The invention relates to a telescoping slide comprising particularly a tubular outer part and at least one inner part that is axially telescopingly movable in the outer part, wherein these two telescoping parts are axially guided by means of a slide bearing arranged between them.
It is an object of the present invention to provide a telescoping slide of the kind disclosed in DE 100 20 866 A1 whose axially movable parts can be mounted with minimal expenditure, can be centered in the guide position, and can be reliably moveable without readjustment of the slideway play for a long period of time.
In accordance with the present invention, this is achieved in that the slide bearing is provided with at least one two-layer or multi-layer composite body that is comprised of at least one dimensionally stable support layer and at least one elastic compensation layer.
The telescoping slide according to the invention is provided in the area between its at least two axially movable components with a semifinished support that is embodied in particular as a two-layer composite body wherein a dimensionally stable support layer and an elastic compensation layer are connected to a functional unit. When mounting the two telescoping parts and the interposed semifinished composite body in a first mounting phase, an optimal radial press connection can be produced, wherein the telescoping parts by means of the elastic compensation layer of the composite body can be positioned relative to one another in their appropriate position of use.
In this connection, the elastic layer that is provided on the support layer is effective in particular as a compensating and centering layer that compensates shape deviations and positional deviations of the telescoping parts. After completing the first mounting phase, the elastically pretensioned layer, while maintaining the provided centering position, can be changed with regard to its degree of hardness.
The composite body that is secured in this connected position by the elastic-hardened compensation layer can be treated in the subsequent second mounting phase by a mechanical, thermal, chemical, electrical and/or magnetic treatment such that in the area of the already elastically deformed compensation layer at least partially a local hardening or curing takes place. In this way, the spaced apart position between the outer part and the inner part predetermined by the composite body is permanently fixed so that an optimal guiding action is provided for the translatory movements occurring during use.
With this application of the composite body according to the invention, in the pretensioning phase the required slide bearing (slideway) play that is needed for the axial translatory movements of the telescoping slide is generated wherein the play can be provided almost with a “zero”tolerance. In this way, the readjustments and realignments that have been required in the past in connection with slide bearing components of known telescoping slides is no longer necessary and, when employing a shrinking intermediate layer (for example, see DE 100 20 866.5), a slideway play that is too imprecise is prevented.
In accordance with the material of the tubular outer and inner parts, particularly a plastic material having optimal sliding properties is provided for the support layer that is dimensionally stable so that the slide bearing provided according to the invention with a fixed and precise guide area can be operated free of wear for a long period of time because of minimal friction; moreover, smooth running properties are ensured.
According to a further embodiment, the slide bearing is provided with a monolithic support body that has on the side facing away from the sliding surface a contact structure with shaped projections that provides a type of the compensation layer. In this area, the support member that is secured in a clamped securing position between the telescoping parts is fixed by means of an adhesive or the like such that the radial compensating and centering position of the telescoping parts relative to one another is maintained in the mounting phase.
a detail view, partially sectioned, of the telescoping slide in the area of the upper and lower slide bearings.
The
For the configuration of the slide bearings G, G′ according to the invention, at least one composite body 3 is provided that can be introduced into the intermediate space 4 between the telescoping parts 1 and 2. In this connection, the composite body 3 is comprised of at least one dimensionally stable support layer 5 and an elastic compensation layer 6 with which the functional effect of the composite body 3 is achieved already after completion of a mounting phase that is not illustrated in detail. The compensation layer 6 for this purpose is manufactured of an elastic and deformable (plastic or synthetic) material that during mounting of the composite body 3 into the intermediate space 4 is usable as a compressible area in order to connect simply and quickly the parts 1 and 2 without requiring additional measuring expenditure or complex auxiliary tools.
After reaching the mounting position illustrated in FIGS. 1 or 2, the compensation layer 6 that is elastically pretensioned/clamped or has an elastic-solidified state can be fixed for securing the composite body 3 and the parts 1, 2. Advantageously, the compensation layer 6 is made of a material that can be cured or hardened with minimal expenditure. Hardening can be carried out with time delay after completion of the first tensioning mounting phase so that on the telescoping slide, i.e., on the outer or inner parts 1, 2, additional components (not illustrated) can be mounted; hardening or curing is carried out subsequently in the area of the composite body 3.
It is conceivable that the elastic material is matched to the pressure conditions within the intermediate space 4 such that already the effective mechanical pressure forces after a certain action time lead to hardening or curing of the compensation layer 6.
By means of the composite body 3 positioned in the mounting position between the telescoping parts 1 and 2, centering of the telescoping parts 1 and 2 in their proper position of use is achieved. In this connection, the elastic compensation layer 6 can also expand back wherein already with partial curing of the compensation layer 6 that provides the tensioning and pressing position of the composite body 3 a fixation of the telescoping parts 1, 2 in the radial direction is effected and, in this way, an axial movability (arrow A) of the parts 1 and 2 remains intact.
The composite body 3 according to the invention is provided as a pre-manufactured semifinished support that with regard to its constructive configuration can be matched as desired to the configuration of the telescoping parts 1, 2, respectively. It is conceivable in this connection that, instead of the elliptical cross-section of the telescoping parts 1, 2 illustrated in
The thickness D illustrated in
In an advantageous configuration, the composite body 3 in the area of the supporting layer 5 and the compensation layer 6 is formed of a plastic layer, respectively. It is understood that a substantially variable thickness T of the supporting layer 5 is comprised of a plastic material that ensures minimal friction, minimal wear, and smooth running properties; such a plastic material, based on its guiding properties, is already used in connection with adjustable slide bearings of the prior art. The compensation layer 6 that is to be applied as a second component onto the supporting layer 5 can be comprised of an elastic base material with additives with which the described hardening or curing of the compensation layer 6 can be effected. For this hardening after mounting, a mechanical, thermal, chemical, electrical and/or magnetic treatment of the compensation layer 6 is conceivable.
According to another embodiment it is conceivable that the composite body 3 in the area of the supporting layer 5 is partially or completely comprised of a metallic or non-metallic material that is provided with the compensation layer 6. Also, it is conceivable that the compensation layer 6 is in the form of a spring part (not illustrated) that is connected as an elastic auxiliary component to the supporting layer 5 acting as a support part, wherein these individual parts are mounted as a unit.
Moreover, the composite body 3 can have more than the two layers 5 and 6 (not illustrated) wherein the compensation layer 6 can be arranged between two of the supporting layers; two partial areas of the elastic material can be provided so as to be aligned gap to gap on the supporting layer 5; or the supporting layer 5 is provided on either side with a compensation layer. In an expedient embodiment, the composite bodies 3 (dimensions B, L) that can have essentially any shape are comprised of material-bonded layers 5 and 6 wherein it is also conceivable to secure the compensation layer 6 sufficiently tightly by positive-engaging or non-positive engaging connecting sections in the area of a connecting zone Z on the supporting layer 5.
In the illustration according to
In the illustrated embodiment, one side of the composite body 3 is connected positive-lockingly by means of its compensation layer 6 on the inner part 2 (at G) and the composite body 3′ is connected by means of its compensation layer 6 positive-lockingly on the outer part 1 (at G′). The free contact side of the supporting layer 5 defines thus the sliding surface F, F′ of the slide bearings G, G′, respectively.
It is also conceivable that for fixation of the composite body 3, 3′ the supporting layer 5 is used (it is then not loaded by sliding friction). Accordingly, the compensation layer 6 after hardening forms on its free contact side a new sliding surface (not illustrated) so that by means of its guiding properties the component function is determined.
In the illustrated embodiment according to
The contact zone that forms the sliding surface F, F′ of the composite body 3, 3′ is according to an expedient embodiment optimized in accordance with the material of the telescoping parts 1, 2, wherein, for example, matching of the sliding surface F, F′ to the metallic or non-metallic surfaces, preferably to aluminum, can be provided. Also, sliding connections in the area of a coat of paint, a powder coating, or the like surface coatings is possible. The afore described configuration of the composite bodies 3, 3′ with optimal friction and wear values can be used, for example, in connection with telescoping support legs that are used on height-adjustable tables, chairs, or the like.
In
For forming the slide bearings G, G′, in the telescoping slide 10 support members 15, 16 and 15′, 16′, respectively, are provided (for improving the illustration cross-hatching is used partially) that form, on the one hand, the sliding surfaces F, F′ and, on the other hand, have shaped projections 14 for contacting the associated telescoping part 11, 2. In these support members, the shaped projections 14 provide an elastic contact structure like an elastic compensation layer (
In
In an expedient configuration, the support member 15 is provided in the circumferential direction with a plurality of projections 14 and at least two securing projections 18 (
For completing the slide bearing G in the illustrated embodiment according to
In the illustration according to
In
In
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
103 23 773.9 | May 2003 | DE | national |