Telescoping eating utensil

Information

  • Patent Grant
  • 10857661
  • Patent Number
    10,857,661
  • Date Filed
    Wednesday, June 12, 2019
    5 years ago
  • Date Issued
    Tuesday, December 8, 2020
    4 years ago
Abstract
A telescoping eating utensil capable of being stored in a collapsed configuration or extended to be used as an eating utensil. The utensil has a handle that can be extended or collapsed using an interlocking mechanism that can interlock the utensil in either the collapsed mode or in the extended mode. The interlocking system includes a locking button on a utensil tool part that engages with either an opening or a recess in the handle when the utensil tool part and the handle are slidably connected.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to eating utensils. More particularly, the invention relates to telescoping eating utensils that may be suitable for transport.


Eating utensils are used by people all over the world to bring food to their mouths. Sometimes, eating utensils, such as knives, are used to cut food to a size and shape suitable for placing in a person's mouth. In some Asian countries, chopsticks are typically the only eating utensils used although spoons are also used for soups in Asia. In Western countries, forks, knives, and spoons are typically used as eating utensils. In still other countries, such as India and Ethiopia, hands are often used in place of utensils.


Although these existing utensils work quite well, there are continuing efforts to develop new utensils that provide not only improved function and convenience but are also suitable for transport. Such utensils also take up less space and are therefore more easily stored.


SUMMARY OF THE INVENTION

In accordance with an embodiment, a telescoping eating utensil is provided. The telescoping eating utensil includes a utensil tool and a handle. The utensil tool includes a utensil head attached to a tool connector, wherein a locking button is on a top surface of the tool connector, and the handle is configured to slidably engage and interlock with the tool connector. The handle and the tool connector are interlocked either in a collapsed mode or in an extended mode, and the locking button engages with an opening on the handle in the extended mode and the locking button engages with a recess in a bottom surface of the handle in the collapsed mode.


In accordance with another embodiment, an expandable eating utensil is provided. The expandable eating utensil includes a tool portion, a handle portion, and a locking feature. The tool portion includes a utensil head and the handle portion is configured to slidably engage with the tool portion. The locking feature is configured for interlocking the handle portion with the tool portion such the tool portion can be locked in place relative to the handle portion.


In accordance with yet another embodiment a telescoping eating utensil is provided. The telescoping eating utensil includes a utensil tool portion and a handle portion configured to slidably engage with the utensil tool portion. The utensil tool portion includes a utensil head attached to a tool connector having an actuatable locking button on a top surface of the tool connector. The handle portion interlocks with the tool connector in either a collapsed mode or an extended mode when the locking button is in a relaxed state.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:



FIG. 1A is a top perspective of a telescoping spoon in its collapsed mode in accordance with an embodiment.



FIG. 1B is a top perspective view of the telescoping spoon shown in FIG. 1A in its extended mode.



FIG. 2A is a top perspective view of a telescoping fork in its collapsed mode in accordance with an embodiment.



FIG. 2B is a top perspective view of the telescoping fork shown in FIG. 2A in its extended mode.



FIG. 3A is a bottom plan view of the embodiment of the telescoping spoon in its extended mode shown in FIG. 1B.



FIG. 3B is a side view of the embodiment shown in FIGS. 1B and 3A.



FIG. 3C is an end view of the embodiment shown in FIGS. 1B, 3A, and 3B.



FIG. 4A is a bottom plan view of the embodiment of the telescoping fork in its extended mode shown in FIG. 2B.



FIG. 4B is a side view of the embodiment shown in FIGS. 2B and 4A.



FIG. 4C is an end view of the embodiment shown in FIGS. 2B, 4A, and 4B.



FIGS. 5A-5E show various views of an embodiment of a spoon tool in accordance with an embodiment.



FIGS. 6A-6E show various views of an embodiment of a fork tool in accordance with an embodiment.



FIG. 7A-7E show various views of an embodiment of a handle in accordance with an embodiment.



FIGS. 8A-8D show various cross-sectional view of an embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates generally to combination eating utensils.


Referring to FIGS. 1A-8D, telescoping eating utensils in accordance with one embodiment of the invention will be described. Embodiments of a telescoping spoon 100 and a telescoping fork 200 are described herein. The telescoping spoon 100 and fork 200 can be used in an extended mode for eating and then collapsed for convenient storage and transport. To form a longer, extended utensil, the handle of the utensil can be extended and locked in place, as described in more detail below.



FIGS. 1A and 1B are top perspective views of the telescoping spoon 100 in its collapsed mode and in its extended mode, respectively, in accordance with an embodiment. FIGS. 2A and 2B are top perspective views of the telescoping fork 200 in its collapsed mode and in its extended mode, respectively, in accordance with an embodiment.


As shown in FIGS. 1A and 1B, a telescoping spoon 100 can be moved between a collapsed mode and an extended mode. FIG. 1A shows the telescoping spoon 100 in a collapsed mode, which is convenient for storage and transport. The spoon 100 can also be extended, as shown in FIG. 1B, such that it has a longer length for ease and comfort when used as an eating utensil.


Similarly, as shown in FIGS. 2A and 2B, a telescoping fork 200 can be moved between a collapsed mode and an extended mode. FIG. 2A shows the telescoping fork 200 in a collapsed mode, which is convenient for storage and transport. The fork 200 can also be extended, as shown in FIG. 2B, such that it can be used as an eating utensil with comfort and ease. According to an embodiment, the utensil has a length of about 4.4 inches in the collapsed mode and about 6.3 inches in the extended mode.



FIGS. 3A-3C show a bottom plan view, a side view, and an end view of the spoon 100. As shown in FIGS. 3A and 3B, the spoon 100 includes two separate parts that can be slidably connected: the spoon tool 110 and the handle 150. The spoon tool 110 includes a bowl 112 and a tool connector 114.



FIGS. 4A-4C show a bottom plan view, a side view, and an end view of the fork 200. As shown in FIGS. 4A and 4B, the fork 200 includes two separate parts: the fork tool 210 and the handle 150. The fork tool 210 includes tines 212, 213 and a tool connector 214.



FIGS. 5A-5E show different views of an embodiment of the spoon tool 110. FIG. 5B is a side cross-sectional view of the spoon tool 110 taken along line 5B-5B of FIG. 5C. FIG. 5E is a cross-sectional view of the spoon tool taken along line 5E-5E of FIG. 5D. The spoon tool 110 includes a tool connector 114 attached to a proximal end of the spoon bowl 112. An elongated tail 116 on the upper surface of the tool connector 114 can be slid in a socket 158 between a pair of rails 152 on the underside of the handle 150 to form a dovetail joint between the tool connector 114 and the handle 150. The spoon tool connector 114 and the handle 150 slide together to form the telescoping spoon 100, as described in more detail below. It will be appreciated that the dovetail joint is moldable and permits translation of the parts, but resists other forces (e.g. pressing on the side of the fork to split a piece of food—a lateral side force, or scooping ice cream—a “frontal” bending force).


Similarly, the fork tool connector 214 and the handle 150 slide together to form the telescoping fork 200. As shown in FIGS. 6A-6E, which show various views of an embodiment of a fork tool 210, a tool connector 214 is attached to the proximal end of the fork tool head 211, which includes tines 212, 213. FIG. 6B is a side cross-sectional view of the spoon tool 110 taken along line 6B-6B of FIG. 6C. FIG. 6E is a cross-sectional view of the spoon tool taken along line 6E-6E of FIG. 6D. An elongated tail 216 on the upper surface of the tool connector 214 can be slid in a socket 158 between a pair of rails 152 on the underside of the handle 150 to form a dovetail joint between the tool connector 214 and the handle 150. The fork tool connector 214 and the handle 150 slide together to form the telescoping fork 200, as described in more detail below. It will be appreciated that the dovetail joint is moldable and permits translation of the parts, but resists other forces (e.g. pressing on the side of the fork to split a piece of food—a lateral side force, or scooping ice cream—a “frontal” bending force).



FIG. 5E is a cross-sectional view of the tool connector 114 taken along the line 5E-5E of FIG. 5D. As shown in FIG. 5E, the elongated tail 116 is on the upper surface of the tool connector 114, and the locking button 118 is also on the upper surface of the tool connector 114. There is a void below the locking button 118, as shown in FIG. 5E, to allow the locking button 118 to be actuated or depressed by a user such that it can be slid under the handle 150. It will be noted that, without any force applied, the locking button 118 is in a relaxed state, as shown in FIG. 5E (i.e., not actuated or pushed down). In the illustrated embodiments, the locking button 118 has a “dive-board” configuration, which is described in more detail below.


In the extended mode, the locking button 118 extends into an opening 151 on the handle 150, as shown in FIG. 1B. In the illustrated embodiment, the opening 151 on the handle 150 is positioned as close as possible to the proximal end of the handle in order to provide the longest length possible for the spoon 100 in the extended mode while still being firm and rigid in the extended mode. The locking button 118 is preferably positioned well away from the spoon bowl 112 so that it is less likely for food to get into the mechanism.


The handle 150 of the spoon 100 and fork 200 will be described with reference to FIGS. 7A-7E, which represent various views of the handle 150. The handle 150 of the spoon 100 is the same as the handle 150 of the fork 200. The handle 150 has a pair of rails 152 on the bottom side of its two outer edges, forming an elongated socket 158 between the rails 152. The rails 152 aid in guiding the handle 150 over the spoon tool connector 114 or the fork tool connector 214 when the tail 116, 216 of the spoon tool connector 114 or fork tool connector 214 is slid along the socket 158 between the rails 152. The tail 116, 216 of the tool connector 114, 214 can be slid between the rails 152 to place the spoon 100 or fork 200 in either the collapsed mode (as shown in FIGS. 1A and 2A) or in the extended mode (as shown in FIGS. 1B and 2B), as will be described in more detail below. The rails 152 also secure the spoon tool connector 114 or fork tool connector 214 to the handle 150, as will be explained in more detail below.


The outer edge of each rail 152 is aligned and continuous with the outer edge of the rest of the handle 150. Further, the rails 152 taper inward so that the portion of the handle 150 with the rails 152 does not feel different from the rest of handle 150 when the utensil 100, 200 is held in a user's hand.


As shown in FIG. 7C, the bottom of the handle 150 also includes a recess 154 that accommodates the locking button 118, 218 of the tool connector 114, 214 when the spoon 100 or fork 200 is in the fully collapsed mode. When the telescoping spoon 100 or telescoping fork 200 is in its fully collapsed mode, the recess 154 allows the locking button 118, 218 to extend into the recess 154 to be in its relaxed state. The locking button 118, 218 and recess 154 also serve to snap and lock the tool connector 114, 214 in place relative to the handle 150 when the spoon 100 or fork 200 is in the fully collapsed mode. According to an embodiment, the recess 154 in the handle 150 provides a subtle detent feel as the locking button 118, 218 comes to relax into this recess 154 when in the collapsed mode.


As shown in the illustrated embodiment, in extended mode, the locking button 118, 218 sits in a well or depression 155 around the opening 151 in the handle 150. This well 155 allows the locking button 118, 218 to be locally “proud” such that it can be actuated with a finger or something similarly sized, but if a larger surface (sized larger than an average finger) is applied across the area of the well 155, the top surfaces of the handle 150 itself would prevent the locking button 118, 218 from being actuated. Thus, the well 155 helps to prevent accidental actuation of the locking button 118, 218.



FIG. 7D is a cross-sectional view of the handle 150 taken along the line 7D-7D in FIG. 7B. As shown in FIG. 7D, the handle 150 has a slight upside down V-shape with a ridge 156 in the center when viewed from an end. The center ridge 156 is the highest point of the handle 150 and runs down the center along substantially the entire length of the handle 150. Each side of the handle 150 angles downward from the center line to the edge at an angle about 75-80 degrees, and preferably about 79 degrees. FIG. 7E is a longitudinal cross-sectional view of the handle taken along the line 7E-7E of FIG. 7B.


The geometries of the spoon 100 and the fork 200 will be described below. In the illustrated embodiment, the fork 200 has four tines 212, 213. Each tine 212, 213 has a sharp crest, which aids in spearing or piercing pieces of food so that the food can be picked up by the fork 200. It will be understood that, in other embodiments, the fork can have more or fewer tines. Each tine 212, 213 has a pointed tip, which aids in spearing or piercing pieces of food so that the food can be picked up by the fork. In the illustrated embodiment, the two center tines 213 are straight and the two outer tines 212 each have a straight inner edge and a curved outer edge. The curvature of the outer edges can also be used for scraping food, as the curved edges follow the curvature of a curved container, such as a bowl, better than the straight tines of many conventional forks.


In addition to being curved, the outer edges of the outer tines 212 are also tapered or chamfered such that the fork can be used to cut through or separate foods that do not require a knife. As illustrated in FIG. 4C, the top surface of each of the outer edges of the outer tines 212 is tapered or chamfered. In a particular embodiment, the outer edges are chamfered at an angle of about 20-25 degrees, and preferably at an angle of about 23 degrees. The outer edges 145 have an edge width of about 1 mm at its widest point. In the illustrated embodiment, the outer edges of both outer tines 212 are chamfered so that both outer edges can easily be used to cut or separate food regardless of whether the user is right-handed or left-handed.


The spoon bowl 112 has a substantially flat side edge 115, which allows for “scraping” food from of a container (e.g., a yogurt container) or a bowl. A conventional spoon typically has a rounded edge that is not particularly effective for scraping. As illustrated, the side edge 115 of the bowl 112 of the spoon 100 is substantially flat, thus providing an effective surface for scraping. In the illustrated embodiment, the bowl 112 has a substantially elongated five-sided shape with rounded corners.


The telescoping spoon 100 and fork 200 are formed of a plastic material, such as a glass reinforced thermoplastic, that is suitable for food contact and is injection moldable. A particularly suitable reinforced thermoplastic for forming the spoon 100 and fork 200 is glass filled nylon. According to other embodiments, the telescoping spoon 100 and fork 200 can be formed of a variety of food-safe plastics and potentially even metal. In addition to glass filled nylon, some suitable plastic materials include nylon, polycarbonate, polypropylene, and co-polyester. Compared with unreinforced nylon, glass filled nylon has increased structural strength and stiffness. Suitable materials include those that exhibit high stiffness (so the utensils do not flex very much when being used, i.e. are not “flimsy”), but that can also afford some flex (for the locking button 118, 218 to be depressed).


As described above, there is a recess 154 in the bottom surface of the handle 150 that is configured to receive the locking button 118, 218 on the tool connector 114, 214 when the spoon 100 or fork 200 is in the fully collapsed mode. To assemble the spoon 100 or fork 200, the tool connector 114, 214 is first positioned underneath the handle 150 and slid longitudinally along the socket 158, with the outer side edges of the tail 116 between the rails 152, toward the distal end of the handle 150 until the locking button 118, 218 engages and extends into the opening 151 and returns to its relaxed state in the opening 151. It will be understood that the locking button 118, 218 is automatically actuated when it come into contact with the handle 150. The open end 153 of the handle 150 (as shown in 118, 218 without any need for a user to actuate the locking button 118, 218. FIGS. 7B and 8D) can be designed with a rounded or curved end such that the tool connector 114, 214 can simply be inserted into the open end 153 of the handle 150 and the rounded or curved end 153 automatically pushes down or actuates the locking button.


It will be noted that the position of the recess 154 in the bottom surface of the handle 150 near the distal end of the handle 150 allows the handle 150 to extend over a portion of the tool in the collapsed mode, thereby allowing for a shorter overall length of the spoon 100 or fork 200 in the collapsed mode. It will be understood that the shorter length allows for more convenient storage and transport. As shown in FIG. 8C, the proximal end of the handle 150 (including the opening 151) extends over a portion of the utensil head.


When the locking button 118, 218 engages the opening 151, the spoon tool 110 or fork tool 210 is interlocked with the handle 150 in the extended mode and fairly significant force is required to disengage the spoon tool 110 or fork tool 210 from the handle 150 from this position. The locking button 118, 218 extends from the top surface of the tool connector 114, 214 at an angle of 90° or less, preferably in a range of about 60°-90°.


As shown in the illustrated embodiments in the detailed view of FIGS. 5B and 6B, the back (facing the proximal end of the tool 110, 210) of the locking button 118, 218 extends from the top surface of the tool connector 114, 214 at an angle of about 80° such that the locking button 118, 218 can be actuated and return to its relaxed stated in the opening 151 or the recess 154 of the handle 150. The less than 90° angle on the back of the locking button 118, 218 prevents the tool 110, 210 from accidentally/unintentionally collapsing when the utensil head is pressed hard into something (e.g., pressing tines of a form into a raw carrot). It will be appreciated that, compared to the 90° angle, the 80° angle allows the locking button 118, 218 to more securely engage the edge of the opening 151 to prevent accidental disengagement from the extended mode. It will be understood that the smaller the angle between the side of the locking button 118, 218 and the top surface of the tool connector 114, 214, greater the force necessary to disengage the locking button 118, 218 from the opening 151.


Various longitudinal cross-sectional views of a spoon 100, as shown in FIGS. 8A-8D, help illustrate how the angle of the back of the locking button 118 prevents accidental actuation. It will be understood that the locking button 218 of a fork 200 would function the same way and thus, even though the locking button is described with reference to the spoon 100, it will be understood that the description would apply to the locking button 218 of the fork 200 as well. The angle on the locking button 118, 218 helps to ensure that the locking button 118, 218 stays in place and is not actuated by the longitudinal compressive force (e.g., of stabbing action of fork). It will be noted that the dovetail does absorbs side-to-side forces (e.g. pressing on the handle to split a piece of food) and bending forces (e.g. digging out some hard ice cream with the spoon).



FIG. 8A is a longitudinal cross-sectional view of a spoon 100 in the extended mode. As shown in FIG. 8A, the locking button 118 is in a relaxed state within the opening 151 of the handle 150. As described above, the opening 151 is surrounded by a well 155. As shown in FIG. 8A, the top surface of the locking button 118 is below the top surface of the handle 150 to prevent accidental actuation of the locking button 118. It will be noted that the mating face 157 on the handle 150 (that mates to the 80° button face) is angled as well to further hold the locking button 118 in place. The angle of the mating face is preferably at least 60° and less than 90°. The mating face 157 and locking button 118 are shown in more detail in FIG. 8B.


As shown in the illustrated embodiment of FIGS. 8A-8D, the “dive board” of the locking button 118 is positioned longitudinally on the tool connector 114. In alternative embodiments, the locking button can be connected on a side, so instead of pressing down on the button, the button would be pushed laterally to a side to actuate it. The longitudinal positioning, as shown in the illustrated embodiment, allows the material geometry to absorb all of the load. The illustrated locking button dive board naturally resists longitudinal forces, but is easily depressed for unlocking.


It will be understood that the opening 151 and recess 154 together with the locking button act as a hard stop, preventing the spoon tool 110 from being slid further. The recess 154 prevents the spoon tool 110 from moving from the collapsed mode and the opening 151 prevents the spoon tool 110 from moving back in the opposite direction to disengage from the handle 150. The rails 152 and tail 116 and the dovetail joint formed thereby prevent the handle 150 and spoon tool 110 from being separated in the z-direction. The dovetail design is preferable relatively “open” so that it is easy to clean.


To disengage the spoon tool 110 and the handle 150 from the extended mode, the user pushes down on the locking button 118, 218 and either slides the spoon bowl 112 toward the distal end of the handle 150 to collapse the spoon 100 or slides the spoon tool 110 away from the handle 150 to disengage the spoon tool 110 from the handle 150. The spoon tool 110 and the handle 150 can be separated when the user pushes down on the locking button 118 and simply slides the spoon tool 110 and the handle 150 away from one another in the longitudinal direction. If desired, the user can thoroughly clean the spoon tool 110 and the handle 150 when separated.


In the fully collapsed mode, the locking button 118 engages the recess 154 and snaps into the recess 154 and resumes its relaxed state within the recess 154. FIG. 8C shows the spoon 100 in the fully collapsed mode.


With enough force applied to the locking button 118, the spoon tool connector 114 will move under the handle 150 and the elongated tail 116 can slide along the socket 158 between the rails 152 until the locking button 118 is once again in its relaxed state, either engaging the recess 154 in the fully collapsed mode or engaging the opening 151 in the fully extended mode. When the spoon tool 110 and the handle 150 are positioned to slidably engage one another, as shown in the longitudinal cross-sectional view of FIG. 8D, the curved or rounded end open end 153 of the handle allows the user to simply insert the spoon tool 110 into the open end 153 of the handle 150 and the rounded or curved end 153 automatically actuates the locking button 118, 218 without any need for a user to apply force directly to the locking button 118, 218.


It will be understood that operation of the fork tool 210 with respect to the handle 150 can be performed the same way as the operation of the spoon tool 110 described above. It will also be noted that all parts of the spoon 100 and fork 200 are easily moldable with plastic injection molding in accordance with an embodiment.


Although only a few embodiments of the invention have been described in detail, it should be appreciated that the invention may be implemented in many other forms without departing from the spirit or scope of the invention. In view of all of the foregoing, it should be apparent that the present embodiments are illustrative and not restrictive and the invention is not limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims
  • 1. A telescoping eating utensil, comprising: a utensil tool comprising a utensil head attached to a tool connector connected to a proximal end of the utensil head, wherein a locking button is on a top surface of the tool connector, and one side of the locking button is connected to the tool connector such that the locking button has a dive board configuration; anda handle configured to slidably engage and interlock with the tool connector, wherein the handle and the tool connector are interlocked either in a collapsed mode or in an extended mode, and wherein the locking button engages with an opening on the handle in the extended mode and the locking button engages with a recess in a bottom surface of the handle in the collapsed mode.
  • 2. The telescoping eating utensil as recited in claim 1, wherein the utensil head comprises a spoon bowl.
  • 3. The telescoping eating utensil as recited in claim 2, wherein the spoon bowl further comprises a bowl portion having a substantially flat side edge.
  • 4. The telescoping eating utensil as recited in claim 1, wherein the utensil head comprises a fork head.
  • 5. The telescoping eating utensil as recited in claim 4, wherein the fork head has a plurality of tines, wherein at least one of the tines on an outer edge of the fork head has a curved chamfered outer edge.
  • 6. The telescoping eating utensil as recited in claim 5, wherein each of the tines has a pointed end.
  • 7. The telescoping eating utensil as recited in claim 1, wherein the locking button extends from the top surface of the tool connector at an angle of 90 degrees or less.
  • 8. The telescoping eating utensil as recited in claim 7, wherein the locking button extends from the top surface of the tool connector at an angle of 80 degrees.
  • 9. The telescoping eating utensil as recited in claim 1, wherein the telescoping eating utensil is formed of a glass reinforced thermoplastic material.
  • 10. An expandable eating utensil, comprising: a tool portion comprising a utensil head;a handle portion configured to slidably engage with the tool portion; anda locking feature for interlocking the handle portion with the tool portion such that the tool portion can be locked in place relative to the handle portion, wherein the locking feature comprises a locking button having one side connected to the tool portion such that the locking button has a dive board configuration, wherein the locking feature prevents the tool portion from being disengaged from the handle portion in a longitudinal direction, wherein the locking feature further comprises an opening on the handle portion and a recess in a bottom surface of the handle portion, and wherein the locking button is configured to engage with the opening on the handle portion in an extended mode, and the locking button is configured to engage with the recess in a collapsed mode, wherein the utensil is longer in the extended mode compared to the collapsed mode.
  • 11. The expandable eating utensil as recited in claim 10, wherein the handle portion extends over at least a portion of the utensil head in a collapsed mode.
  • 12. The expandable eating utensil as recited in claim 10, wherein the utensil head comprises a spoon head.
  • 13. The expandable eating utensil as recited in claim 10, wherein the utensil head comprises a fork head.
  • 14. The expandable eating utensil as recited in claim 13, wherein the fork head has a plurality of tines, wherein at least one of the tines on an outer edge of the fork head has a curved chamfered outer edge.
  • 15. A telescoping eating utensil, comprising: a utensil tool portion comprising a utensil head attached to a tool connector having an actuatable locking button on a top surface of the tool connector, wherein one side of the locking button is connected to the tool connector such that the locking button has a dive board configuration; anda handle portion configured to slidably engage with the utensil tool portion, wherein the handle portion interlocks with the tool connector in either a collapsed mode or an extended mode when the locking button is in a relaxed state, wherein the locking button engages with an opening on the handle portion in the extended mode and is in the relaxed state while the locking button is engaged with the opening, and wherein the locking button engages with a recess in a bottom surface of the handle portion in the collapsed mode and is in the relaxed state while the locking button is engaged with the recess.
  • 16. The telescoping eating utensil as recited in claim 15, wherein the locking button is in an actuated state when the handle portion is being slid relative to the utensil tool portion.
  • 17. The telescoping eating utensil as recited in claim 16, wherein a portion of the tool connector can be slid in a socket between a pair of rails on an underside of the handle portion to form a dovetail joint between the tool connector and the handle portion.
  • 18. The telescoping eating utensil as recited in claim 17, wherein the handle portion has a curved end surface for contacting and actuating the locking button when the tool connector is slid into the socket.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/685,672, filed on Jun. 15, 2018. The foregoing application is hereby incorporated by reference herein for all purposes.

US Referenced Citations (200)
Number Name Date Kind
32916 Richards Jul 1861 A
33703 Hardie Nov 1861 A
34069 Neill Jan 1862 A
34712 Cables Mar 1862 A
34098 Hardie et al. Jul 1862 A
46832 Thorne Mar 1865 A
88370 Cox Mar 1869 A
RE7925 Ulmer Oct 1877 E
9687 Cox May 1881 A
RE9687 Cox May 1881 E
398264 Kisner Feb 1889 A
D30129 Whitcomb et al. Feb 1899 S
D31575 Phillips et al. Oct 1899 S
671740 Wattne Apr 1901 A
675475 Glover Jun 1901 A
812424 Hellmuth Feb 1906 A
849098 Aufrichtig Apr 1907 A
854745 King May 1907 A
870413 Brown Nov 1907 A
972777 Richardson Oct 1910 A
1053387 Hawley Feb 1913 A
1229696 Woods Jun 1917 A
1271679 Duckett Jul 1918 A
1277205 Evans Aug 1918 A
D53165 Janosik Apr 1919 S
1337174 Whyte Apr 1920 A
1348762 Suzuki Aug 1920 A
1372325 Willemin Mar 1921 A
D59869 Quandee et al. Nov 1921 S
D60369 Quandee et al. Feb 1922 S
1425750 Crawford Aug 1922 A
1452337 Brecel Apr 1923 A
D63047 Adler Jul 1923 S
1699248 Pasal Jan 1929 A
1868289 Leidel Jul 1932 A
D93956 Wilson Nov 1934 S
1984081 Pisculli Dec 1934 A
2010074 Fuerst Aug 1935 A
2109016 Ringer Feb 1938 A
2251842 Hill Aug 1941 A
2318129 Torode May 1943 A
D143431 Lapin Jan 1946 S
2439882 Beddow Apr 1948 A
2470492 Jenkins May 1949 A
2505122 Krieger, Jr. Apr 1950 A
D149920 Pavlinetz Aug 1950 S
2542600 Vaccarezza Feb 1951 A
2610400 Wendling Sep 1952 A
2752678 Welch Jul 1956 A
D184317 McArthur Jan 1959 S
3014277 Geckler Dec 1961 A
3121951 Green Feb 1964 A
3138871 Sears Jun 1964 A
D199630 Dedic, Sr. Nov 1964 S
D209704 Siune et al. Dec 1967 S
D210549 O'Brien Mar 1968 S
3586161 Fong et al. Jun 1971 A
3596965 Woofter Aug 1971 A
3630249 Brunwin Dec 1971 A
3771224 Bono, Jr. Nov 1973 A
3967376 Foley Jul 1976 A
D241302 Scigliano Sep 1976 S
3991466 Smith Nov 1976 A
D249926 Wong Oct 1978 S
4317284 Prindle Mar 1982 A
4377035 Dalichow Mar 1983 A
D269060 Creamer May 1983 S
4425711 Wood et al. Jan 1984 A
4524512 Formo et al. Jun 1985 A
D284442 Chan Jul 1986 S
4615120 Newman Oct 1986 A
4625404 Valente et al. Dec 1986 A
4771541 Bouchakian Sep 1988 A
4835864 Tang Jun 1989 A
4984367 Albanese Jan 1991 A
4995154 Bamber Feb 1991 A
D318300 Lillelund et al. Jul 1991 S
D318600 Lillelund et al. Jul 1991 S
D325855 Rea, Sr. May 1992 S
5197623 Wang Mar 1993 A
5251758 Kolacek Oct 1993 A
D342422 Sanford Dec 1993 S
D347975 Zeller Jun 1994 S
5327650 Rojas Jun 1994 A
D362160 Brabeck et al. Sep 1995 S
5542181 Gaylord Aug 1996 A
D376514 Torkelson Dec 1996 S
D388664 Gagnon et al. Jan 1998 S
D391123 Rey et al. Feb 1998 S
5735050 Hsieh Apr 1998 A
D396613 Cousins Aug 1998 S
D401481 Boilard et al. Nov 1998 S
5845403 Nivin Dec 1998 A
5904250 De Schutter May 1999 A
D412813 Roskind et al. Aug 1999 S
5940974 Lee Aug 1999 A
D414988 Santini Oct 1999 S
6055733 Chen May 2000 A
6116450 Huang Sep 2000 A
6145204 Cash Nov 2000 A
6151999 Eklind Nov 2000 A
6374500 Stein Apr 2002 B2
6463662 Coscia et al. Oct 2002 B1
6647828 Hakim Nov 2003 B2
D491419 White et al. Jun 2004 S
D509708 Schmidt Sep 2005 S
7013568 Schmidt Mar 2006 B2
D530985 Evans Oct 2006 S
D530986 Lago-Arenas Oct 2006 S
D533034 Wasserman Dec 2006 S
D535857 Bristow Jan 2007 S
D536221 Kamins Feb 2007 S
D536222 Heiberg et al. Feb 2007 S
D537302 Vrhovski Feb 2007 S
D554951 McGrath Nov 2007 S
D563737 Shane-Schuldt Mar 2008 S
D575593 Svartström Aug 2008 S
D587075 Dibnah et al. Feb 2009 S
D608602 Davies et al. Jan 2010 S
D609060 Pallotto Feb 2010 S
D612692 Menceles Mar 2010 S
D617156 Griffith Jun 2010 S
D618070 Jalet et al. Jun 2010 S
D625153 Gallop et al. Oct 2010 S
7816634 Guide, Jr. et al. Oct 2010 B1
7856722 Lago-Arenas Dec 2010 B2
D633344 Nordwall Mar 2011 S
D637309 Park May 2011 S
D656799 Lebeau Apr 2012 S
8296957 Muehlemann Oct 2012 B2
D673431 Glavin et al. Jan 2013 S
D676286 Lion et al. Feb 2013 S
D686045 Stewart et al. Jul 2013 S
D690156 Apple et al. Sep 2013 S
8635780 Abul Jan 2014 B1
8689453 Vogan Apr 2014 B2
D705020 Fraser et al. May 2014 S
8726525 Bagley et al. May 2014 B2
D706586 Kestenbaum Jun 2014 S
8839522 Walters Sep 2014 B2
D718093 Miksovsky et al. Nov 2014 S
D722837 Miksovsky et al. Feb 2015 S
D730049 Miksovsky et al. May 2015 S
9061429 Barber Jun 2015 B2
D739685 Miksovsky et al. Sep 2015 S
D740079 Miksovsky et al. Oct 2015 S
D745339 Cetti Dec 2015 S
D746644 Cai Jan 2016 S
D747159 Frost Jan 2016 S
D752918 Katopis Apr 2016 S
D753447 Busboom Apr 2016 S
D756171 Mou May 2016 S
D756172 Mou May 2016 S
D758808 Gatewood Jun 2016 S
9434590 Miksovsky et al. Sep 2016 B2
9468321 Miksovsky et al. Oct 2016 B2
9549626 Truog et al. Jan 2017 B2
D782254 Joseph Mar 2017 S
D794400 Young Aug 2017 S
D807127 Levi Jan 2018 S
D812994 Mundhra Mar 2018 S
D812995 Mundhra Mar 2018 S
D813616 Mundhra Mar 2018 S
D816432 Huang May 2018 S
D825104 Simard et al. Aug 2018 S
D828730 Gauss et al. Sep 2018 S
D834887 Miksovsky et al. Dec 2018 S
D842662 Bloch et al. Mar 2019 S
10518402 Polen Dec 2019 B1
20030024126 Liu Feb 2003 A1
20030029044 Mattson et al. Feb 2003 A1
20030110644 Miller Jun 2003 A1
20050066531 Hougland Mar 2005 A1
20050155229 Lee Jul 2005 A1
20060248732 Straube Nov 2006 A1
20070084063 Hughes Apr 2007 A1
20070124943 Hougland Jun 2007 A1
20070251103 Rhodes, III Nov 2007 A1
20080000092 Vanguard Jan 2008 A1
20080016698 Simpson Jan 2008 A1
20080148575 Chan Jun 2008 A1
20080256807 Kirkup Oct 2008 A1
20090172949 Watts Jul 2009 A1
20090178284 Lane Jul 2009 A1
20090205209 Tovar Aug 2009 A1
20090293283 Hsu Dec 2009 A1
20100206885 Bowden et al. Aug 2010 A1
20100218382 Scott Sep 2010 A1
20110091521 Omelchenko Apr 2011 A1
20120036724 Walters Feb 2012 A1
20120297628 Rayko et al. Nov 2012 A1
20130152406 McFarland Jun 2013 A1
20140026425 Kim Jan 2014 A1
20150014329 Konopatsky Jan 2015 A1
20150257561 Miksovsky Sep 2015 A1
20150257562 Miksovsky et al. Sep 2015 A1
20170000276 Miksovsky et al. Jan 2017 A1
20190104873 Miksovsky et al. Apr 2019 A1
20190110620 Miksovsky et al. Apr 2019 A1
20190381651 Miksovsky Dec 2019 A1
Foreign Referenced Citations (15)
Number Date Country
2231889 Jul 1996 CN
2373000 Apr 2000 CN
200945058 Sep 2007 CN
201691585 Jan 2011 CN
102068177 May 2011 CN
202234496 May 2012 CN
202874843 Apr 2013 CN
203424719 Feb 2014 CN
44 17 037 Dec 1998 DE
0 129 495 Dec 1984 EP
22788 Sep 1915 GB
1337613 Nov 1973 GB
2006-247086 Sep 2006 JP
WO 2013095407 Jun 2013 WO
WO 2015138218 Sep 2015 WO
Non-Patent Literature Citations (18)
Entry
Alite, Cloverware Lite, http://shop.alitedesigns.com/cloverware-lite.html, downloaded on Mar. 6, 2014.
Alite, Cloverware 2.0, http://shop.alitedesigns.com/cloverware-538.html, downloaded on Mar. 6, 2014.
Guyot, Microbites™, https://www.guyotdesigns.com/product-microbites/, downloaded on Mar. 6, 2014.
Guyot, Utensils, https://www.guyotdesigns.com/utensils/, downloaded on Mar. 6, 2014.
International Search Report dated Jul. 8, 2015 from International Application No. PCT/US2015/019017.
Written Opinion dated Jul. 8, 2015 from International Application No. PCT/US2015/019017.
Chinese Office Action dated Apr. 27, 2017 from Chinese Application No. 201580022197.1.
Chinese Office Action dated Aug. 1, 2017 from Chinese Application No. 201611163525.2.
European Search Report dated Jun. 16, 2017 from European Application No. 16202786.3-1653.
European Office Action dated Oct. 17, 2018 from European Patent Application No. 16 202 786.6-1011.
Light My Fire, Spork original, http://www.lightmyfire.com/products/products/spork/spork-original.aspx, downloaded on Mar. 6, 2014.
Primus, Folding Spork, http://store.primuscamping.com/cookware/utensils-and-accessories/primus-folding-spork-black/, downloaded on Mar. 6, 2014.
DCI, Swivel Spork & Knife Set, http://shop.dcigift.com/p/swivel-spork-knife-set, downloaded on Mar. 6, 2014.
MSR Folding Camp Utensils, https://www.msrgear.com/cookware/folding-utensils, downloaded on Sep. 20, 2018.
GSI Outdoors, Telescoping Foon, http://www.gsioutdoors.com/telescoping-foon.html, downloaded on Sep. 20, 2018.
GSI Outdoors, Pivot Spatula, http://www.gsioutdoors.com/pivot-spatula.html, downloaded on Sep. 20, 2018.
Miksovsky et al., U.S. Appl. No. 29/653,512, filed Jun. 16, 2018.
Miksovsky et al., U.S. Appl. No. 29/653,595, filed Jun. 15, 2018.
Related Publications (1)
Number Date Country
20190381651 A1 Dec 2019 US
Provisional Applications (1)
Number Date Country
62685672 Jun 2018 US