The present disclosure relates to downhole tools for forming a well seal in an annulus between an inner tubular and either an outer tubular or a borehole wall, or forming a plug with the outer tubular or borehole wall.
Swellable packers are isolation devices used in a downhole wellbore to seal the inside of the wellbore or a downhole tubular that rely on elastomers to expand and form an annular seal when immersed in certain wellbore fluids. Typically, elastomers used in swellable packers are either oil- or water-sensitive. Various types of swellable packers have been devised, including packers that are fixed to the OD of a tubular and the elastomer formed by wrapped layers, and designs wherein the swellable packer is slipped over the tubular and locked in place.
The present disclosure provides for a temperature compensated element. The temperature compensated element may include a mandrel. The mandrel may be generally tubular and may have a central axis and an exterior cylindrical surface. The temperature compensated element may also include a housing coupled to the mandrel. The housing may define a fluid expansion chamber between an inner wall of the housing and the exterior cylindrical surface of the mandrel. The temperature compensated element may also include a piston positioned about the mandrel. The piston may have a piston head positioned within the fluid expansion chamber and adapted to slide along the mandrel. The piston head may form a seal against the housing and the mandrel to enclose the fluid expansion chamber. The temperature compensated element may also include a thermally expanding fluid positioned within the fluid expansion chamber. The temperature compensated element may also include an end ring positioned about the mandrel. The end ring may be coupled to the piston. The end ring may be adapted to slide along the mandrel in response to a sliding of the piston. The temperature compensated element may also include a packer. The packer may include a packer element coupled to the exterior cylindrical surface of the mandrel. The packer may have a first end and a second end. The first end may be adapted to slide along the mandrel in response to a sliding of the end ring. The second end may be fixedly coupled to the mandrel, so that a sliding of the first end of the packer toward the second end causes the packer element to decrease in length and increase in radius.
The present disclosure also provides for a method of isolating a section of wellbore. The method may include providing a temperature compensated element. The temperature compensated element may include a mandrel. The mandrel may be generally tubular and may have a central axis and an exterior cylindrical surface. The temperature compensated element may also include a housing coupled to the mandrel. The housing may define a fluid expansion chamber between an inner wall of the housing and the exterior cylindrical surface of the mandrel. The temperature compensated element may also include a piston positioned about the mandrel. The piston may have a piston head positioned within the fluid expansion chamber and adapted to slide along the mandrel. The piston head may form a seal against the housing and the mandrel to enclose the fluid expansion chamber. The temperature compensated element may also include a thermally expanding fluid positioned within the fluid expansion chamber. The temperature compensated element may also include an end ring positioned about the mandrel, the end ring coupled to the piston. The end ring may be adapted to slide along the mandrel in response to a sliding of the piston. The temperature compensated element may also include a packer including a packer element coupled to the exterior cylindrical surface of the mandrel. The packer may have a first end and a second end. The first end may be adapted to slide along the mandrel in response to a sliding of the end ring. The second end may be fixedly coupled to the mandrel. The method may also include coupling the temperature compensated element to a downhole tubular assembly. The method may also include running the downhole tubular assembly into a wellbore. The method may also include heating the downhole tubular assembly. The method may also include expanding the thermally expanding fluid, causing the piston, end ring, and first end of the packer to move along mandrel so that the packer element to decreases in length and increases in radius, defining an actuated position. The method may also include contacting the wellbore with the outer surface of the packer.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In at least one embodiment, temperature compensated element 20 may include housing 22, end ring 24, and swellable packer 26. Swellable packer 26 may include packer element 29. Swellable packer 26 may include a plurality of slats 28 at either end to, for example, form an extrusion barrier for packer element 29, couple swellable packer 26 to mandrel 5 and help prevent flow of the swellable packer material when in a swelled state. Swellable packer 26 may also include retainer ring 27 positioned to, for example, couple swellable packer 26 to mandrel 5 and to prevent any movement of swellable packer 26 along mandrel 5. One having ordinary skill in the art with benefit of this disclosure will understand that although the packer is described as a swellable packer throughout this disclosure, a non-swellable elastomeric packer element may be substituted without deviating from the scope of this disclosure.
Housing 22, end ring 24, and swellable packer 26 may be positioned about mandrel 5 and may be coupled thereto. As depicted in
Housing 22 may include a fluid expansion chamber 30. Fluid expansion chamber 30 may be filled with a thermally expanding fluid which may volumetrically expand in response to an increase in temperature caused by, for example, steam being passed through the interior of mandrel 5 or higher temperature hydrocarbons produced within the well. In some embodiments, the thermally expanding fluid may be selected to remain in a liquid phase throughout the temperatures and pressures to which it may be exposed during operation of temperature compensated element 20.
As depicted in
As depicted in
Swellable packer 26 may be formed from a material which swells in response to the absorption of a swelling fluid, generally an oil or water-based fluid. The composition of the swelling fluid needed to activate swellable packer 26 may be selected with consideration of the intended use of the packer. For example, a packer designed to pack off an area of a well at once may be either oil or water-based and activated by a fluid pumped downhole. Alternatively, a delayed-use packer may be positioned in a well for long periods of time during, for example, hydrocarbon production. A swellable packer 26 which swells in response to an oil-based fluid would prematurely pack off the annulus. A swellable packer 26 which swells in response to water would therefore be used.
When swellable packer 26 is activated, the selected swelling fluid comes into contact with swellable packer 26 and may be absorbed by the material. In response to the absorption of swelling fluid, swellable packer 26 increases in volume and eventually contacts the wellbore, or the inner bore of the surrounding tubular. Continued swelling of swellable packer 26 forms a fluid seal between mandrel 5 and the wellbore or surrounding tubular. Pressure may then be applied from one or more ends of swellable packer 26.
Swellable packer 26 may likewise expand or contract in response to variations in temperature. For example, during a cycling steam stimulation (CSS) operation or steam-assisted gravity drainage (SAG-D) operation, high-pressure steam may be forced through a tool string. This steam will heat swellable packer 26 and may cause a thermal expansion in addition to any swelling expansion. When steam injection is halted, a conventional swellable packer may thermally contract, thereby potentially compromising the seal created by the swelling expansion of the swellable packer. As illustrated in
In some embodiments, housing 22 may include a pressure relief apparatus to prevent damage to temperature compensated element 20 caused by too much pressure within fluid expansion chamber 22. The pressure relief apparatus may be positioned to, at a selected threshold pressure, release at least some thermally expanding fluid from fluid expansion chamber 22 into, for example, the surrounding wellbore. In some embodiments, the pressure relief apparatus may include, for example and without limitation, a relief or safety valve, blowoff valve, or a rupture disc such as rupture disc 48 as depicted in
In order to understand the operation of a temperature compensated element as described herein, an exemplary operation thereof will now be described. Although this example describes only a cycling steam stimulation operation, one having ordinary skill in the art with the benefit of this disclosure will understand that the example is not intended to limit use of the temperature compensated element in any way to one particular operation, and the temperature compensated element described may be used in other operations without deviating from the scope of this disclosure.
In a CSS operation, as understood in the art, high-pressure steam may be injected into a formation through a downhole tubular. The steam heats the formation and any hydrocarbons contained therein to, for example, reduce viscosity thereof and thereby allow a higher flow rate. Once the desired heating has been effected, the steam injection is halted, and hydrocarbons may flow through the tubular more rapidly than before the CSS operation. Cycles of heating and production may be repeated multiple times.
Temperature compensated element 20 as depicted in
At some point it may be decided to run a CSS operation. At this time, steam may be injected through the downhole tubular assembly including through mandrel 5 of temperature compensated element 20. The hot steam causes the thermally expanding fluid in fluid expansion chamber 30 to expand, forcing piston 32 and end ring 24 along mandrel 5 as previously discussed. Swellable packer 26 may be compressed along mandrel 5. This deformation causes swellable packer 26 to increase in radius and/or press more firmly against the surrounding wellbore. Once the desired expansion has been achieved, body lock ring 42 engages wickers 46, thereby locking swellable packer 26 in the actuated position depicted in
In other embodiments, temperature compensated element 20 may be heated by fluids within the formation naturally or artificially heated in the formation. For example, in a SAG-D operation as understood in the art, a temperature compensated element 20 located within the production well may be heated by the hydrocarbons heated by the steam injection well. In other embodiments, produced hydrocarbons may naturally exist at a higher temperature than the wellbore when drilled. Therefore, the production of the hydrocarbons themselves may serve to heat the fluid within temperature compensated element 20.
In some embodiments, rupture disc 48 may be included in the wall of housing 22, and may be calibrated such that the pressure necessary to achieve full actuation will cause rupture disc 48 to fail, allowing the pressurized fluid within fluid expansion chamber 30 to flow into the surrounding wellbore, relieving pressure on piston 32.
In some embodiments of the invention, the fluid in fluid expansion chamber 30 may be heated to between 200° F. and 900° F. In other embodiments, the fluid in fluid expansion chamber 30 may be heated to between 200° F. and 650° F. In some embodiments, the pressure of fluid in fluid expansion chamber 30 may be increased to between 500 and 4000 psi. In other embodiments, the pressure of fluid in fluid expansion chamber 30 may be increased to between 500 and 2200 psi
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a non-provisional application which claims priority from U.S. provisional application No. 61/857,092, filed Jul. 22, 2013.
Number | Date | Country | |
---|---|---|---|
61857092 | Jul 2013 | US |