Telescoping spring retention assembly for a check valve

Information

  • Patent Grant
  • 12181060
  • Patent Number
    12,181,060
  • Date Filed
    Thursday, November 16, 2023
    a year ago
  • Date Issued
    Tuesday, December 31, 2024
    3 days ago
Abstract
A valve assembly with a spring retention assembly including an elongated cylinder portion having an open threaded end and a closed end and an elongated piston portion having a free end and a threaded tab end configured to thread through the open threaded end and, thereby, be slideably captured in the cylinder portion. A spring couples to the body portion and the piston portion to provide a force to urge the body portion and the piston away from one another, wherein the closed end and the free end are similarly shaped so that the spring retention assembly can be reversibly mounted to a valve member that can also be reversibly mounted.
Description
FIELD OF THE DISCLOSURE

The subject disclosure relates to backflow prevention valves and assemblies, and more particularly to backflow prevention valves and assemblies having a reversible telescoping bias spring retention assembly coupled to a reversible valve member.


BACKGROUND

In many water systems, backflow prevention (BFP) assemblies allow fluid and even solids to flow only in a desired, i.e., a forward, direction. As backsiphonage or backflow can present contamination and health problems, the backflow prevention valves and assemblies prevent flow in an undesired direction, i.e., a backward or reverse direction. BFP assemblies are installed in buildings, such as residential homes, and commercial buildings and factories, to protect public water supplies by preventing the reverse flow of water from the buildings back into the public water supply.


A typical BFP assembly includes an inlet shutoff valve and an outlet shutoff valve with a backflow prevention valve assembly extending between the inlet and outlet shutoff valves. Many different configurations of BFP assemblies are commercially available, each being differently configured.


Owing to the fact that BFP assemblies are important for water safety, BFP units are tested annually, often per government regulations, to assure proper operating condition. Specifically, fluid pressure measurements are taken at specified locations in the BFP unit. If it is determined that a check valve needs to be repaired or replaced, the inlet and outlet shutoff valves have to be closed, the check valve fixed and tested, the shutoff valves opened and the apparatus confirmed to be operating per any required ordinances and/or standards. The process is time-consuming and the steps have to be performed in the correct sequence and manner in order to not contaminate the public water supply, inadvertently flood an area, and return the BFP assembly to working order.


SUMMARY

From time to time, various components of a BFP assembly may need replacement, which is not only difficult and time consuming but results in downtime for the fluid network. Components for the BFP assembly that are easier to manufacture, assemble and install as well as more robust would reduce: the difficulty of fabrication and repair; repair time; assembly error from improper fabrication or otherwise; and the difficulty of installation. Preferably, a telescoping spring retainer assembly provides some or all of these benefits along with reducing the required components. When the telescoping spring retainer assembly is coupled to a reversible valve member, these benefits are further enhanced.


The subject technology is directed to a valve assembly including a spring retention assembly coupled to a valve member. The spring retention assembly has an elongated cylinder portion having an open threaded end and a closed end. An elongated piston portion has a free end and a threaded tab end configured to thread through the open threaded end and, thereby, be slideably captured in the cylinder portion. A spring couples to the body portion and the piston portion to provide a fierce to urge the body portion and the piston away from one another, wherein the closed end and the free end are similarly shaped so that the spring retention assembly can be reversibly mounted. A valve member includes a central disc having a first side and a second side, each side forming a sealing region and having a retention cup, wherein both retention cups can capture the closed end or the free end so that the valve member is reversible. A hinge portion extends radially from the central disc.


In one embodiment, the subject disclosure is directed to a spring retention assembly for a valve assembly, comprising an elongated cylinder portion having an open threaded end and a closed end. An elongated piston portion has a free end and a threaded tab end configured to thread through the open threaded end and, thereby, be slideably captured in the cylinder portion. A helical spring couples to the body portion and the piston portion to provide a force to urge the body portion and the piston away from one another, wherein the closed end and the free end are similarly shaped so that the spring retention assembly can be reversibly mounted.


In another embodiment, the subject disclosure is directed to a spring retention assembly for a valve assembly having a cylinder portion with an open threaded end. A piston portion has a threaded tab end configured to thread through the open threaded end and, thereby, be captured in the cylinder portion for sliding motion. A spring couples to the body portion and the piston portion to provide a force to urge the body portion and the piston away from one another. Preferably, the cylinder portion has a closed end with a retention collar, the piston portion has a retention collar, and the spring extends between the retention collars. The spring may be under a predetermined amount of compression less than an amount of force of a normal forward flow of fluid in the backflow prevention system. The inner diameter of the cylinder portion and an outer diameter of the threaded tab end can be approximately equal so that lateral movement of the piston portion is reduced.


In still another embodiment, the subject disclosure is directed to a spring retention assembly for a valve assembly that includes a telescoping central portion with a first free end and a second free end, wherein the ends are similarly shaped so that the spring retention assembly can be reversibly mounted. Preferably, the ends are bulbous to fit in a hollow formed in the housing of the valve assembly or a retention cup of the valve element. Another embodiment includes a first retention collar on the first free end, a second retention collar on the second free end, and a spring extending between the retention collars so that the ends are configured to mount to either retention collar for simplification of the parts required.


The subject technology is also directed to a valve member for a valve assembly including a central disc having a first side and a second side, each side forming a sealing region and having a retention cup, wherein the sealing regions and the retention cups are similarly shaped so that the valve member is reversible. A hinge portion extends radially from the central disc. The sealing regions may be ring-shaped elastomeric inserts. Preferably, the retention cups are centrally located on the respective side with a plurality of deflectable fingers for receiving a spherical end of a spring retention assembly. By being the same shape and size, the deflectable fingers facilitate either side interacting with the spring retention assembly. By the first and second sides being symmetrical about an axis, reversibility of the valve member is also facilitated. In one embodiment, the hinge portion includes a pair of opposing arms extending radially from the central disc and having distal protruding tabs.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are discussed herein with reference to the accompanying Figures. It will be appreciated that for simplicity and clarity of illustration, elements shown in the drawings have not necessarily been drawn accurately or to scale. For example, the dimensions of some of the elements can be exaggerated relative to other elements for clarity or several physical components can be included in one functional block or element. Further, where considered appropriate, reference numerals can be repeated among the drawings to indicate corresponding or analogous elements. For purposes of clarity, however, not every component can be labeled in every drawing. The Figures are provided for the purposes of illustration and explanation and are not intended as a definition of the limits of the disclosure.



FIG. 1 is a cross-sectional view of a backflow prevention BFP assembly with only the second check valve assembly open in accordance with the present disclosure.



FIG. 2 is a cross-sectional view of the BFP assembly of FIG. 1 with both check valve assemblies closed in accordance with the present disclosure.



FIG. 3 is perspective view of a telescoping spring retainer assembly in an extended position for a check valve assembly for a BFP assembly in accordance with the present disclosure.



FIG. 4 is a plan view of the telescoping spring retainer assembly of FIG. 3.



FIG. 5 is a cross-sectional view of the telescoping spring retainer assembly taken along line 5-5 of FIG. 4.



FIG. 6 is a partial detailed cross-section view of the telescoping spring retainer assembly shown in circle 6 of FIG. 5.



FIG. 7 is a perspective view of the telescoping spring retainer assembly of FIG. 3 in a compressed position.



FIG. 8 is a plan view of the telescoping spring retainer assembly of FIG. 7.



FIG. 9 is a cross-sectional view of the telescoping spring retainer assembly taken along line 9-9 of FIG. 8.



FIG. 10 is a partial detailed cross-section view of the telescoping spring retainer assembly shown in circle 10 of FIG. 9.



FIG. 11A is an isolated side view of a frame for use in a check valve assembly in accordance with the subject disclosure.



FIG. 11B is an isolated perspective view of a frame for use in a check valve assembly in accordance with the subject disclosure.



FIG. 12 is a partial cross-sectional view of a reversible valve member coupled to a frame in a check valve assembly in accordance with the subject disclosure.



FIG. 13A is an isolated perspective view of another reversible valve element for use in a check valve assembly in accordance with the subject disclosure.



FIG. 13B is a cross-sectional view of the reversible valve member of FIG. 13A.



FIG. 14 is an isolated perspective view of a telescoping spring retention assembly coupled to a reversible valve member for use in a check valve assembly in accordance with the subject disclosure.



FIG. 15 is perspective exploded view of another telescoping spring retainer assembly for a check valve assembly for a BFP assembly in accordance with the present disclosure.



FIG. 16 is a side view of the telescoping spring retainer assembly of FIG. 15 with the spring removed.



FIG. 17 is another side view of the telescoping spring retainer assembly of FIG.



FIG. 18 is a partial perspective view of the cylinder portion of the telescoping spring retainer assembly of FIG. 15.





DETAILED DESCRIPTION

The subject technology overcomes many of the prior art problems associated with backflow prevention assemblies. The advantages, and other features of the technology disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain exemplary embodiments taken in combination with the drawings and wherein like reference numerals identify similar structural elements. It should be noted that directional indications such as vertical, horizontal, upward, downward, right, left and the like, are used with respect to the figures and not meant in a limiting manner.


Referring now to FIGS. 1 and 2, there is shown a backflow prevention (BFP) assembly 100 in accordance with an aspect of the present disclosure. The BFP assembly 100 may be installed in a fluid system, e.g., a water supply for a building. In normal operation, the backflow prevention assembly 100 operates to carry fluid in only a forward direction, e.g., left to right in FIGS. 1 and 2, from an inlet 116 to an outlet 120. The BFP assembly 100 operates to prevent flow in a backward direction, i.e., a direction from right to left in FIGS. 1 and 2.


The BFP assembly 100 includes a body 104 forming an upstream bucket 108 and a downstream bucket 112. Each bucket 108, 112 is enclosed by a test cover 118, 122. The test covers 118, 122 may include one or more test cocks 140 for sensing pressure at various locations within the BFP assembly 100. The downstream test cover 118 includes two test cocks 140 and the upstream test cover 122 includes a single test cock 140 but the test covers 118, 122 are otherwise very similar.


Each bucket 108, 112 includes a check valve assembly 150 for selectively opening and closing flow through the respective bucket 108, 112. Preferably, the check valve assemblies 150 are interchangeable although as shown, the check valve assemblies 150 are different. Each check valve assembly 150 has frame 170 fit into the respective bucket 108, 112. The frame 170 retains a valve member 200, which selectively closes against a circular valve seat 172 of the frame 170. The valve members 200 are generally disc-shaped with an annular sealing region 204 that seals against the valve seat 170. The valve member 200 is connected to the frame 170 by a hinge portion 206 that allows rotation of the valve member 200 away from the valve seat 172 to open flow.


In each check valve assembly 150, a spring retainer assembly 300 provides a biasing force to urge the valve member 200 against the valve seat 172. If the pressure downstream of the valve member 200 exceeds the force of the spring retainer assembly 300, the check valve assembly 150 will open to allow forward flow. If not, the spring retainer assembly 300 will keep the check valve assembly 150 closed. The spring retainer assembly 300 extends between the respective test cover 118, 122 and the valve member 200. The test covers 118, 122 form hollows 124 for coupling to the spring retainer assembly 300 whereas the valve member 200 has a retention cup 210 for coupling to the spring retainer assembly 300.


Referring now to FIGS. 3-10, various views of the spring retainer assembly 300 are shown. The spring retainer assembly 300 includes a telescoping central portion 302. The telescoping central portion 302 includes a somewhat tubular cylinder portion 310 with an open lip end 312. The open lip end 312 has internal threads 314 best seen in FIGS. 6 and 10. A closed free end 316 opposes the open lip end 312 and has a spherical or bulbous shape for coupling to the retention cup 210 of the valve member 200 or in the hollow 124 of the test cover 118, 122, as the case may be. Adjacent the bulbous closed free end 316, a retention collar 318 is formed.


The spring retainer assembly 300 also includes a piston portion 330 that partially slides within the cylinder portion 310. The piston portion 330 has a tab end 332 that is captured within the cylinder portion 310. The tab end 332 has outer threads 334. To couple the cylinder portion 310 and the piston portion 330 together, the tab end 332 is threaded through the open lip end 312 of the cylinder portion 310. Once coupled, the tab end 332 can slide within the cylinder portion 310 but is retained by the lip end 312 until unscrewed.


The piston portion 330 has a free end 336 with a retention collar 338. A spring 350 is captured and compressed between the retention collars 318, 338 to urge the cylinder portion 310 and piston portion 330 apart as best seen in FIGS. 3-5. Thus, when in the spring retainer assembly 300 is in place between the fixed rigid hollow 124 of a test cover 118, 122 and retention cup 210 of the valve element 200, the spring 350 provides the biasing force to urge the valve element 200 closed (see FIGS. 1 and 2).


As illustrated in FIGS. 7-10 and shown in the downstream check valve assembly 150 of FIG. 2, the spring retainer assembly 300 is compressed by opening of the check valve assembly 150 when the upstream pressure on the valve member 200 exceeds the force provided by the spring 350. In other words, the force of the spring 350 is predetermined to allow the valve element 200 to permit the normal flow of fluid in the forward direction.


In order to minimize wobbling or lateral motion of the piston portion 330 during sliding, an inner diameter D1 of the cylinder portion 310 is approximately the same as the outer diameter D2 of the threaded tab end 332 (see FIG. 6). The threaded tab end 332 also has sufficient length along the axis of movement to be stable inside the cylinder portion 310. In this way, the piston portion 330 moves linearly and is prevented from wobbling. The length of the threaded tab end 332 and cylinder portion 310 are selected to minimize wobbling while still allowing sufficient travel for a fully open and closed check valve 150.


In normal operation, the force exerted by the respective spring retainer assembly 300 on the valve elements 200 is overcome by the pressure exerted by the fluid normally flowing from the inlet 116 to the outlet 120 so that both check valves 150 are open. If, for example, there is a drop in pressure from the supply source, the upstream valve element 200 and the downstream valve 200 will close to prevent backflow as shown in FIG. 2. Similarly, if the normal forward flow is interrupted, one or both of the valve elements 200 is urged in position to cover the valve seat 172 (e.g., FIGS. 1 and 2, respectively) to close the check valve 150 and prevent backflow.


To assemble a check valve 150, the threaded tab end 332 of the piston portion 330 is screwed through the threaded lip end 312 of the cylinder portion 310 to couple the piston portion 330 to the cylinder portion 310. Either end 316, 336 may be coupled to the retention cup 210 of the valve element 200 because each end 316, 336 is similarly shaped. Preferably, the retention cup 210 is flexible and deforms slightly to receive the spherical end 316, 336 without requiring any tools. Once popped in, the bulbous end 316, 336 easily rotates within the retention cup 210. As the test cover 118 is mounted is mounted on the check valve 150, the other end 316, 336 of the spring retention assembly 300 is aligned to the hollow 124, which captures the end 316, 336 while also allowing for easy rotation of the end 316, 336 therein. Thus, the spring retention assembly 300 can be arranged in a reverse arrangement to that which is shown and assembly is simplified.


Repair of the spring retention assembly 300 is also simplified. For example, if the piston portion 330 is broken, the threaded tab end 332 is unthreaded from the cylinder portion 310. To replace the broken piston portion 330, a new piston portion 330 can be threaded into the previously used cylinder portion 310. Similarly, without tools, the portions 310, 330 can be separated to replace the helical spring 350.


In one embodiment, the ends 316, 318 include a spherical portion 319 having a threaded post 321 that screws into or otherwise mounts to the retention collar 318, 338. Hence, the threaded posts 312 are the same so that fewer parts are required and manufacturing and repair is simplified. Further, as tools are not required, assembly is simplified. In another embodiment, the ends 316, 318 are different sizes to preclude reversibility. For example, only one end 316, 318 may be small enough to fit into the retention cup 210 so that there is only one orientation that couples the spring retention assembly 300 to the valve element 200.


In another embodiment, the spring retention assembly does not include a helical spring around the outside. Instead, the helical spring or even a compressible insert is provided with the cylinder portion to generate the proper bias.


Referring now to FIGS. 11A and 11B, isolated side and perspective views of a frame 170 for use in a check valve assembly in accordance with the subject disclosure are shown. The frame 170 snugly fits into the respective bucket. A top portion 174 seals against the BFP assembly body and a lower portion 177 narrows the fluid path through the BFP assembly to an opening 175 of the valve seat 172. The top portion 174 includes a circular ledge 182 that acts as an insertion hardstop. A retaining nut 126 (see FIG. 1) threads onto the body 104 to secure the frame 170 thereto. The valve seat 172 also includes an annular raised rim 176 as a sealing surface with a recess 178 surrounding the rim 176.


The frame 170 includes standoff 179 adjacent the opening 175 and forming a pair of opposing notches 180. The notches 180 may be U-shaped to receive a valve member such that the valve member is hinged to the frame 170 for selective opening and closing of the opening 175. The notches 180 may also simply be holes or similar shape to receive a protruding tab to create a hinge arrangement.


Referring now to FIG. 12, a partial cross-sectional view of a reversible valve member 400 coupled to a frame 450 in a check valve assembly of a BFP assembly in accordance with the subject disclosure is shown. Like reference numerals in the “400” series are used to refer to similar elements between the frame 170 and the frame 470. Similarly “400” series numbers are also used to describe like elements between the valve members 200, 400 so that the following description can be directed to the differences.


The valve member 400 is reversible by being symmetrical. The valve member 400 has a central disc 402. Each side of the central disc 402 has a central retention cup 410. The cups 410 have a plurality of fingers 412 that deflect to allow manual insertion of the end 316 of the spring retention assembly 300 to capture the end 316 therein. Once captured, the end 316 can smoothly rotate within the cup 410 like a ball-and-socket joint. Similar connections like a condyloid joint, saddle joint, hinge joint, pivot joint and the like may be used. The valve member 400 also has a radially outward ring-shaped sealing region 404 on each side 408. An outer edge 414 of the central disc 402 may be relatively thicker than the sealing region 404. The hinge portion 406 extends from the outer edge 414 of the central disc 402. En one embodiment, the sealing surface 476 is a ring-shaped elastomeric insert on each side 408.


Once assembled, as shown in the closed position in FIG. 12, the spring retention assembly 300 urges the valve member 400 against the valve seat 472. The sealing region 404 of the valve member 400 and the sealing surface 476 of the frame seat 172 are sealingly engaged to close the opening 475. When the upstream fluid pressure exceeds the urging force of the spring retention assembly 300, the valve member 400 rotates to open the opening 475 and, in turn, the end 316 rotates within the deflectable fingers 412 of the retention cup 410.


By being symmetrical, the valve member 400 can be arranged in a reverse arrangement and work in the same manner. Thus, assembly is simplified. Further, repair of the valve member 400 is also simplified. For example, if the valve member 400 is broken on one side in the field, rather than locate a replacement part, the valve member 400 can be unhinged, flipped and rehinged. As a result, the required number of parts is reduced with assembly and repair simplified. Preferably, tools are also not required.


Referring now to FIGS. 13A and 13B, isolated views of another reversible valve member 500 for use in a check valve assembly in accordance with the subject disclosure are shown. As will be appreciated by those of ordinary skill in the pertinent art, the valve member 500 utilizes similar principles to the valve members 200, 400 described above. Accordingly, like reference numerals in the “500” series are used to indicate like elements.


The primary difference of the valve member 500 is the sloped sealing region 504 as best seen in FIG. 13B. The sloped sealing region 504 may be formed by partially fully coating the central disc 502. Alternatively, the entire central disc 502 may be formed from an elastomeric or other material with the desired sealing properties. The valve member 500 is still symmetrical about an axis of symmetry “a” for reversibility.


The hinge portion 506 includes a pair of opposing radially extending flexible arms 507. The arms 507 have distal tabs 509 protruding outward to engage the frame. By manually deflecting the arms 507 inward (e.g, closer together), the tabs 509 can be snap-fit into the notches of the frame. In another embodiment, the hinge portion and the standoff of the frame have transverse passages for receiving a hinge pin to create the hinge. It is envisioned that the tabs 509 may simply rest in the notches with the force of the spring assembly being sufficient so that the tabs 509 float in place to allow easy freedom of movement.


Referring now to FIG. 14, an isolated perspective view of the telescoping spring retention assembly 300 coupled to the reversible valve member 500 in accordance with the subject disclosure is shown. Again, if the valve member 500 becomes damaged in the field (e.g., one of the cups 512 become broken), the valve member 500 can simply be flipped and reinstalled without tools in the check valve assembly. Similarly, the orientation of the valve member 500 and spring retention assembly during initial assembly is not important, which makes assembly easier.


Referring now to FIGS. 15-18, various views of another spring retainer assembly 600 are shown. Similar elements to those described in connection with above-described embodiments are indicated with the like reference numbers in the “600” series. Many elements are essentially the same as those of the foregoing embodiments and, thus, are not further described herein. Thus, the following description relates to the differences of the spring retainer assembly 600.


The spring retainer assembly 600 has a piston portion 630 with opposing buttons 611 near the end 632 for coupling to the cylinder portion 610. The cylinder portion 610 forms opposing two-part slots 613 that capture the buttons 611 to guide the telescoping motion. Each two-part slot 613 has a cross-wise portion 615 and an axial portion 617. During normal operation, the buttons 611 are captured in the axial portion 617 of the two-part slots 613 to guide linear motion and prevent the spring retainer assembly 600 from coming apart if the test cover is opened or removed. As shown in FIG. 17, the spring retainer assembly 600 is fully extended.


To assembly the spring retainer assembly 600, the piston portion 630 is pressed into the cylinder portion 610. The cylinder portion 610 has angled internal ramps 623 that guide the buttons 611 into axial grooves 625. The axial grooves 625 guide the buttons 611 in the cross wise portion 615 of the two-part slot 613 (FIG. 16). Once the buttons 611 are in the slot 613, the piston portion 630 can be rotated along arrow 627 as shown in FIG. 18 to be in the operational position within the axial portion 617 of the slot 613. In another embodiment, the buttons 611 are push-buttons that retract during insertion into the slot 613. In still another embodiment, the slot 613 extends toward the open end (e.g., along the line of the groove 625). The cylinder portion 610 may also be somewhat deformable so that the cylinder portion 610 can be flexed to insert the buttons 611 in the slots.


As can be seen, the subject disclosure provides many improvements to BFP assemblies 100. For example, without limitation, the BFP assemblies 100 are more easily manufactured by simplification and/or reversibility of components. The assembly is not only easier but more error proof due to improved design of components. Similarly, repair is also faster, easier and less complex. Further, the subject technology can be adapted to any kind of valve.


It will be appreciated by those of ordinary skill in the pertinent art that the functions of several elements can, in alternative embodiments, be carried out by fewer elements, or a single element. Similarly, in some embodiments, any functional element can perform fewer, or different, operations than those described with respect to the illustrated embodiment. Also, functional elements (e.g., check valves, valve elements, spring retention assemblies, and the like) shown as distinct for purposes of illustration can be incorporated within other functional elements in a particular implementation.


While the subject technology has been described with respect to various embodiments, those skilled in the art will readily appreciate that various changes and/or modifications can be made to the subject technology without departing from the scope of the present disclosure.

Claims
  • 1. A backflow prevention valve assembly comprising: a housing having a valve seat surrounding a valve opening;a valve element rotatably connected to the housing and configured to selectively contact the valve seat to close the valve opening for preventing backflow; anda bias assembly, extending between the housing and the valve element, configured to push the valve element into contact with the valve seat at a predetermined differential pressure between an upstream pressure and a downstream pressure, the bias assembly including: an elongated cylinder portion having an open end and defining at least one slot extending along an axis;an elongated piston portion extending along the axis, having a captured end with at least one button configured to be slideably captured in the at least one slot of the elongated cylinder portion; anda spring coupled to the cylinder portion and the elongated piston portion to provide a force to urge the elongated cylinder portion and the elongated piston portion away from one another to set the predetermined differential pressure,wherein the elongated cylinder portion defines a cross-wise portion opening at an angle with respect to the at least one slot for coupling the at least one button in the at least one slot.
  • 2. The backflow prevention valve assembly as recited in claim 1, wherein the elongated cylinder portion includes at least one angled internal ramp configured to guide the at least one button into at least one axial groove that is configured to guide the at least one button into the cross-wise portion opening.
  • 3. The backflow prevention valve assembly as recited in claim 1, wherein the at least one axial slot limits axial travel of the piston portion in at least one direction.
  • 4. The backflow prevention valve assembly as recited in claim 3, wherein the at least one axial slot limits axial travel of the piston portion in a second direction.
  • 5. The backflow prevention valve assembly as recited in claim 1, wherein the at least one axial slot is two opposing axial slots and the at least one button is two opposing buttons.
  • 6. The backflow prevention valve assembly as recited in claim 1, wherein the at least one button is a push-button that is retractable.
  • 7. The backflow prevention valve assembly as recited in claim 1, wherein the elongated cylinder portion is deformable for flexing to insert the at least one button in the at least one axial slot.
  • 8. The backflow prevention valve assembly as recited in claim 1, wherein the bias assembly can be reversibly mounted.
  • 9. The backflow prevention valve assembly as recited in claim 1, wherein: the elongated cylinder portion has a retention collar; the elongated piston portion has a retention collar; and the spring is helical and extends between the retention collars, the spring disposed around the elongated cylinder portion.
  • 10. The backflow prevention valve assembly as recited in claim 1, wherein an inner diameter of the elongated cylinder portion and an outer diameter of the captured end are approximately equal so that lateral movement of the elongated piston portion is reduced.
  • 11. A spring assembly for selectively biasing a valve element closed in a check valve assembly comprising: an elongated cylinder portion defining at least one axial slot extending along an axis;an elongated piston portion extending along the axis and having at least one button configured to be slideably captured in the axial slot of the elongated cylinder portion; anda spring coupled to the elongated cylinder portion and the elongated piston portion to provide a force to urge the elongated cylinder portion and the elongated piston portion away from one another, wherein the force sets a predetermined differential pressure between an upstream pressure and a downstream pressure that closes the check valve assembly,wherein the elongated piston portion has a piston end and a cylinder end that are similarly shaped so that the spring retention assembly is reversible.
  • 12. The backflow prevention valve assembly as recited in claim 11, wherein the elongated cylinder portion defines a cross-wise portion at an angle with respect to at least one slot for coupling the at least one button in the at least one slot.
  • 13. The backflow prevention valve assembly as recited in claim 12, wherein the elongated cylinder portion includes at least one angled internal ramp configured to guide the at least one button into at least one axial groove that is configured to guide the at least one button into the cross-wise portion.
  • 14. The backflow prevention valve assembly as recited in claim 11, wherein the at least one axial slot limits axial travel of the piston portion in at least one direction.
  • 15. The backflow prevention valve assembly as recited in claim 14, wherein the at least one axial slot limits axial travel of the piston portion in a second direction.
  • 16. The spring retention assembly of claim 11, further comprising: a first retention collar on a closed end of the cylinder portion; a second retention collar on a free end of the piston portion wherein the spring extends between the retention collars.
  • 17. A backflow prevention valve assembly comprising: a housing having a valve seat surrounding a valve opening;a valve element rotatably connected to the housing and configured to selectively contact the valve seat to close the valve opening for preventing backflow; anda bias assembly, extending between the housing and the valve element, configured to push the valve element into contact with the valve seat at a predetermined differential pressure between an upstream pressure and a downstream pressure, the bias assembly including: an elongated cylinder portion having an open end and defining at least one slot extending along an axis;an elongated piston portion extending along the axis, having a captured end with at least one retractable push-button configured to be slideably captured in the at least one slot of the elongated cylinder portion; anda spring coupled to the cylinder portion and the elongated piston portion to provide a force to urge the elongated cylinder portion and the elongated piston portion away from one another to set the predetermined differential pressure.
  • 18. A backflow prevention valve assembly comprising: a housing having a valve seat surrounding a valve opening;a valve element rotatably connected to the housing and configured to selectively contact the valve seat to close the valve opening for preventing backflow; anda bias assembly, extending between the housing and the valve element, configured to push the valve element into contact with the valve seat at a predetermined differential pressure between an upstream pressure and a downstream pressure, the bias assembly including: an elongated cylinder portion having an open end and defining at least one slot extending along an axis;an elongated piston portion extending along the axis, having a captured end with at least one button configured to be slideably captured in the at least one slot of the elongated cylinder portion; and
CROSS-REFERENCE

This application is a continuation of and claims the benefit of U.S. patent application Ser. No. 18/061,245 entitled REVERSIBLE SPRING RETENTION ASSEMBLY FOR A VALVE, filed Dec. 2, 2022, which is a division of and claims the benefit of U.S. patent application Ser. No. 17/402,737 entitled BACKFLOW PREVENTION ASSEMBLY WITH TELESCOPING BIAS ASSEMBLY AND REVERSIBLE VALVE MEMBER, filed on Aug. 16, 2021, which claims priority to U.S. Provisional Patent Application No. 63/066,411 entitled BACKFLOW PREVENTION ASSEMBLY WITH TELESCOPING BIAS ASSEMBLY AND REVERSIBLE VALVE MEMBER, filed Aug. 17, 2020 under 55 U.S.C. § 119(e), each of which is incorporated herein by reference in its entirety and for all purposes.

US Referenced Citations (174)
Number Name Date Kind
213394 Cornwall Mar 1879 A
2310586 Lohman Feb 1943 A
2514374 Cooper Jul 1950 A
2533097 Dale Dec 1950 A
2827921 Sherman et al. Mar 1958 A
3173439 Griswold et al. Mar 1965 A
3189037 Modesto Jun 1965 A
3429291 Hoffman Feb 1969 A
3570537 Kelly Mar 1971 A
3817278 Elliott Jun 1974 A
3837357 Slaughter Sep 1974 A
3837358 Zieg et al. Sep 1974 A
3859619 Ishihara et al. Jan 1975 A
3896850 Waltrip Jul 1975 A
3905382 Waterston Sep 1975 A
3906987 Rushforth et al. Sep 1975 A
3996962 Sutherland Dec 1976 A
4014284 Read Mar 1977 A
4244392 Griswold Jan 1981 A
4276897 Griswold Jul 1981 A
4284097 Becker et al. Aug 1981 A
4416211 Hoffman Nov 1983 A
4452272 Griswold Jun 1984 A
4453561 Sands Jun 1984 A
4489746 Daghe et al. Dec 1984 A
4523476 Larner Jun 1985 A
4618824 Magee et al. Oct 1986 A
4667697 Crawford May 1987 A
4694859 Smith, III Sep 1987 A
4776365 Bathrick et al. Oct 1988 A
4777979 Twerdochlib Oct 1988 A
4920802 McMullin et al. May 1990 A
4945940 Stevens Aug 1990 A
5008841 McElroy Apr 1991 A
5024469 Aitken et al. Jun 1991 A
5072753 Ackroyd Dec 1991 A
5125429 Ackroyd et al. Jun 1992 A
5236009 Ackroyd Aug 1993 A
5257208 Brown et al. Oct 1993 A
5299718 Shwery Apr 1994 A
5316264 Newman, Sr. et al. May 1994 A
5404905 Lauria Apr 1995 A
5425393 Everett Jun 1995 A
5452974 Binns Sep 1995 A
5520367 Stowers May 1996 A
5551473 Lin et al. Sep 1996 A
5566704 Ackroyd et al. Oct 1996 A
5584315 Powell Dec 1996 A
5586571 Guillermo Dec 1996 A
5669405 Engelmann Sep 1997 A
5709240 Martin et al. Jan 1998 A
5711341 Funderburk et al. Jan 1998 A
5713240 Engelmann Feb 1998 A
5794655 Funderburk et al. Aug 1998 A
5901735 Breda May 1999 A
5918623 Hidessen Jul 1999 A
5947152 Martin et al. Sep 1999 A
5950653 Folsom Sep 1999 A
5992441 Enge et al. Nov 1999 A
6021805 Horne et al. Feb 2000 A
6123095 Kersten et al. Sep 2000 A
6155291 Powell Dec 2000 A
6170510 King et al. Jan 2001 B1
6196246 Folsom Mar 2001 B1
6234180 Davis et al. May 2001 B1
6343618 Britt Feb 2002 B1
6349736 Dunmire Feb 2002 B1
6374849 Howell Apr 2002 B1
6378550 Herndon et al. Apr 2002 B1
6396404 McHugh May 2002 B1
6443184 Funderburk Sep 2002 B1
6471249 Lewis Oct 2002 B1
6513543 Noll et al. Feb 2003 B1
6546946 Dunmire Apr 2003 B2
6581626 Noll et al. Jun 2003 B2
6659126 Dunmire et al. Dec 2003 B2
6675110 Engelmann Jan 2004 B2
7051763 Heren May 2006 B2
7114418 Allen Oct 2006 B1
7313497 Breen et al. Dec 2007 B2
7434593 Noll et al. Oct 2008 B2
7506395 Eldridge Mar 2009 B2
7784483 Grable et al. Aug 2010 B2
7934515 Towsley et al. May 2011 B1
8220839 Hall Jul 2012 B2
8753109 Thiewes Jun 2014 B2
8997772 Noll et al. Apr 2015 B2
9091360 Frahm Jul 2015 B2
9303777 Frahm, II Apr 2016 B2
9476805 Doran Oct 2016 B2
9539400 Gumaste et al. Jan 2017 B2
9546475 Lu Jan 2017 B2
9899819 Holloway Feb 2018 B1
9995605 Konno et al. Jun 2018 B2
10022532 Burdge Jul 2018 B2
10132425 Di Monte, Sr. Nov 2018 B2
10180023 Zasowski Jan 2019 B2
D876585 Li et al. Feb 2020 S
10561874 Williams et al. Feb 2020 B2
D886236 Pfund et al. Jun 2020 S
10719904 Yasumuro et al. Jul 2020 B2
D908191 Li et al. Jan 2021 S
10883893 Shaw, Jr. et al. Jan 2021 B2
10914412 Doughty et al. Feb 2021 B2
10962143 Cis et al. Mar 2021 B2
D917013 Pfund et al. Apr 2021 S
D919048 Li et al. May 2021 S
D919049 Li et al. May 2021 S
D928916 Shim Aug 2021 S
11137082 Okuno et al. Oct 2021 B2
D941426 Downing et al. Jan 2022 S
D957587 Downie et al. Jul 2022 S
D958937 Pfund et al. Jul 2022 S
11427992 Burke et al. Aug 2022 B2
11449082 Lindemann Sep 2022 B1
11834889 Tien Dec 2023 B2
20020043282 Horne et al. Apr 2002 A1
20020078801 Persechino Jun 2002 A1
20030000577 Noll et al. Jan 2003 A1
20030168105 Funderburk Sep 2003 A1
20040045604 Dunmire et al. Mar 2004 A1
20040107993 Stephens Jun 2004 A1
20050092364 Furuya et al. May 2005 A1
20050199291 Price et al. Sep 2005 A1
20050258582 Chou Nov 2005 A1
20060076062 Andersson Apr 2006 A1
20060111875 Breen et al. May 2006 A1
20060196542 Yen Sep 2006 A1
20070084512 Tegge, Jr. et al. Apr 2007 A1
20070181191 Wittig et al. Aug 2007 A1
20070193633 Howell et al. Aug 2007 A1
20070204916 Clayton Sep 2007 A1
20070204917 Clayton et al. Sep 2007 A1
20070240765 Katzman et al. Oct 2007 A1
20080145739 Adams Jun 2008 A1
20080185056 Diodati Aug 2008 A1
20080289567 Gordon Nov 2008 A1
20090136935 Petersen May 2009 A1
20090194719 Mulligan Aug 2009 A1
20100193043 Erhardt Aug 2010 A1
20100313958 Patel et al. Dec 2010 A1
20110067225 Bassaco Mar 2011 A1
20110309076 Liebenberg et al. Dec 2011 A1
20120248759 Feith Oct 2012 A1
20130026743 Baca Jan 2013 A1
20130051482 Nassar et al. Feb 2013 A1
20130255452 Kovach Oct 2013 A1
20140109986 Cordes Apr 2014 A1
20140130878 Marinez May 2014 A1
20150051848 Jurkowitz, Jr. Feb 2015 A1
20150260310 Bahalul Sep 2015 A1
20170023141 Andersson Jan 2017 A1
20170191681 Rosca et al. Jul 2017 A1
20170234441 Fuller et al. Aug 2017 A1
20170278372 Doughty et al. Sep 2017 A1
20180156488 Evans et al. Jun 2018 A1
20190043157 Yasumuro et al. Feb 2019 A1
20190086289 Shaw, Jr. et al. Mar 2019 A1
20190136935 Hulstein et al. May 2019 A1
20190162341 Chiproot May 2019 A1
20190271428 O'Connor et al. Sep 2019 A1
20190281371 Klicpera Sep 2019 A1
20190323618 Fletcher et al. Oct 2019 A1
20200141612 Thibodeaux May 2020 A1
20200370677 Mendez Nov 2020 A1
20210172157 Burke et al. Jun 2021 A1
20210230850 Bouchard et al. Jul 2021 A1
20210332898 Cellemme Oct 2021 A1
20220049487 Bouchard et al. Feb 2022 A1
20220049786 Doughty Feb 2022 A1
20220333360 Burke et al. Oct 2022 A1
20220412474 Bouchard et al. Dec 2022 A1
20230228067 Bouchard Jul 2023 A1
20240093797 Bouchard et al. Mar 2024 A1
Foreign Referenced Citations (18)
Number Date Country
110081212 Aug 2019 CN
1925477 Dec 1970 DE
8525261 Nov 1985 DE
202014102568 Sep 2015 DE
202018107343 Feb 2019 DE
1521004 Apr 2005 EP
1521004 Apr 2005 EP
1830009 Sep 2007 EP
2806203 Nov 2014 EP
3434833 Jan 2019 EP
3832183 Jun 2021 EP
2928750 Sep 2009 FR
2928750 Sep 2009 FR
1231579 Nov 1967 GB
2002213629 Jul 2002 JP
2019009698 Jan 2019 JP
03060459 Jul 2003 WO
2020023584 Jan 2020 WO
Non-Patent Literature Citations (26)
Entry
Ames Fire & Waterworks, division of Watts Industries, F-A-Spools/Flanges, 2001, 4 pages.
Apollo Valves PVB4A Series Installation, Operation and Maintenance Manual for Model PVB4A 1/2″-2″ Pressure Vacuum Breaker Backflow Preventer, dated Jan. 11, 2012, 12 pages.
Apollo Valves PVB4A Series Installation, Operation, and Maintenance Manual, copyright May 2009, 9 pages.
Apollo Valves, Apollo backflow preventer in-line “R” retrofit series, dated Jul. 29, 2016, 2 pages.
Conbraco BFMMPVB Maintenance Manual for Series 4V-500 1/2″-2″ Pressure Type Vacuum Breaker, Apr. 2002, Conbraco Industries, Inc., Matthews, North Carolina 28106, 6 pages.
EP Communication pursuant to Article 94(3) EPC for corresponding Application No. 20211811.3 issued Mar. 3, 2023; 7 pgs.
EP Extended Search Report corresponding to Application No. 20211811.3, dated May 4, 2021, 8 pages.
EP Miscellaneous Communication corresponding to Application No. 20211811.3, dated May 4, 2021, 8 pages.
EP Search Report corresponding to Application No. 20192133.5, dated Feb. 1, 2021, 9 pages.
International Search Report and Written Opinion corresponding to Application No. PCT/US2021/046101, dated Nov. 22, 2021, 10 pages.
International Search Report and Written Opinion corresponding to Application No. PCT/US2021/046208, dated Dec. 1, 2021, 8 pages.
International Search Report and Written Opinion corresponding to Application No. PCT/US2021/062395, dated Feb. 23, 2022, 14 pages.
Lead Free Master Series LF870V product specifications pages, ES-F-LF-870V 1826, 2018, 4 pages.
Watt TK-99E Backflow Preventer Test Kit Product Specifications and Test Information, IS-TK99E 0829, 2009, 4 pages.
Watts Regulator Co. 0887224 Series 909 Reduced Pressure Zone Assemblies Relief/Check Valve Kits 2 1/2″-10″, site visited Jul. 19, 2023; URL: https://controlscentral.com/tabid/63/ProductID/315241/watts-regulator-0887224-series-909-reduced-pressure-zone-assemblies-relief.aspx (Year: 2023).
Watts Regulator Co., Watts ACV 113-6RFP Flood Protection Shutdown Valve for health Hazard Applications, 2020, 4 pages.
Watts Water Company, Series 909RPDA for Health Hazard Applications, 2016, 4 pages.
Watts Water Technologies Company Brochure ES LF800M4QT for Health Hazard Applications Lead Free Series LF8 M4QT Anti-Siphon Vacuum Breakers Sizes 1/2″-2″, copyright 2013, 4 pages.
Watts Water Technologies Company, Installation, Maintenance & Repair Series 909, LF909, 909RPDA, LF909RPDA. 2016, 8 pages.
Watts, “Double Check Valve Assembly Backflow Preventers, Bronze,” Article 1, 2021, 6 pages.
Watts, “Reduced Pressure Zone Assembly Backflow Preventers, Bronze Body, Sizes 1/4-2 In,” Article 1, 2021, 16 pages.
Watts, S-RetroFit-Simple, 2017, 2 pages.
Wilkins Company, Model 375/475MS Series, Installation, Maintenance and Instruction Sheet, 2006, 1 page.
Wilkins Model 420 XL Lead-Free pressure Vacuum Breakers 1/2″, 3/4″, and 1″, 2006, 2 pages.
Zurn Industries, LLC vs. Conbraco Industries, Inc., Complaint for patent infringement, United States District Court for the Center District of California Western Division, Case No. 2.16-CV-5656, Jul. 29, 2016, 5 pages.
Zurn Wilkins 300AR Series, Backflow Preventor Order Form No. 480-060, Apr. 2017, 2 pages.
Related Publications (1)
Number Date Country
20240093797 A1 Mar 2024 US
Provisional Applications (1)
Number Date Country
63066411 Aug 2020 US
Divisions (1)
Number Date Country
Parent 17402737 Aug 2021 US
Child 18061245 US
Continuations (1)
Number Date Country
Parent 18061245 Dec 2022 US
Child 18511625 US