The present invention relates to an apparatus and method for manufacturing a metallic container, and more specifically a temperature control mechanism used in a container beader.
During the manufacturing of containers, and more specifically metallic containers, a number of variables determine the overall finished factory can height (FFCH). These variables include the temperature used during the manufacturing process, wherein variations of the temperature create expansion or contraction of the metallic material, and thus a variation in the FFCH. When the FFCH varies beyond an acceptable amount, end users may reject the finished product, thus resulting in excess waste and expense. Furthermore, changes in the FFCH may result in structural deformities within the container, and thus compromise the integrity of the container and ultimate failure.
Furthermore, excessive temperatures during manufacturing can result in unwanted and costly machinery wear as metallic components expand and contract in an uncontrolled manner. Thus, the regulation of the temperature during the manufacturing process is critical, and more specifically in the present application with regard to the use of a beader in a container manufacturing plant.
A beader is an apparatus used to provide a bead or a seam in a metallic container such as a tin can. The bead or groove enhances the structural integrity and strength of the container, and thus is critical during can manufacturing for certain types of metallic containers. One specific application is in the packaging of containers used to store vegetables, and other perishable foods which are retorted during the filling process, wherein heat is applied to the filled container to kill unwanted bacteria and place the container in a vacuum after cooling. Thus, the structural integrity of the container and the FFCH is critical for shipping purposes and end user satisfaction.
Common beader manufacturing equipment utilizes a cooling system which has been found to be inadequate to control the FFCH. More specifically, existing beader manufacturing equipment generally comprises a beader chamber which encloses a beader turret and plurality of mandrels. Each of the mandrels retain a container which rotates around a turret frame and applies a seam to the metallic container. A cooling system is operably interconnected to the cooling chamber, and cooled air is forced into the chamber to maintain the beader turret at a preferred temperature. However, it has been found that commonly used cooling systems and beader chambers are inadequate to properly control the beader turret temperature, and more specifically the mandrel which is operably engaged to a container. Thus, unwanted temperature fluctuations in the mandrel can occur, thus causing unacceptable variations in the FFCH during manufacturing. Thus, there is a significant need in the container manufacturing industry to identify a cost efficient solution to maintaining the temperature of the beader and more specifically the mandrel during the beading operation to assure that the FFCH is within an acceptable range for structural integrity of the container and end user satisfaction.
It is thus one aspect of the present invention to provide an energy efficient cooling mechanism which is used in combination with a piece of equipment in a metallic container manufacturing plant. Thus, in one embodiment of the present invention an improved apparatus for an existing cooling mechanism is utilized to direct a channel of cooled air around a beader turret in a beader apparatus which is used to provide a seam or bead in a metallic container. Alternatively, the present invention may be used with other apparatus used to shape or alter a metallic container depending on the specific application.
Accordingly, in one embodiment of the present invention one or more “shrouds” are utilized within the beader chamber to redirect cooled air specifically around a beader turret which has a plurality ofmandrels interconnected thereto. Thus, cooled air is specifically directed to the mandrel and container. The cooling mechanism of one embodiment of the present invention regulates the temperature of the mandrel within a range of about 0.5-3.0 degrees Fahrenheit. Preferably, the temperature of the mandrel is maintained within a range no greater than about 20° F. It is another aspect of the present invention to provide a preferred geometry to the shroud wherein the cooled air is directed to a predetermined location with respect to the beader turret and beader mandrel. In one embodiment the shrouds employed are open and have a generally c-shaped cross section. Thus, in one embodiment of the present invention, a left turret is used in conjunction with a right turret wherein air flow is directed in one direction around a substantially cylindrical shaped beader turret, while air flow on the opposing side is directed in an opposite direction around the exterior surface of the beader turret to provide maximum cooling efficiency. In one embodiment of the present invention the flow rate and a temperature of air discharged from the cooling mechanism is dictated by the ambient air temperature entering said cooling assembly. In another embodiment of the present invention the flow rate and a temperature of air discharaed from the cooling mechanism is determined by the speed of operation of the turret.
It is another aspect of the present invention to provide one or more shrouds which can be implemented in a variety of different sizes and geometric configurations, and can thus be adapted for use in a variety of different types of equipment. Thus, in one embodiment an arcuate shaped pair of shrouds are utilized to redirect air around a circumferential surface of a beader turret. Alternatively, other shapes can be utilized which are shaped to direct a flow of cooled air in a predetermined direction or location. In one embodiment of the present invention the shroud is comprised of at least one of a metallic material, a ceramic material, and a fiberglass material.
Thus in one embodiment of the present invention, a cooling assembly is provided which is adapted for use as an apparatus for altering the shape of a metal container, generally comprising:
a frame;
a turret supported by said frame, said turret comprising a plurality of mandrels, each of said mandrels adapted for retaining a metallic container;
a chamber substantially enclosing said turret;
a cooling system, wherein an intake air temperature entering said cooling system is greater than a discharge air temperature;
a conduit operably interconnecting a discharge port of said cooling system to an inlet in said chamber; and
at least one shroud in operable communication with the chamber inlet, said shroud shaped to substantially direct cooled air around a circumference of said turret, wherein the temperature of the turret and mandrels can be maintained within a pre-determined range.
It is a further aspect of the present invention to provide a method for controlling the temperature of an apparatus used to alter the geometry of the metal container. More specifically, in one aspect of the present invention a method is provided to redirect cooled air in an apparatus used in a container manufacturing plant to a predetermined location or in a given direction. Thus, in one embodiment of the present invention one or more shrouds are used in conjunction with an apparatus used to provide a seam or bead in a metallic container used for the storage of food or beverages. Thus, a method is provided herein for controlling the temperature of an apparatus used to alter the geometry of the metal container, and which generally comprises:
providing an apparatus having a frame, a turret rotatably interconnected to said frame, and a chamber substantially enclosing said turret;
providing a plurality of mandrels operably interconnected to said turret, each of the mandrels adapted to hold a metallic container;
providing a cooling mechanism operably interconnected to at least one entry port of said chamber, said cooling mechanism adapted to reduce the temperature of ambient air; and
controlling the direction of cooled air within said chamber, wherein the cooled air travels around a perimeter surface of the turret to control the temperature of the turret and a plurality of mandrels positioned proximate thereto.
The accompanying drawings are incorporated into and form a part of the specification to assist in explaining the present invention. The drawings are intended for illustrative purposes only and are not intended as exact representations of the embodiments of the present invention. The drawings further illustrate preferred examples of how the inventions can be made and used and are not to be construed as limiting the inventions to only those examples illustrated and described herein. The various advantages and features of the present inventions will be apparent from a consideration of the drawings in which:
Referring now to the drawings,
The beader chamber 14 is operably interconnected to a cooling system 4 by a means of duct work 6 or other materials common in the art which are generally made out of sheet metal, tin, or other materials. One example of a cooling system 4 suitable for this purpose is a Trane air conditioner which is capable of producing about 1000 cubic feet per minute of air cooled to a temperature of 65° F. However, as appreciated by one skilled in the art, any type of cooling mechanism could be used for the same purpose, and the volume, output and exact temperature is not critical to the present invention. The duct work 6 of the present invention may include a damper 8 or other similar mechanism to control the volume of flow entering the beader chamber 14, and which may be interconnected to a jackshaft 10 and modulating motor 12. Thus, depending on the outside air temperature, volume of air required and other variables, the total volume of air entering the beader chamber 14 can be operably controlled with thermostatic devices and other means well known in the art.
Referring again to
Referring now to
The embodiments shown and described above are exemplary. Many details are often found in the art and therefore many such details are neither shown nor described. It is not claimed that all the details, parts, elements, or steps described and shown were invented herein. Even though numerous characteristics and advantages of the present inventions have been described in the drawings and accompanying text, the description is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangements of the parts and the principles of the invention to the extent indicated by the broadening of the terms of the attached claims.
For clarity, the following is a list of components generally shown in the drawings:
Number | Name | Date | Kind |
---|---|---|---|
4007621 | Franek et al. | Feb 1977 | A |
6299804 | Domodossola et al. | Oct 2001 | B1 |
6722102 | Pape et al. | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20070107209 A1 | May 2007 | US |