The present invention relates to temperature compensated timing signal generators. The invention more specifically concerns such timing signal generators in which pulse inhibition and/or pulse injection is used for compensating for variations of the temperature.
Timing signal generators are known. They comprise an oscillator for providing a timing signal. The oscillator often comprises a quartz crystal resonator used to stabilize the oscillation frequency. While in principle quartz crystal oscillators are extremely accurate, it is known that their accuracy is detrimentally affected by temperature. A quartz crystal basically acts like a mechanical resonator, and any change in the temperature will cause it to expand or contract ever so slightly, thus changing the resonant frequency. In order to overcome the problems of variations in the resonant frequency, several approaches are known from the prior art.
32′768 Hz quartz crystal tuning-fork resonators are usually cut in such a way that when frequency is plotted over temperature, it defines a parabolic curve centered around 25° C. In other words, a quartz crystal tuning-fork resonator will resonate close to its nominal frequency at room temperature, but will slow down when the temperature either increases or decreases from room temperature. A common parabolic coefficient for a 32′768 Hz tuning-fork resonator is −0.04 ppm/° C2.
Timepieces equipped with a temperature sensor and capable of compensating for temperature changes are known. Patent document U.S. Pat. No. 3,895,486 describes a temperature compensated time-keeping device, as well as a temperature compensation method. This particular method known as inhibition compensation is used to lower the frequency of a timing signal. For implementing this method, the quartz crystal resonator must deliberately be made to run somewhat fast. Pulse Inhibition compensation consists in having the division chain skip a small number of cycles at regular intervals such as 10 seconds or a minute. The number of cycles to skip each time depends on the temperature and is determined by means of a programmed look-up table.
Another known method for compensating for temperature changes is pulse injection compensation. Contrarily to inhibition compensation, injection compensation works by increasing the frequency of a timing signal. As explained in patent document U.S. Pat. No. 3,978,650 for example, injection compensation consists in incorporating (injecting) additional corrective pulses into the digital signal fed through the chain of binary dividers. Again, the number of pulses to inject is determined by means of a temperature sensor and a programmed look-up table.
Both inhibition compensation and injection compensation are associated with a quantification error. The quantification error stems from the fact that it is not possible to add or suppress only a fraction of a pulse. Quantification limits the resolution to 1/f over 1 second when the frequency of the oscillator is f. If the oscillation frequency of the resonator is f=32768 Hz, the resolution is no better than 30.5 ppm, yielding an error of approximately ±15 ppm. In order to obtain a resolution of 1 ppm for example, it is necessary to compensate over at least 1 million cycles. In the case of a 32768 Hz resonator, this implies waiting at least 31 seconds before applying inhibition or injection compensation. Accordingly, with this type of compensation, the frequency of the 1 Hz output from the chain of binary dividers 2 tends to deviate slightly from its nominal frequency up to the 30th pulse, and the accumulated error is compensated as a whole at the 31st pulse. This is not a problem with a watch, which is a time integrating instrument. However, in the case, for example, of a timing signal generator, the accuracy of each individual pulse should be better than 1 ppm. In this case, the temperature compensation methods described above are not satisfactory. It is therefore an object of the present invention to provide a signal generator in which each individual oscillation is thermally compensated.
The present invention achieves the object cited above by providing a temperature compensated timing signal generator in accordance with the annexed claim 1.
According to the invention, the temperature compensated timing signal generator implements inhibition compensation and/or injection compensation in order to provide a coarse thermal compensation of the duration of each time unit pulse, and the signal generator further implements “fractional inhibition” as a method of interpolation allowing to correct for the quantification error associated with the inhibition and/or injection compensation.
Other features and advantages of the present invention will appear upon reading the following description, given solely by way of non-limiting example, and made with reference to the annexed drawings, in which:
Still referring to
The illustrated temperature compensated timing signal generator further comprises temperature compensating means identified as a whole by reference number 17. Referring again to
In more details, the temperature measuring block 18 is connected to a temperature sensor thermally coupled to the crystal oscillator 12. The temperature sensor is arranged to measure the temperature of the crystal oscillator. The sensor can be of any type known to the person skilled in the art. For example, the temperature sensor can be a thermistor. The sensor can also be an oscillator, the frequency of which is sensitive to the temperature. More specifically, according to a particular embodiment, the temperature sensor comprises the high frequency oscillator 16. Block 18 is arranged to provide a temperature signal to block 24 through output 22. Block 24 has access to data relating to the frequency/temperature behavior of the crystal oscillator 12, and block 24 is arranged to use both this data and the temperature signal in order to provide a deviation compensating signal for compensating for temperature related deviations of the frequency of the crystal oscillator from a desired frequency. At least some of the above-mentioned frequency/temperature related data is recorded in non-volatile memory contained in block 24. According to one embodiment, the deviation compensating signal generation block 24 contains a look-up table preloaded with deviation values corresponding to a selected temperature range. Based on a temperature signal received by block 24, the look-up table provides an integer deviation compensating signal through output 26 and a fractional deviation compensating signal through output 28.
In the particular case where the temperature compensated timing signal generator of the invention is arranged to provide a time unit signal, the time unit of which is equal to 1 second, the deviation compensating signal generated by block 24 preferably corresponds to the deviation of the frequency of the crystal oscillator 12 from a desired frequency. In the case where the temperature compensated timing signal generator of the invention is arranged to provide a time unit signal, the time unit of which is different from 1 second, the frequency of the reference time signal can advantageously be expressed as a number of oscillations per time unit, rather than as a number of oscillations per second. One should therefore understand that the deviation from the nominal frequency is preferably expressed as a number of oscillations of the crystal resonator 12. The deviation will be expressed as the combination of an integer number of oscillations of the crystal oscillator, and of a fractional rest corresponding to a remaining fraction of an oscillation of the crystal oscillator. This is the reason why the deviation compensating signal provided by the block 24 comprises both an integer part corresponding to an integer number of pulses of the crystal oscillator to be inhibited or injected into the frequency divider 14, and fractional part intended to compensate for any remaining deviation. One will further understand that, in the case where the frequency of the crystal oscillator is higher than the nominal frequency, the integer part of the deviation is to be compensated for by pulse inhibition and the fractional part by fractional inhibition. On the other hand, in the case where the frequency of the crystal oscillator is lower than the nominal frequency, the integer part of the deviation is to be compensated for by pulse injection, while the fractional part is always compensated for by fractional inhibition. Whether integer or fractional, inhibition can never increase the frequency of the timing signal. Therefore, in the case where the frequency of the crystal oscillator is lower than the nominal frequency, the integer number of pulses injected into the frequency divider should be large enough to increase the frequency of the timing signal up to at least the desired frequency. Fractional inhibition can then be used to slightly lower the frequency so as to remove any over compensation due to the quantification error. In other words, depending on whether the frequency of the crystal oscillator is higher or, on the contrary, lower than the nominal frequency, the integer part and the fractional part of the deviation compensating signal should be combined differently. In the first case, where the frequency of the crystal oscillator is higher than the nominal frequency, the deviation should preferably be expressed as the sum of an integer number of pulses to inhibit and of a fractional rest corresponding to fractional inhibition, while in the second case, where the frequency of the crystal oscillator is lower than the nominal frequency, the deviation is preferably expressed as an integer number of pulses from which a fractional rest is subtracted.
Block 24 is arranged to provide the integer part of the deviation compensating signal through output 26 and to provide the fractional part of the deviation compensating signal through output 28. During each pulse of the temperature compensated timing signal (provided through output 20), output 28 provides the fractional part of a new deviation compensating signal to fraction accumulation block 30. The fractional part of the new temperature compensating signal is added to the cumulative amount of fractions of deviation compensating signals already in the fraction accumulation block 30. Whenever the cumulative amount of fractions of the deviation compensating signal grows to over one period of the crystal oscillator 12, the accumulator overflows but the corresponding carry output is not accumulated. In this way, the accumulated fractional part of the deviation compensating signal contained in fraction accumulation block 30 always corresponds to less than one unit period of the crystal oscillator 12. The carry output is transferred through output 32 to the inhibition/injection control block 34, where it is added to the integer part of the deviation compensating signal in order to constitute the inhibition/injection command signal. One should understand however, that according to alternative embodiments of the invention, it would be possible to let the accumulated fractional part of the deviation compensating signal increase until it is equal to at least several periods of the crystal oscillator 12, before deducting these whole periods from the contents of the fraction accumulation block.
According to the invention, the accumulated fractional part of the deviation compensating signal is further converted into an equivalent number of periods of the high frequency oscillator 16. As the oscillation period of the high frequency oscillator 16 is many times smaller than the oscillation period of the crystal oscillator 12, the converted value of the accumulated fractional part of the deviation compensating signal almost always exceeds several periods of the high frequency oscillator. Therefore, the converted accumulated fractional part of deviation compensating signal can be rounded to an integer number periods of the high frequency oscillator without losing significantly on precision.
Expressing the accumulated fractional deviation compensating signal as an integer number of periods of the high frequency oscillator 16 requires knowing the relation between the frequencies of the two oscillators 12 and 16. Accordingly, the invention provides that the temperature compensating means 17 further comprise a frequency ratio determining circuit arranged to measure the ratio between the frequencies of crystal oscillator 12 and of high frequency oscillator 16. In the particular embodiment illustrated by the block diagram of
The inhibition/injection control block 34 is arranged to correct the state of the frequency dividing means 14 once every period of the temperature compensated timing signal. It is known to the person skilled in the art that either inhibition or injection can provide temperature compensation. However, as explained in the introduction the temperature compensation obtained through inhibition or injection is coarse (i.e. has a limited resolution), and it is a goal of the present invention to allow for temperature compensation with a finer resolution. The present invention achieves this goal by further using the fractional part of the deviation compensating signal in order to control the variable delay 38 so as to implement a second finer temperature compensation.
According to the illustrated embodiment, variable delay 38 is, for example, a digital counter configured to receive the fractional inhibition command signal form fraction accumulation block 30 as input, and to count down to zero before generating an output signal. One should note that, on the one hand, the variable delay 38 is clocked by the high frequency oscillator 16, and that on the other hand, the fractional inhibition command signal is expressed as an integer number of periods of the high frequency oscillator 16. Therefore, one will understand that the illustrated embodiment of a temperature compensated timing signal generator according to the invention allows compensating for temperature up to a precision equal to a period of the high frequency oscillator 16. If for example the target frequency for the temperature compensated timing signal is 1 Hz, and the high frequency oscillator is a 1 MHz oscillator, then the frequency resolution will be 1 ppm.
The temperature compensated timing signal generator illustrated in
M(T)=floor(P*fRC/fXT); (1)
where the frequencies fRC and fXT both depend on the temperature T (the “floor” function used in the present application is defined in Wikipedia in the entry “floor and ceiling functions”. This entry is incorporated by reference).
It is worthwhile to note that functional block 118 of
The temperature signal M(T) is provided to the deviation compensating signal generation block 124 through an output 122 of functional block 118. According to the illustrated example, the deviation compensating signal generation block 124 comprises a finite state machine configured with calibration data so as to provide a deviation compensating signal for any value of the temperature signal M(T) within a predefined operating range. Once calibrated, the finite state machine is capable of computing the deviation of the quartz crystal oscillator 112 (Deviation=fXT−32′768) for any new value of M(T) within the operating range. Deviation compensating signal generation block 124 is arranged to provide a new deviation compensating signal once for every 1 Hz temperature compensated timing signal. In other words, a new value of the deviation compensating signal is provided for each new count M(T).
Configuring the finite state machine can be quite simple. Indeed, it is well known that the frequency-temperature behavior of tuning-fork quartz crystal resonators closely approximates a parabola. It follows that it is possible to predict the behavior of the crystal oscillator 112 with reasonably good accuracy by a simple second degree polynomial fit. The advantage of computing a polynomial fit instead of using a preloaded look-up table is that a polynomial fit requires preloading the values of temperature signal M(T) and of the frequency fXT(M) for only three different temperatures TL, T0 and TH (shown in
It is important to note that, the deviation compensating signal generation block 124 computes not only the integer part of the frequency deviation (designated hereinafter by the letter “K”), but also computes a fractional component of the deviation (designated hereinafter by the letter “n”), up to a predefined number of fractional binary places. It follows that, in the case where fXT−32′768>0, the total frequency deviation is equal to K+n, where 0<n<1. K and n can be computed with the two following equations (2) and (3) respectively:
K=floor(fXT−32′768) (2)
(and K is a positive integer or zero)
n=fXT−32′768−K (3)
(0≦n<1)
Furthermore, in the case where fXT−32′768<0, K and n can be computed with the two same equations:
K=floor(fXT−32′768) (2′)
(however K is a negative integer)
n=fXT−32′768−K (3′)
(0≦n<1 is always true)
and the total frequency deviation is always equal to K+n (when K is negative, it means that pulse injection should be used instead of pulse inhibition).
As already explained in relation to
As previously mentioned in relation to
Similarly to what was described in relation to the embodiment of
nINT=floor(nACC*M/P) (4)
where M is M(T) computed by functional block 118 and P is the number of oscillation periods of the crystal oscillator 112 over which M is counted. It follows that the ratio M/P corresponds to the length of one period of the crystal oscillator 112 expressed in units equal to the period of the RC-oscillator.
The integer part K−1 of a new deviation compensating signal is available for correcting the state of the frequency dividing means 114 once every period of the 1 Hz temperature compensated timing signal. According to the illustrated embodiment, the integer part K−1 of the deviation compensating signal corresponds to the number of 32.768 kHz pulses of the crystal oscillator 112 that should be inhibited or injected during a particular period of the 1 Hz temperature compensated timing signal. As explained in the introduction, pulse inhibition compensation, like pulse injection compensation, can provide a resolution of no better than 30.5 ppm. As previously explained, in order to achieve a resolution as good as 1 ppm, the present invention also uses the fractional part of the deviation compensating signal n in order to control the variable delay 138 so as to implement a second level of temperature compensation with a much finer resolution.
As in the previous example, variable delay 138 can be, for example, a digital counter clocked by the RC-oscillator 116 and configured to receive the fractional inhibition command signal nINT provided by the functional block 134. As nINT is expressed in units equal to the oscillation period of the RC-oscillator, the variable delay 138 allows for compensating for temperature up to a precision equal to a period of the 10 MHz RC-oscillator, that is 10−7 seconds.
The second line of
Line 3 of
Line 4 of
One advantage of the described temperature compensated timing signal generator is that it can have a very low energy consumption. Indeed, except for the high frequency oscillator, the components of the timing signal generator require very little power. Therefore, according to a preferred embodiment of the invention, in order to save energy, the high frequency oscillator is shut down for the major part of each time unit, and is turned on only when it is needed.
More specifically, applying this way of doing to the particular example illustrated in
Having described the invention with regard to certain specific embodiments, it is to be understood that these embodiments are not meant as limitations of the invention. Indeed, various modifications, adaptations and/or combination between embodiments may become apparent to those skilled in the art without departing from the scope of the annexed claims. In particular, the temperature signal provided by block 18 to block 24 (
Finally, one should understand that it is not a problem if the high frequency oscillator of
Number | Name | Date | Kind |
---|---|---|---|
4305041 | Frerking | Dec 1981 | A |
5644271 | Mollov et al. | Jul 1997 | A |
5798667 | Herbert | Aug 1998 | A |
20040232995 | Thomsen et al. | Nov 2004 | A1 |
20090039968 | Thomsen et al. | Feb 2009 | A1 |
20140176201 | Weltin-Wu et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
0 683 558 | Nov 1995 | EP |
Entry |
---|
Search Report issued Feb. 25, 2014 in European Patent Application No. 13 18 679. |