This invention relates generally to temperature control of thermooptic devices and, more particularly, to a method and apparatus for low-power temperature control of thermooptic devices.
Optical wavelength channel control devices, such as wavelength add-drop filters, can be made at low cost by integrating optical filters and power-dissipating active elements, such as thermooptic phase shifters, together on the same substrate. However, the thermooptic phase shifters dissipate power, whereas the optical filters need to be held at constant temperature. Since the power dissipation from the thermooptic phase shifters, the ambient temperature, and the characteristics of the ambient airflow over the device may vary with time, the temperature of the substrate tends to vary with time as well. However, the performance of the optical filters will be sacrificed if the substrate temperature cannot be maintained constant.
What is desired is a low-power technique to dissipate the heat from the substrate while holding the substrate at a constant temperature. Furthermore, it would be desirable for this technique to have only a flexible mechanical connection between the substrate and the heat sink.
We have recognized that the reason that a large amount of electrical power is required in the prior art arrangement is that the thermal resistance between the device and its ambient environment is constant. Specifically, in order to reduce the power required for a thermal management solution which holds the device at constant temperature, a variable heat sink 106 thermal resistance would be preferred. When the device is being heated in order to raise its temperature, a high thermal resistance heat sink 106 is desired in order to insulate the device. Conversely, when the device is being cooled in order to lower its temperature, a low thermal resistance heat sink 106 is desired in order to remove heat from the device.
In accordance with the present invention, the prior art thermal management problem is overcome by using a low power or passive apparatus that provides temperature control of dynamic thermooptic devices (ones that dissipate a time-varying amount and/or distribution of heat) and temperature-sensitive optical devices formed on the same substrate. The apparatus includes a passive, yet thermally conductive, heat transfer component (e.g., a heat pipe) connected to a heat-conductive interface component (e.g., a heat sink) to exchange thermal energy with an external environment. In one embodiment, the heat pipe has a variable thermal resistance (or conductance), and the connected heat sink has a fixed thermal transfer resistance to the ambient. In a second embodiment, the heat pipe has a fixed thermal resistance, and the heat sink has a variable thermal resistance to the environment. In a third embodiment the thermal resistance of both the heat pipe and the heat sink are variable. The heat pipe's resistance and/or heat sink's resistance is varied as a function of the thermooptic device power being dissipated, its distribution, the ambient temperature, and characteristics of the ambient airflow over the device in order to maintain the substrate at approximately a constant temperature. For example, if the substrate temperature is below the desired temperature for a given thermooptic power distribution, the thermal resistance of the heat pipe and/or heat sink are further reduced. As another example, when the external ambient temperature is below a certain value, the heat pipe and/or heat sink is “closed” dramatically reducing heat transfer to the ambient and resulting in the heat dissipated by the device being retained in order to keep the substrate warm.
More particularly in one embodiment, we disclose an optical apparatus comprising
In a more general embodiment, our optical apparatus comprises
In another embodiment, a thermoelectric cooler is added between the substrate and the variable heat transfer component to more precisely regulate substrate temperature. Advantageously in such an embodiment, the variable heat transfer component reduces the temperature range over which said thermoelectric cooler operates, resulting in a lower power requirement for the thermoelectric cooler.
More particularly, this embodiment is directed to an optical component temperature regulating apparatus comprising
The present invention will be more fully appreciated by consideration of the following Detailed Description, which should be read in light of the accompanying drawings in which:
In the following description, identical element designations in different figures represent identical elements. Additionally in the element designations, the first digit refers to the figure in which that element is first located (e.g., 101 is first located in
With reference to
The temperature-sensitive optical unit 101 may include one or more optical devices or components such as a, filter, waveguide grating router, multiplexer/demultiplexer, laser, amplifier, attenuator, etc. The power-dissipating active unit 102 may contain one or more thermooptic devices or components such as a dynamic optical switch, variable attenuator, tunable filter, dynamic amplifier, thermooptic phase shifter, etc. These components of the temperature-sensitive optical unit 101 and power-dissipating active unit 102 may be formed in a well-known manner using silica, silicon, semiconductors, polymer, etc.
The passive variable resistance heat transfer component 105, illustratively, may be a heat pipe. There are many ways to make a variable resistance heat pipe. For instance, the heat pipe 105 can use a thermostatically controlled valve 107 to control fluid flow through the pipe, thereby changing the thermal resistance of the heat pipe as temperature changes. This valve could either be controlled internally or by an external system that measures the temperature of the substrate. If a thermostatically controlled valve 107 is used, it can be located anywhere along the heat pipe 105 from just outside the thermally insulated portion 104 of the optical apparatus to just before the heat-conductive interface component 106 (as shown). The heat-conductive interface component 106 may be a heat sink to an external environment or other thermal interface to an external environment. The passive variable resistance heat transfer component 105 and the heat-conductive interface component 106 together are referred to herein as a passive variable heat transfer device or unit 109 for exchanging heat from the substrate 103 to the external environment at a variable rate in order to maintain the substrate 103 and, therefore, the temperature-sensitive optical component 101 within a narrower temperature range.
In accordance with our invention, the variable resistance heat transfer component 105 has its thermal resistance controlled by the temperature of the heat-conductive interface component 106 (external environment). The thermal resistance of heat transfer component 105 varies in a manner that is related to the desired temperature of the substrate 103, heat dissipated by the substrate 103, and the external environment, i.e., its temperature and the character of the air flow (or lack thereof) over interface component 106. When the substrate 103 temperature is above a predetermined value, the variable resistance heat transfer component 105 (e.g., heat pipe) is “open,” conducting away as much of the substrate 103 heat as possible to the external environment. When the substrate 103 temperature is below a predetermined value, the variable resistance heat transfer component 105 is “closed,” and the heat is retained to keep the substrate 103 warm. In one illustrative embodiment, the temperature of an insulated substrate 103 is assumed to be about 75° C., which is higher than the hottest possible external temperature, 65° C., for example. Note that the maximum heat transfer rate of the heat pipe 105 is greater than the heat generation rate of the power-dissipating active unit 102. When the external temperature is at its maximum, the heat pipe 105 is likely near a maximum conductance or heat transfer rate and the temperature of the substrate 103 would be maintained at some higher predetermined temperature. Thus, the temperature-sensitive optical component 101 can be designed for optimization at about 65° C. or above, for example, and optimum operation will be maintained irrespective of the variations in the external temperature.
Advantageously, since the variable resistance heat transfer component 105 (or heat pipe) can be made to utilize very little electrical power or to be completely passive, our optical apparatus thermal management arrangement is a power efficient technique for the temperature control of thermooptic devices.
Furthermore, advantageously, since the heat transfer component 105 can be a heat pipe with a relatively narrow diameter, be made of a relatively soft or elastic material, such as copper, or contain bellows, the mechanical linkage between the substrate 103 and outside world can be greatly reduced over prior art techniques, essentially eliminating outside world changes from causing strains and/or vibrations in the optical devices.
Note that in the above example, if the optical apparatus of
In another embodiment, the variable heat transfer unit 109 (heat transfer component 105 [heat pipe] and the heat-conductive interface component 106 [heat sink]) can be implemented using a fixed resistance heat transfer component 105 and a variable resistance heat-conductive interface component 106. Such a variable resistance heat-conductive interface component 106 can be implemented as a thermostatically controlled heat sink. The thermostatically controlled heat sink could be a passive or low power active unit. In this embodiment, it is the thermal resistance of the heat sink 106 that is varied (rather than the heat pipe 105) in order to maintain the substrate 103 and temperature-sensitive optical component 101 at a constant temperature. The thermal resistance of the heat sink 106 could, for example, be altered by using a movable shroud 110 whose position is changed to cover/uncover a portion of the cooling fins of the heat sink 106. The position of the movable shroud could be changed in a passive (e.g., using a bi-metal strip) or active (e.g., using a low-power stepper motor) manner. This embodiment of a passive/active variable heat transfer unit 109 using a fixed heat pipe 105 and a variable heat sink 106 would then operate in the same manner as the previously-described embodiment of a passive/active variable heat transfer unit 109 having a variable heat pipe 105 and fixed heat sink 106. Another embodiment may use both a variable resistance heat transfer component 105 and a variable resistance heat sink (106).
Shown in
Thus in accordance with this aspect of our invention, the variable heat transfer device 109 (e.g., variable heat pipe and/or heat sink) is used to reduce the temperature range over which said TEC 201 operates, resulting in a lower power requirement for TEC 201. Such an arrangement produces a low-power optical component temperature regulating apparatus because the variable heat transfer device 109 adjusts its thermal resistance thereby compensating for changes in external ambient temperature. The result is that the variable heat transfer device 109 reduces the temperature range that its presents to the TEC 201 to just a fraction of the external ambient temperature range.
In
Number | Name | Date | Kind |
---|---|---|---|
4099556 | Roberts, Jr. | Jul 1978 | A |
4901324 | Martin | Feb 1990 | A |
5181214 | Berger et al. | Jan 1993 | A |
5253260 | Palombo | Oct 1993 | A |
6041850 | Esser et al. | Mar 2000 | A |
6252726 | Verdiell | Jun 2001 | B1 |
6292499 | Pearson et al. | Sep 2001 | B1 |
6517221 | Xie | Feb 2003 | B1 |
6522459 | Pease et al. | Feb 2003 | B1 |
6663294 | Crane et al. | Dec 2003 | B2 |
6676306 | Ikeda et al. | Jan 2004 | B2 |
Number | Date | Country |
---|---|---|
52098257 | Aug 1977 | JP |
Number | Date | Country | |
---|---|---|---|
20040226695 A1 | Nov 2004 | US |