 81 of a bucket body 80 by means that the user pushes downward and pulls upward the external rod 20 for a few times. Unlike the conventional bucket body 80 employing an internal drive mechanism to drive its dewatering basket 81 in rotation by a user's foot, the dewatering basket 81 according to this embodiment is rotatable within the bucket body 80. Unlike the conventional way, the dewatering basket 81 in accordance with the invention may be synchronically driven in rotation when the disc body 60 is rotated by the internal rod 10. In this way, the mop yarns 61 of the disc body 60 are subject to the centrifugal force for dewatering. Meanwhile, the water removed may be received within the bucket body 80.
However, many tests done for a long time on the above-mentioned structure show that the internal rod 10 is lifted and rotated within the external rod 20 at the time when the external rod 20 is pushed downward and pulled upward (see
In order to resolve the above-mentioned problems, the structure in accordance with the invention is provided with following features.
As shown in
Furthermore, the driving element 50 includes at the bottom thereof a position-limiting element 52 and a positioning element 53 for a reliable stop of the driving element 50 in a preset position and for a practical protection of the internal rod 10 and the driving element 50 from being detached from the internal rod 10.
The structure in accordance with the invention is provided to resolve the problems with respect to the telescopic and rotary motions of the internal and external rods 10, 20. Moreover, the structure permits a more smooth operation with less effort. Meanwhile, the noise may be reduced and the service life may be increased.