1. Field of the Invention:
This invention is related to a system, method, and apparatus for regenerating a particulate filter. This invention is more particularly related to a system, method, and apparatus for regenerating a particulate filter for a heavy duty diesel engine.
2. Related Art:
Due, at least in part, to incomplete combustion, diesel engines produce various amounts of particulate matter during operation. This particulate matter may be dangerous to the environment, an operator's health or otherwise undesirable. Additionally, engine exhaust may be regulated by local and/or federal laws such that removal of the particulate matter (e.g., pollutants) may be desirable and/or obligatory.
Removing particulate matter from engine exhaust often involves the use of filters such as a diesel particulate filter. In various embodiments, the engine exhaust is forced through the diesel particulate filter depositing at least some of the particulate matter on or in the diesel particulate filter. Over time, particulate matter collects on the filter and the filter may become less effective (e.g., by restricting flow of the engine exhaust, reducing fuel economy, and/or by reducing the amount of particulate matter that is removed from the engine exhaust). As such, various types of diesel particulate filters are designed to be replaced and/or regenerated. Failing to replace and/or regenerate a diesel particulate filter may have an adverse effect on engine performance, engine life expectancy, and/or other factors related to the operation of the diesel engine.
Various exemplary embodiments of the systems and methods according to this invention will be described in detail, with reference to the following figures, wherein:
Regenerating a diesel particulate filter removes accumulated particulate matter (e.g., soot) from the filter to improve the operation of the diesel particulate filter (e.g., by reducing the pressure drop across the filter, improving the efficiency of the filter, etc.). Typically, the particulate matter is removed by increasing the temperature of the diesel particulate filter and/or the engine exhaust to a temperature sufficiently high enough to cause the particulate matter to combust (e.g., burn off).
It should be appreciated that the temperature required to combust the particulate matter will vary depending on the chemical composition of that particulate matter, which itself may be dependent on the chemical composition of the fuel used, additional additives combined with the fuel and/or exhaust gas, and/or the composition of the diesel particulate filter. In various embodiments, it may be desirable to decrease the combustion temperature below a critical threshold (e.g., the temperature at which the diesel particulate filter may be compromised).
In various exemplary embodiments, if the engine controller utilizes a low side driver, a diode kit is provided between the regeneration module and the engine controller to prevent damage to any other devices previously connected to the engine controller. The diode kit may include, for example, a diode, one or more resistors and/or any other desirable electrical component(s). The regeneration module is also connected to an indicator, such as a light emitting diode (LED) or the like, to indicate whether the regeneration module is operating. In various exemplary embodiments, a red LED indicates that the regeneration module is active but not operating (e.g., in a standby mode). In various exemplary embodiments, a green LED indicates that the regeneration module is active and operating (e.g., a regeneration cycle is operating).
The regeneration module is designed to operate with a diesel engine to automatically regenerate a diesel particulate filter only when the diesel engine is idling. Additionally, the regeneration module will only operate when selected by a user operated switch. In various exemplary embodiments, an operator of a diesel engine, such as, for example a truck driver, may engage the regeneration module by activating a switch in a cab of the truck before leaving the truck unattended. When engaged, the regeneration module interrupts a regeneration cycle of the engine controller for various time periods.
It should be appreciated that the schematic shown in
Upon receiving the request, the regeneration module electronically opens a high idle switch, thereby ending a high idle cycle of the diesel engine (e.g., returning the diesel engine to a base idle condition). In various exemplary embodiments, a first time period is begun. In various ones of these exemplary embodiments, the first time period is, for example, a four second time period. After the first time period is concluded, a regeneration toggle is electronically closed for a second time period. In various ones of these exemplary embodiments, the second time period is, for example, a five second time period.
After the second time period has concluded, the engine controller begins a regeneration cycle. During the regeneration cycle, particulate matter collected in a diesel particulate filter is heated to a point of combusting. By combusting the particulate matter, it is removed from the diesel particulate filter thereby returning the particulate filter to a more efficient mode of operation (e.g., decreasing a pressure drop across the filter, improving the efficiency at which particulate matter is collected by the diesel particulate filter, and/or improving any other parameter of the diesel particulate filter).
It should be appreciated that regenerating the diesel particulate filter may have differing effects on various operating parameters of the diesel particulate filter; each of which may be considered in determining the efficiency of the diesel particulate filter and the current regenerative condition of the diesel particulate filter. For example, a diesel particulate filter may remove more particulate matter before regeneration than after regeneration due to the increased restriction caused by the accumulated particulate matter. However, the increased restriction caused by the accumulated particulate matter may have an undesirable effect on other operating parameters of the diesel particulate filter (e.g., by increasing a pressure drop across the diesel particulate filter). As such, in various exemplary embodiments, while one parameter may indicate an increased efficiency (e.g., a greater amount of particulate matter being removed by the diesel particulate filter), other parameters may indicate that the diesel particulate filter should be desirable regenerated. Likewise, an increase in the amount of particulate matter removed by a diesel particulate filter may indicate that the diesel particulate filter is nearing a point of use indicated by maximum capacity of the diesel particulate filter; at which point it may cease to remove any further particulate matter or otherwise decrease in efficiency.
The engine controller operates the regeneration cycle until conclusion. It should be appreciated that a regeneration cycle may be concluded for any desirable reason. In various exemplary embodiments, the regeneration cycle is concluded after a predetermined time period. In various other exemplary embodiments, the regeneration cycle is concluded when a predetermined amount (e.g., volume) of particulate matter has been removed from the diesel particulate filter. In yet other exemplary embodiments, the regeneration cycle is concluded when the operation of the diesel particulate filter has reached a predetermined level of functionality or efficiency, such as, for example, when a pressure drop across the filter has been reduced to a desirable level. After the regeneration cycle is concluded, the high idle switch is electronically closed, returning the diesel engine to a high idle state and the method of operation is concluded.
It should be appreciated that the regeneration cycle of the engine controller may utilize any suitable known or later developed method of regeneration. For example, the diesel particulate filter may be heated through an external source, such as, for example, a microwave heater, additives may be introduced to the diesel particulate filter, either directly or at an earlier point in the engine exhaust system (e.g., as a fuel additive or an additive to the exhaust line between the engine and the diesel particulate filter) to decrease the combustion temperature of the particulate filter, or the like.
This application claims the benefit of U.S. patent application Ser. No. 61/420,612 filed on Dec. 7, 2010.
Number | Date | Country | |
---|---|---|---|
61420612 | Dec 2010 | US |