Temperature control system with thermoelectric device

Information

  • Patent Grant
  • 11203249
  • Patent Number
    11,203,249
  • Date Filed
    Thursday, October 18, 2018
    5 years ago
  • Date Issued
    Tuesday, December 21, 2021
    2 years ago
Abstract
Certain disclosed embodiments pertain to controlling temperature in a passenger compartment of a vehicle. For example, a temperature control system (TCS) can include an air channel configured to deliver airflow to the passenger compartment of the vehicle. The TCS can include a one thermal energy source and a heat transfer device connected to the air channel. A first fluid circuit can circulate coolant to the thermal energy source and a thermoelectric device (TED). A second fluid circuit can circulate coolant to the TED and the heat transfer device. A bypass circuit can connect the thermal energy source to the heat transfer device. An actuator can cause coolant to circulate selectively in either the bypass circuit or the first fluid circuit and the second fluid circuit. A control device can operate the actuator when it is determined that the thermal energy source is ready to provide heat to the airflow.
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND
Field

The present invention generally relates to climate control, and more specifically to temperature control in vehicles.


Description of the Related Art

A passenger compartment of a vehicle is typically heated and cooled by a heating, ventilating, and air conditioning (HVAC) system. The HVAC system directs a flow of air through a heat exchanger to heat or cool the air prior to flowing into the passenger compartment. Energy for heating and cooling of the passenger compartment of the vehicle can be supplied from a fuel fed engine such as an internal combustion engine, for example. In the heat exchanger, energy is transferred between the air and a coolant such as a water-glycol coolant, for example. The air can be supplied from ambient air or a mixture of air recirculated from the passenger compartment and ambient air.


SUMMARY

Embodiments described herein have several features, no single one of which is solely responsible for their desirable attributes. Without limiting the scope of the invention as expressed by the claims, some of the advantageous features will now be discussed briefly.


Certain disclosed embodiments pertain to controlling temperature in a passenger compartment of a vehicle. For example, a temperature control system (TCS) can include an air channel configured to deliver airflow to the passenger compartment of the vehicle. The TCS can include a one thermal energy source and a heat transfer device connected to the air channel. A first fluid circuit can circulate coolant to the thermal energy source and a thermoelectric device (TED). A second fluid circuit can circulate coolant to the TED and the heat transfer device. A bypass circuit can connect the thermal energy source to the heat transfer device, bypassing the TED. An actuator can cause coolant to circulate selectively in either the bypass circuit or the first fluid circuit and the second fluid circuit. A control device can operate the actuator when it is determined that the thermal energy source is ready to provide heat to the airflow.


Some embodiments provide a system for controlling temperature in a passenger compartment of a vehicle, the system including at least one passenger air channel configured to deliver a passenger airflow to the passenger compartment of the vehicle, at least one thermal energy source, at least one heat transfer device connected to the passenger air channel, at least one thermoelectric device (TED), a first fluid circuit configured to circulate coolant to the thermal energy source and the TED, a second fluid circuit separate from the first fluid circuit, the second fluid circuit configured to circulate coolant to the TED and the heat transfer device, at least one bypass circuit configured to connect the thermal energy source to the heat transfer device, at least one actuator configured to cause coolant to circulate in the bypass circuit instead of the first fluid circuit and the second fluid circuit, and at least one control system. The control system may be configured to operate the at least one actuator when it is determined that the thermal energy source is ready to provide heat to the passenger airflow, thereby causing coolant to circulate in the bypass circuit instead of in the first fluid circuit and the second fluid circuit.


Additional embodiments may include a pump configured to circulate coolant in the second fluid circuit. The system may also include an evaporator operatively connected to the passenger air channel. The thermal energy source may be a vehicle engine, a heater core supplied with thermal energy from a vehicle engine, an exhaust system another suitable heat source, or a combination of sources. Another embodiment may include a blend door operatively connected in the passenger air channel and configured to route the passenger airflow across the heat transfer device. In some embodiments the actuator may be a fluid control device, a valve, a regulator, or a combination of structures.


Further embodiments may include a third fluid circuit configured to connect the TED to a low temperature core. The low temperature core may be a radiator configured to dissipate heat from a fluid to ambient air. The third fluid circuit may also include a pump to provide adequate movement of fluid. The control system may also be further configured to determine whether the system is operating in a heating mode or a cooling mode; and operate at least one actuator to cause coolant to circulate in the third fluid circuit when it is determined that the system is operating in the cooling mode.


In some embodiments the thermal energy source is ready to provide heat to the passenger airflow when the thermal energy source reaches a threshold temperature. The controller may also determine the thermal energy source is ready to provide heat to the passenger airflow when the coolant circulating through the thermal energy source reaches a threshold temperature.


Some embodiments provide a method of controlling temperature in a passenger compartment of a vehicle, the method including moving a passenger airflow across a heat transfer device operatively connected within a passenger air channel of the vehicle; operating a temperature control system of the vehicle in a first mode of operation, in which a thermoelectric device (TED) transfers thermal energy between a first fluid circuit including the heat transfer device and a second fluid circuit including a thermal energy source; and switching the temperature control system to a second mode of operation after the temperature control system has been operated in the first mode of operation. In the second mode of operation, the temperature control system opens a bypass circuit in thermal communication with the heat transfer device and the thermal energy source. The bypass circuit is configured to transfer thermal energy between the heat transfer device and the thermal energy source without the use of the TED.


In other embodiments the temperature control system switches to a second mode when the thermal energy source has reached a threshold temperature. The thermal energy source may be an automobile engine. The temperature control system may switch to a second mode based on other criterion, such as, when the temperature of the fluid within the second fluid circuit reaches a threshold temperature, when a specified amount of time has elapsed, when the temperature of the passenger airflow reaches a threshold temperature, or any other specified condition or combination of conditions.


Certain embodiments provide a method of manufacturing an apparatus for controlling temperature in a passenger compartment of a vehicle, the method including providing at least one passenger air channel configured to deliver a passenger airflow to the passenger compartment of the vehicle, operatively connecting at least one heat transfer device to the passenger air channel, providing at least one thermal energy source, providing at least one thermoelectric device (TED), operatively connecting a first fluid circuit to the thermal energy source and the TED, wherein the first fluid circuit is configured to circulate coolant, operatively connecting a second fluid circuit to the TED and the heat transfer device, wherein the second fluid circuit is configured to circulate coolant, operatively connecting at least one bypass circuit to the thermal energy source to the heat transfer device, wherein the at least one bypass circuit is configured to circulate coolant, providing at least one actuator configured to cause coolant to circulate in the bypass circuit instead of the first fluid circuit and the second fluid circuit, and providing at least one control device configured to operate the at least one actuator when it is determined that the thermal energy source is ready to provide heat to the passenger airflow.


In some embodiments the passenger air channel may include a first air channel and a second air channel. The second air channel can be at least partially in a parallel arrangement with respect to the first air channel. The passenger air channel may also include a blend door configured to selectively divert airflow through the first air channel and the second air channel. The heat transfer device may be disposed in only the second air channel.


In other embodiments an evaporator may be operatively connected to the passenger air channel. Some embodiments may also include a low temperature core. A third fluid circuit may be operatively connected to the low temperature core and the TED. The third fluid circuit can be configured to circulate coolant.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIG. 1 is a schematic illustration of an embodiment of a temperature control system.



FIG. 2 is a flowchart related to an embodiment of a temperature control system with a bypassable TED.



FIG. 3 is a schematic illustration of an embodiment of a temperature control system including a cooling circuit and a heating circuit.



FIG. 4 is a flowchart related to the embodiment of a temperature control system illustrated in FIG. 3.



FIG. 5 is a schematic illustration of an embodiment of a temperature control system in a heating mode corresponding to the period during which the engine is warming up.



FIG. 6 illustrates schematically an embodiment of a temperature control system in a heating mode when the engine is sufficiently warm.



FIG. 7 illustrates schematically an embodiment of a temperature control system in a cooling mode.



FIG. 8 illustrates an embodiment of a temperature control system in an alternative cooling mode.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Although certain preferred embodiments and examples are disclosed herein, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions, and to modifications and equivalents thereof. Thus, the scope of the inventions herein disclosed is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence.


For purposes of contrasting various embodiments with the prior art, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein. While some of the embodiments are discussed in the context of particular temperature control and/or fluid circuit configurations, it is understood that the inventions may be used with other system configurations. Further, the inventions are limited to use with vehicles, but may be advantageously used in other environments where temperature control is desired.


The temperature of a vehicle passenger compartment is typically controlled using a heating, ventilating, and air conditioning (HVAC) system. When the system is used for heating, the vehicle engine can provide thermal energy to passenger compartment airflow via a fluid circuit. A heat exchanger (such as, for example, a heater core) disposed in the airflow can be configured to transfer thermal energy to the airflow that crosses the heat exchanger before entering the passenger compartment. In such configurations, the engine or heater core of a vehicle can take a substantial amount of time after the engine is started, such as several minutes, to reach a temperature at which the heater core is able to sufficiently heat air directed into the vehicle passenger compartment such that the temperature of the air is comfortable to vehicle occupants. When the heater core has reached a temperature at which it can transfer sufficient thermal energy to the passenger compartment airflow for it to be comfortable, it can be said that the heater core and/or engine is “ready” to heat the airflow.


Cooling can be achieved using a compressor-based refrigeration system (including various components, such as an evaporator) to cool the airflow entering the passenger compartment. The vehicle engine can provide energy to power the components of a cooling system (e.g., via a mechanical or electrical linkage). Many components of a cooling system are often separate from the components of a heating system. For example, a cooling system typically is connected to the passenger compartment airflow using a heat exchanger separate from the heater core.


Automotive HVAC architectures can include one or more thermoelectric devices (TED) that supplement or replace one or more portions of a heating and cooling system for the passenger compartment. By supplying electrical energy to a thermoelectric device, thermal energy can be transferred to or from passenger airflow via one or more fluid circuits and/or heat exchangers. As a stand alone heater, a thermoelectric device can remain energized even after the compartment and engine have reached a desired temperature. In a system using such a configuration, the energy applied to the thermoelectric device once the vehicle engine reaches a temperature sufficient to heat the passenger compartment may be wasted because waste heat from the engine may be sufficient to heat the passenger compartment.


In some embodiments, TEDs can be configured to supplement the heating and cooling of a passenger compartment. In an example configuration, an engine and a thermoelectric device can transfer heat to one or more heat exchangers that connect to passenger airflow. However, adding thermoelectric devices to a heating and cooling system typically has a large impact on the HVAC system design, and designs can include two or more heat exchangers. Therefore, a need exists for an improved temperature control system that is able to heat and/or cool a passenger compartment quickly and efficiently without requiring additional heat exchangers or large numbers of other components not used in a typical HVAC system design. A system would be advantageous if it could selectively provide heating from an engine and/or thermoelectric device, while also being able to provide cooling from the thermoelectric device, through a common heat exchanger connected to passenger airflow.


Some automotive HVAC systems provide a demisting function, in which humidity is removed from air during a heating mode to remove fogging and/or prevent condensate formation on a windscreen. In some systems, the demisting function is achieved by forcing air first through an evaporator to lower the air temperature below the dew point, thus condensing and removing moisture. The evaporator can, for example, be cooled by a two-phase vapor compression cycle. After passing through the evaporator, the air can be forced through a heater to achieve a suitable temperature for passenger comfort.


As used herein, the terms “sufficient” and “sufficiently,” are used broadly in accordance with their ordinary meanings. For example, in the context of heating or heat transfer, these terms broadly encompass, without limitation, a condition in which a passenger airflow is heated to a temperature that is comfortable to a passenger (e.g., when the airflow is forced into the passenger compartment via one or more vents) or a condition in which the passenger airflow is heated to a threshold temperature.


As used herein, the term “ready,” is also used broadly in accordance with its ordinary meaning. For example, in the context of a heat source, the term broadly encompasses, without limitation, a condition in which one or more criteria for determining when the heat source can sufficiently heat the passenger airflow are met. For example, a heat source can sufficiently heat the passenger airflow when a heater core can transfer enough thermal energy to the airflow for it to be comfortable when directed at or in the vicinity of a vehicle occupant. The airflow may be comfortable when it is about room temperature, equal to or somewhat higher than room temperature, greater than room temperature, or greater than or equal to a suitable threshold temperature. A suitable threshold temperature can be about 70° F., about 72° F., about 75° F., room temperature, a temperature that depends on the ambient temperature, or another temperature.


As used herein, the term “coolant” is used broadly in accordance with its ordinary meaning. For example, the term broadly encompasses fluids that transfer thermal energy within a heating or cooling system.


As used herein, the term “heat transfer device” is used broadly in accordance with its ordinary meaning. For example, the term broadly encompasses a heat exchanger, a heat transfer surface, a heat transfer structure, another suitable apparatus for transferring thermal energy between media, or any combination of such devices.


As used herein, the terms “thermal energy source” and “heat source” are used broadly in accordance with their ordinary meanings. For example, the terms broadly encompass a vehicle engine, an exhaust system, a heating element, any suitable device that converts energy into thermal energy, or a combination of devices.


As used herein, the term “passenger air channel” is broadly used in its ordinary sense. For example, a passenger air channel encompasses components through which air can flow, including ducts, pipes, vents, ports, connectors, an HVAC system, other suitable structures or combination of structures.


As used herein, the term “thermoelectric device” is used broadly in accordance with its ordinary meaning. For example, the term broadly encompasses any device that incorporates thermoelectric material and is used to transfer thermal energy or to produce an electrical output based on a temperature differential. A thermoelectric device may be integrated or used in conjunction with other temperature control elements, such as a heater core, an evaporator, an electrical heating element, a thermal storage device, a heat exchanger, another structure, or a combination of structures.


As used herein, the term “actuator” is used broadly in accordance with its ordinary meaning. For example, the term broadly encompasses fluid control devices, such as valves, regulators, and other suitable structures or combination of structures used to the control the flow of fluids.


As used herein, the term “control device” is used broadly in accordance with its ordinary meaning. For example, the term broadly encompasses a device or system that is configured to control fluid movement, electrical energy transfer, thermal energy transfer, and/or data communications among one or more. The control device may include a single controller that controls one or more components of the system, or it may include more than one controller controlling various components of the system.


Referring now to FIG. 1, illustrated is an embodiment of a temperature control system including an engine 100, a thermoelectric device (TED) 12, a heat transfer device 150, and a passenger air channel 18. The heat transfer device 150 is disposed in the air passenger channel 18. The passenger air channel 18 is configured such than an airflow may pass through the channel 18 and be in thermal communication with the heat transfer device 150. In some embodiments, an air handling unit (e.g., a fan) is configured to convey the airflow. At least some of the components of the system can be in fluid communication via thermal energy transport means such as fluid conducting tubes, for example. Actuators, such as valves 120, 130 and 160 can be used to control the thermal energy transfer through the tubing. A control device, such as a controller can be configured to control the various components of the system and their relative fluid communication.


In the illustrated embodiment, in a first mode, when valve 130 is open and valve 160 is open, there is thermal communication between the heat transfer device 150, the TED 12, and the engine 100. In a first circuit, or thermal source circuit, 110, a fluid, such as coolant, is circulated and thermal energy is transferred between the engine 100 and the TED 12. The TED 12 is provided with electrical energy of a specific polarity that allows it to transfer thermal energy between the first circuit 110 and a second circuit, or heat transfer circuit, 140. Fluid is circulated in the second circuit 140 and thermal energy is transferred between the heat transfer device 150 and the TED 12. In the first mode, the TED pumps thermal energy from the first circuit 110 to the second circuit 140, where it is transferred to the airflow via the heat transfer device 150.


In a second mode, a bypass circuit actuator 120 is open, and other actuators 130, 160 are closed, allowing fluid to circulate in a bypass circuit. The circulating fluid permits thermal communication between the engine 100 and the heat transfer device 150. The TED 12 is bypassed and is no longer in thermal communication with the engine 100 or the heat transfer device 150. In this mode of operation, fluid flow is stopped in the first circuit 110 and the second circuit 140, and electrical energy is not supplied to the TED. In some embodiments, the system can switch between the first mode and the second mode of operation. In some embodiments, a low temperature core (not shown) can be operatively connected or selectively operatively connected to the first fluid circuit 110 and used to transfer thermal energy to ambient air from the heat transfer device 150, the TED 12, or other elements of the temperature control system. For example, the low temperature core could be connected parallel to or in place of the engine 100 in at least some modes of operation.


The TED 12 can include one or more thermoelectric elements that transfer thermal energy in a particular direction when electrical energy is applied. When electrical energy is applied using a first polarity, the TED 12 transfers thermal energy in a first direction. Alternatively, when electrical energy is applied using a second polarity opposite the first polarity, the TED 12 transfers thermal energy in a second direction opposite the first direction. The TED 12 can be configured to transfer thermal energy to the heat transfer device 150 when electrical energy of a first polarity is applied by configuring the system such that the heating end of the TED 12 is in thermal communication with the heat transfer device 150. Further, the cooling end of the TED 12 can be place in thermal communication with the engine 100 so that the TED 12 draws thermal energy from the circuit to which the engine is connected. In certain embodiments, a control system (not shown) regulates the polarity of electrical energy applied to the TED 12 to select between a heating mode and a cooling mode. In some embodiments, the control system regulates the magnitude of electrical energy applied to the TED 12 to select a heating or cooling capacity.



FIG. 2 illustrates a method of controlling temperature in a passenger compartment of a vehicle. The method includes moving airflow across a heat exchanger. The airflow can travel through one or more passenger air channels, such as ducts, before entering the passenger compartment. Initially, the control system operates in a first mode, in which a TED pumps thermal energy from a heat source to a circuit connected to the heat exchanger or directly to the heat exchanger. The control system continues to operate in the first mode until one or more switching criteria are met. When the one or more criteria are met the control system switches to a second mode of operation. In one embodiment, the control system switches to the second mode when coolant circulating through an engine or another heat source is ready to heat the airflow. In the second mode thermal energy is transferred from the engine or other heat source to the heat exchanger. The TED is bypassed and is not in substantial thermal communication with the heat source or the heat exchanger. In this configuration, a fluid, such as coolant, flows through a bypass circuit so that thermal energy transfer occurs in the bypass circuit. The system can also operate one or more actuators, such as valves, in order to cause the fluid flow to bypass the TED. In one embodiment, a controller controls valves to switch between modes of operation. In the second mode of operation, the heat exchanger can act much the same as a heater core in a conventional vehicle HVAC system.


The one or more criteria for switching modes of operation can be any suitable criteria and are not limited to characteristics of the vehicle or temperature parameters. In some embodiments, the criteria for switching the fluid flow include one or more of the following: algorithms, user action or inaction, the temperature of a thermal energy source, fluid temperature, an amount of time elapsed, and air temperature. In certain embodiments, the criteria can also be user-specified or user-adjusted according to preference. In one embodiment, switching from a first mode to a second mode occurs when the engine reaches a threshold temperature. In another embodiment, the switch occurs when a fluid circuit reaches a threshold temperature. In yet another embodiment, the switch occurs when the air temperature reaches a threshold temperature.


Referring to FIG. 3, an embodiment of a temperature control system is illustrated which can be configured to heat and cool an airflow in a passenger air channel 18. The system comprises a TED 12, a heat transfer device 150, a low temperature core, or heat sink, 171, a thermal energy source 181, and a plurality of actuators 160, 175, 185. The heat transfer device 150 is disposed in the air passenger channel 18. The passenger air channel 18 is configured such than an airflow may pass through the channel 18 and be in thermal communication with the heat transfer device 150. In some embodiments, an air handling unit (e.g., a fan) is configured to convey the airflow. The system further comprises a heat sink circuit 170 which includes the low temperature core 171 and at least one valve 175. The TED 12 is in thermal communication with the heat sink circuit 170 at the thermal junction 190. The system also comprises a heat source circuit 180 which includes the thermal energy source 181 and at least one valve 185. The TED 12 is in thermal communication with the heat source circuit 180 at a thermal junction 190. Some embodiments also comprise a heat transfer circuit including the heat transfer device 150 and at least one valve 160. The heat transfer circuit 140 is in thermal communication with the TED 12 and heat is transferred between the airflow and the heat transfer device 150. In one embodiment, the thermal energy source 181 is an automobile engine and the low temperature core is a radiator. It is also contemplated that pumps can be configured to function with the system in order to cause fluid flow.


The system may be configured for operation in different modes by operating at least one of the valves 175 and 185, which causes coolant to flow through the heat source circuit or the heat sink circuit depending on whether a heating or cooling mode is selected. In a heating mode, opening valve 185 and closing valve 175 causes coolant to flow through the heat source circuit 180 and not through the heat sink circuit 170. In this mode, the TED 12 operates in a first polarity and is configured to transfer thermal energy from the heat source circuit 180 to the heat transfer circuit 140, which, in turn, transfers thermal energy to the airflow in the passenger air channel 18.


In a cooling mode, the closing valve 185 and the opening valve 175 cause coolant to flow through the heat sink circuit 170 and not through the heat source circuit 180. In this mode, the TED 12 operates in a second polarity, which is opposite the first polarity, and is configured to transfer thermal energy from the heat transfer circuit 140 to the heat sink circuit 170, which lowers the temperature of the airflow by transferring thermal energy from the airflow to the heat sink circuit 170.



FIG. 4 illustrates another embodiment of a method of operation for a temperature control system, in which the embodiment of the system illustrated in FIG. 3 could follow. In this embodiment, an airflow moves across a heat transfer device and into a passenger compartment. In certain embodiments, the system circulates a fluid, such as coolant in a first circuit, or heat transfer circuit, which is in thermal communication with the heat transfer device and a thermoelectric device (TED). The system receives an indication as to whether a heating mode or a cooling mode is selected. If the heating mode is selected, then the system causes fluid to flow in a heat source circuit which is in thermal communication with a thermal energy source and the TED at a thermal junction. In the heating mode, the TED transfers thermal energy between the heat source circuit and the heat transfer circuit. If the cooling mode is selected, then the system causes fluid to flow in the heat sink circuit which is in thermal communication with a low temperature core and the TED at the thermal junction. In the cooling mode, the TED transfers thermal energy between the heat sink circuit and the heat transfer circuit. The system designates a selected polarity based on whether the heating mode or cooling mode is selected and electrical energy of the selected polarity is provided to the TED. In the heating mode, a polarity is selected that causes the TED to transfer thermal energy from the heat source circuit to the heat transfer device. In the cooling mode, a polarity is selected that causes the TED to transfer thermal energy from the heat transfer device to the heat sink circuit.


As discussed in relation to the embodiment of the system illustrated in FIG. 3, the heat sink circuit and the heat source circuit can include actuators which can be used to control the flow of fluid or coolant within the system. In one embodiment, the system causes fluid to flow through the heat sink circuit by operating an actuator associated with the heat source circuit. In another embodiment, the system can cause fluid to flow through the heat sink circuit by operating an actuator associated with the heat sink circuit. Further, in some embodiments, an actuator associated with the heat sink circuit can be opened and an actuator associated with the heat source circuit can be closed in order to cause fluid to flow in the heat sink circuit. It is also contemplated that a plurality of pumps can be configured to function with the heat transfer circuit, heat sink circuit and the heat source circuit in order to facilitate fluid flow.



FIG. 5 illustrates an embodiment of a temperature control system 10 used for providing temperature controlled air to a passenger compartment. In this embodiment, the system 10 comprises a thermoelectric device (TED) 12, an engine 13, a heat transfer device, such as a heat exchanger 16, and a passenger air channel, such as an HVAC system 62. In some embodiments the system additionally comprises a low temperature core 40. The system further comprises one or more pumps 20, 52 and actuators 24, 26, 28, 32, 34, 36 that are configured to transfer fluid, such as coolant, among the different components. The engine 13 can be any type of vehicle engine, such as an internal combustion engine, that is a source of thermal energy. The system 10 can be controlled by a controller, plurality of controllers, or any other device which can function to control the pumps, valves, heat source, TED, and other components of the system. By controlling the components, valves and pumps, the controller can operate the system in various modes of operation. The controller can also change the mode of the system in response to input signals or commands.


In one embodiment, a fluid such as a liquid coolant transfers thermal energy among the system components and is controlled by one or more pumps. The liquid coolant can carry the thermal energy via a system of tubes that provide fluid communication among the various components. The actuators can be used to control which components are in thermal communication with the heat exchanger 16 at a given time. Alternatively, a temperature control system might use other materials or means to provide thermal communication among components.


In this embodiment, the system 10 uses a single heat exchanger 16, which allows for minimal impact on the HVAC design because it can maintain a typical configuration without the need for an additional heat exchangers. However, it is also contemplated that the system 10 could be configured with a plurality of heat exchangers and/or a plurality of HVAC systems or airflow channels. Depending on the mode of the system 10, the heat exchanger 16 may be in thermal communication with the engine 13 or the low temperature core 40. In a heating mode the heat exchanger 16 may be in thermal communication with the engine 13 and/or the thermoelectric device 12. In a cooling mode the heat transfer device 16 may be in thermal communication with the low temperature core or radiator 40 and/or the thermoelectric device 12.


Also illustrated in FIG. 5 is an embodiment of the HVAC system 62 through which an airflow passes before entering the passenger compartment. In this embodiment the heat transfer device 16 is functionally coupled to or disposed within the HVAC system 62 so that it can transfer thermal energy to or from the airflow. The airflow in the HVAC system 62 can flow through one or more channels 52, 54 separated by a partition 60. In certain embodiments, the first and second channels 52, 54 are of the same approximate size (e.g., same approximate height, length, width, and/or cross-sectional area). In other embodiments, the first and second channels 52, 54 are of differing sizes, as illustrated in FIG. 5. For example, the width, height, length, and/or cross-sectional area of the first and second channels 52, 54 can be different. In some embodiments, the first channel is larger than the second channel. In other embodiments, the first channel is smaller than the second channel. In further embodiments, additional partitions may be used to create any number of channels or conduits. The partitions may be of any suitable material, shape, or configuration. The partitions can serve to partially or completely separate the conduits or channels and may have apertures, gaps, valves, blend doors, other suitable structures, or a combination of structures that allow for fluid communication between channels. At least a portion of the partition can thermally insulate the first channel 52 from the second channel 54.


In certain embodiments, the HVAC system 62 comprises a first movable element configured to be operable to control the airflow passing through the first and second channels 52, 54. For example, a blend door 56 can be configured to control the airflow passing through the channels 52, 54. The blend door can be rotatably coupled proximate the entrance of the channels 52, 54. By rotating, the blend door can control the airflow through the channels 52, 54. The blend door 56 can selectively modify, allow, impede, or prevent airflow through one or both of the first and second channels 52, 54. Preferably, the blend door 56 can prevent airflow through one of the channels while directing all of the airflow through the other channel. The blend door 56 can also allow airflow through both channels in varying amounts and ratios. In some embodiments, the blend door 56 is coupled to the partition 60 and rotates relative to the partition 60. It is also contemplated that more than one blend door could be used in the HVAC system 62 in order to direct airflow and improve heating and/or cooling of the airflow.


In some embodiments an evaporator 58 may be disposed in the HVAC system 62 in the path of the airflow in order to remove moisture from the airflow before it enters the passenger compartment. In some embodiments, the evaporator 58 may be positioned before the channels 52, 54 so that it may condition the entire airflow. In other embodiments the evaporator may be positioned within one of the channels so that it may condition only the airflow in a certain channel. Other devices such as condensers can also be used to prepare or cool the airflow before it enters the passenger compartment.


In one embodiment, the system works in different modes including a first mode, or a heating mode for the period while the engine is warming up (“start up heating mode”), a second mode, or a heating mode for when the engine is sufficiently warm (“warm engine heating mode”), and a third mode for cooling the passenger compartment (“cooling mode”). In some embodiments, a single system can perform each of the various modes, but it is also contemplated that embodiments of the invention can be configured to perform only one of the modes described below. For example, one embodiment might be configured to only perform the mode of providing thermal energy from the thermoelectric device while the engine warms. Another embodiment might be configured to only provide cooling as described in the cooling mode.



FIG. 5 illustrates an embodiment of a temperature control system 10 in the first mode, which may also be referred to as the “start up heating mode.” In this mode, heat is provided to the passenger compartment while the engine 13 is warming up and has not yet reached a temperature sufficient to heat the passenger compartment. When the engine 13 is first started, it does not generate enough heat to sufficiently increase the temperature within the passenger compartment. A vehicle engine can take several minutes or more to warm up to the necessary temperature to provide comfort air to the passenger compartment. In this mode, a controller provides electrical energy to the TED 12 which generates a thermal gradient and transfers heat from the heating end of the TED 12 to the heat transfer circuit 14. Liquid coolant within the heating circuit 14 is moved through the heating circuit by pump 20. The valve 24 is open and the heating circuit 14 is in fluid communication with the heat exchanger 16, which thermally connects the TED 12 and the heat exchanger 16. The heat exchanger 16 is disposed in the HVAC system 62. In this manner, the thermal energy transferred to the coolant by the thermoelectric device 12 is transferred by the heat exchanger 16 to the airflow entering the passenger compartment. In one embodiment, the TED 12 is the sole source of thermal energy for the heat exchanger 16 and no thermal energy is taken from the engine 13.


In an alternate embodiment, in the start up heating mode, thermal energy from the engine 13 is also used to heat the coolant in the heat transfer circuit 14. Valves 26 and 28 can be opened and a pump within the engine 13 can be configured to circulate the coolant between the engine 13 and the TED 12. The heated coolant from the engine 13 transfers thermal energy to the TED 12. The polarity of the TED 12 is configured to transfer thermal energy from the engine to the heat transfer circuit 14 and the heat exchanger 16. Thus, the heat exchanger 16 is receiving thermal energy from both the engine 13 and the TED 12.


As illustrated in FIG. 5, some valves 32, 34, and 36 can be closed during the start up heating mode. The controller can also disengage the pump 52 that circulates coolant in the circuit connected to the low temperature core 40. In some embodiments, the low temperature core 40 is not needed during the start up heating mode because the airflow into the passenger compartment is being heated.


In this embodiment, the HVAC system 62 can include a blend door 56 or other device that is configured to direct the airflow into different channels 52, 54 leading to the passenger compartment. In this embodiment the heat exchanger 16 is located in the second channel 54 and in the start up heating mode and the blend door 56 is positioned so that at least a portion of the airflow is directed through the second channel 54. In an alternative embodiment, the heat exchanger 16 may be operatively coupled to or placed within more than one channel of the HVAC system 62.


During the start up heating mode, the system 10 can be configured to provide demisting of the airflow before it enters the passenger compartment. The evaporator 58 can be configured within the HVAC system 62 so that the airflow passes through the evaporator 58, thereby cooling and removing moisture from the airflow before it is heated by heat exchanger 16.



FIG. 6 illustrates an embodiment of a temperature control system 10 in a second mode, which can also be referred to as the “warm engine heating mode.” In this mode, the engine 13 has reached a sufficient temperature and is the sole source of thermal energy for the system. In this mode, the engine 13 is in thermal communication with the heat exchanger 16. Thermal energy from the engine 13 is transferred via coolant through the tubing to the heat exchanger 16. A pump within the engine 13 may be configured to circulate coolant between the engine 13 and the heat exchanger 16. The controller operates to open actuators 24, 32, and 34 in order to allow fluid communication between the heat exchanger 16 and the engine 13. In some embodiments, actuators 24 and 26 may be closed to allow more efficient flow of the coolant, and actuator 36 is closed so that there is no coolant flow to the radiator 40.


In the warm engine heating mode, the controller can stop the electrical energy supplied to the TED 12 and can disengage the pump 20. When the engine 13 is at a sufficient temperature, the TED 12 is no longer needed and the electrical energy applied to the TED 12 can be conserved. By controlling the operation of the actuators, the system 10 is able to bypass the TED 12 and thermally connect the heat exchanger 16 to the engine 13. In this embodiment, it is not necessary to have multiple heat exchangers 16 or multiple sets of heat exchangers in the passenger air channel 62. Instead, the system 10 can operate in various cooling and/or heating modes while being connected to a single heat exchanger 16 or to a single set of heat exchangers.


When the temperature control system is in the warm engine heating mode, an evaporator 56 can be configured to remove moisture from the airflow. Therefore, demisting is possible during the entire heating process. Similar to the configuration of the start up heating mode, the evaporator 56 can be positioned in the HVAC system 62 so that the airflow passes through the evaporator 56 before being heated by the heat exchanger 16.


A blend door 56 can direct at least a portion of the airflow through a channel 54 in which the heat exchanger 16 is located so that the airflow is heated before entering the passenger compartment. To heat the passenger compartment at a slower rate, the blend door 56 can be adjusted to allow less of the airflow to pass through the heat exchanger 16 channel 54 and/or allow more of the airflow to pass through the other channel 52 which is not heated. To increase the heating rate, the blend door can be adjusted so that more of the airflow is directed through the channel 54 with the heat exchanger 16 and less of the airflow is allowed into the other channel 52.


If desired, it is also possible to use the TED 12 as a thermal energy source during the warm engine heating mode. Although a warm engine 13 can typically supply enough thermal energy to the heat exchanger 16 for heating the passenger compartment, a TED 12 can be used as a supplemental thermal energy source. The actuators in the system 10 can be configured such that the engine 13 and the heating circuit 14 are placed in thermal communication with the heat exchanger 16. Electric energy can continue to be supplied to the TED 12 so that it transfers thermal energy to the heating circuit 14 which is moved to the heat exchanger by pump 20. The thermal energy from the TED 12 is supplemental because the engine 13 also transfers thermal energy to the heat exchanger 16 via heated coolant moved by a pump within the engine 13.



FIG. 7 illustrates an embodiment of a temperature control system 10 in a third mode or “cooling mode.” In this mode, the system 10 cools the airflow in the HVAC system 62 by transferring heat from the airflow to the heat exchanger 16. In one embodiment, valve 24 is opened and pump 20 engaged to allow coolant flow through the heat transfer circuit 14, transferring thermal energy from the heat exchanger 16 to the TED 12. The TED 12 receives electric energy with a polarity opposite the polarity used in the heating modes. When electrical energy of the opposite polarity is applied to the TED 12, the direction of the thermal gradient is reversed. Instead of providing heat or thermal energy to the heat exchanger 16, the TED 12 cools heat exchanger 16 by transferring thermal energy away from the heat transfer circuit 14.


In another embodiment of the system 10, a low temperature core or radiator 40 is configured to assist in cooling the airflow. As part of the system 10, a heat sink circuit or cooling circuit 50 is configured so that the TED 12 is in thermal communication with the low temperature core or radiator 40. In this embodiment, actuators 28, 32, and 34 are closed, actuators 26 and 36 are open, and pump 52 is engaged so that coolant flows through the low temperature core 40. In this configuration the engine 13 is bypassed by the coolant system and is not in thermal communication with the TED 12 or heat exchanger 16. Thus, the cooling circuit 50 and radiator 40 transfer heat from the TED 12 in an efficient manner.


Preferably, the cooling circuit 50 and/or the radiator 40 are located proximate the thermoelectric device 12 as to provide efficient transfer of thermal energy. The direction of the thermal gradient of the TED 12 during cooling transfers thermal energy from the heat transfer circuit 14 to the cooling circuit 50 and the radiator 40. The heating end of the TED 12 is directed toward the cooling circuit 50 and the cooling end of the TED is directed toward the heating circuit 32. Therefore, heat is transferred from the airflow, through the heat exchanger 16 and heating circuit 14, to the cooling end of the TED 12. From the TED 12, heat is transferred from its heating end to the cooling circuit 50 and into the radiator 40. Preferably, the radiator 40 or low temperature core is exposed to airflow or another source for dissipating heat.


During the “cooling mode,” an evaporator 58 may be used as part of cooling the airflow before it enters the passenger compartment. The evaporator 58 can be configured so that the airflow passes through it and moisture is removed before it reaches the heat exchanger 16. Also, the heat exchanger 16 can be located within one of a plurality of channels 52, 54. A blend door 56 can be configured to direct airflow into the channel 54 in which the heat exchanger 16 is located. Similar to the heating modes, in the “cooling mode” the blend door 56 can adjust the rate of cooling by adjusting how much air flow is allowed through the channels 52, 54. Alternatively, the heat exchanger 16 could be configured to transfer heat from the entire airflow without the use of separate channels.



FIG. 8 illustrates an alternate embodiment of a temperature control system that can be used to cool the passenger compartment of a vehicle. In this embodiment, the airflow can be cooled without the use of a heat exchanger 16. All of the valves can be closed and all of the pumps turned off. No electrical energy is applied to the TED 12 and there is no thermal energy transfer from the engine 13 to the heat exchanger 16. Instead of using the heat exchanger as a source of heat transfer, the airflow is directed into a channel 52 and then into the passenger compartment. In one embodiment, a blend door 56 is configured to direct substantially all of the airflow into channel 52 so that the airflow does not pass through the heat exchanger 16 before entering the passenger compartment. In some embodiments, airflow may pass through an evaporator 58 before entering into the channel 52. Alternatively, an evaporator 58 may be located within the channel 52 through which the airflow passes. In this manner, the airflow is cooled without system 10 providing any heat transfer to the HVAC system 62.


Reference throughout this specification to “some embodiments,” “certain embodiments,” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least some embodiments. Thus, appearances of the phrases “in some embodiments” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment and may refer to one or more of the same or different embodiments. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.


As used in this application, the terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.


Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment.


Although the invention presented herein has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the invention herein disclosed should not be limited by the particular embodiments described above, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. A method of controlling temperature in a passenger compartment of a vehicle, the method comprising: moving a passenger airflow across a heat transfer device operatively connected within a passenger air channel of the vehicle;operating a temperature control system of the vehicle in a first mode of operation, in which a thermoelectric device transfers thermal energy between a first fluid circuit connected to the heat transfer device and a second fluid circuit connected to a thermal energy source;switching the temperature control system to a second mode of operation after the temperature control system has been operated in the first mode of operation;wherein, in the second mode of operation, the temperature control system opens a bypass circuit connected to the heat transfer device and to the thermal energy source; andwherein the bypass circuit is configured to transfer thermal energy between the heat transfer device and the thermal energy source without the use of the thermoelectric device by bypassing the thermoelectric device; andswitching the temperature control system to a third mode of operation, wherein, in the third mode of operation, the temperature control system opens a third fluid circuit connected to the thermoelectric device and a low temperature core, wherein the third fluid circuit is configured to bypass the thermal energy source, and wherein the low temperature core is configured to dissipate thermal energy to ambient air.
  • 2. The method of claim 1, wherein the heat transfer device is a single heat exchanger within the passenger air channel configured to be in fluid communication with the second fluid circuit and the bypass circuit to direct fluid through the second fluid circuit and the bypass circuit.
  • 3. The method of claim 1, wherein switching the temperature control system to the second mode occurs when the thermal energy source has reached a threshold temperature.
  • 4. The method of claim 1, wherein the thermal energy source comprises an automobile engine.
  • 5. The method of claim 1, wherein switching the temperature control system to the second mode occurs after a threshold time period has elapsed since the thermal energy source was started.
  • 6. The method of claim 1, wherein switching the temperature control system to the second mode occurs when the temperature of fluid within the second fluid circuit reaches a threshold temperature.
  • 7. The method of claim 1, wherein switching the temperature control system to the second mode occurs when the temperature of the passenger airflow reaches a threshold temperature.
  • 8. A method of manufacturing an apparatus for controlling temperature in a passenger compartment of a vehicle, the method comprising: providing a passenger air channel configured to deliver a passenger airflow to the passenger compartment of the vehicle,operatively connecting a heat transfer device to the passenger air channel,providing a thermal energy source,providing a thermoelectric device,operatively connecting a first fluid circuit to the thermal energy source and to the thermoelectric device,operatively connecting a second fluid circuit to the thermoelectric device and to the heat transfer device,operatively connecting a bypass circuit to the thermal energy source and to the heat transfer device, the bypass circuit configured to bypass the thermoelectric device,providing an actuator configured to cause fluid to circulate in the first fluid circuit and in the second fluid circuit in a first mode of operation and to cause fluid to circulate in the bypass circuit in a second mode of operation,providing a control device configured to operate the apparatus in the first mode of operation before it is determined that the thermal energy source is ready to provide heat to the passenger airflow and to operate the apparatus in the second mode of operation after it is determined that the thermal energy source is ready to provide heat to the passenger airflow,providing a low temperature core configured to transfer thermal energy from fluid flowing within the low temperature core to ambient air,operatively connecting a third fluid circuit to the low temperature core and to the thermoelectric device, andproviding an actuator configured to cause fluid to circulate in the third fluid circuit in a third mode of operation,wherein the control device is configured to operate the apparatus in the third mode of operation when it is determined that cooling is desired in the passenger compartment of the vehicle.
  • 9. The method of claim 8, wherein the heat transfer device is a single heat exchanger within the passenger air channel configured to be in fluid communication with the second fluid circuit and the bypass circuit to direct fluid through the second fluid circuit and the bypass circuit.
  • 10. The method of claim 8, wherein providing the passenger air channel comprises providing a first air channel and a second air channel.
  • 11. The method of claim 10, further comprising operatively connecting a blend door to the passenger air channel configured to selectively divert airflow to the first air channel, to the second air channel, or to both the first air channel and the second air channel.
  • 12. The method of claim 11, wherein operatively connecting the heat transfer device comprises disposing the heat transfer device in only one of the first air channel and the second air channel.
  • 13. The method of claim 8, further comprising operatively connecting an evaporator to the passenger air channel.
  • 14. A method of controlling temperature in a passenger compartment of a vehicle, the method comprising: moving a passenger airflow across a heat transfer device operatively connected within a passenger air channel of the vehicle;operating in a first mode of operation by transferring thermal energy via a heater between a first fluid circuit connected to the heat transfer device and a second fluid circuit connected to a thermal energy source;switching to a second mode of operation by: opening a bypass circuit connected to the heat transfer device and to the thermal energy source;bypassing the heater; andtransferring thermal energy between the heat transfer device and the thermal energy source without the use of the heater; andswitching to a third mode of operation by: opening a third fluid circuit connected to the heater and a low temperature core;bypassing the thermal energy source; anddissipating thermal energy to ambient air via the low temperature core.
  • 15. The method of claim 14, wherein the heat transfer device is a single heat exchanger within the passenger air channel configured to be in fluid communication with the second fluid circuit and the bypass circuit to direct fluid through the second fluid circuit and the bypass circuit.
  • 16. The method of claim 14, wherein the heater comprises a thermoelectric device.
  • 17. The method of claim 14, wherein the thermal energy source comprises a vehicle engine.
  • 18. The method of claim 14, wherein switching to the second mode occurs when the thermal energy source has reached a threshold temperature.
  • 19. The method of claim 14, wherein switching to the second mode occurs after a threshold time period has elapsed since the thermal energy source was started.
  • 20. The method of claim 14, wherein switching to the second mode occurs when the temperature of fluid within the second fluid circuit reaches a threshold temperature.
US Referenced Citations (392)
Number Name Date Kind
413136 Dewey Oct 1889 A
2118636 Alexander et al. May 1938 A
2362259 Findley Nov 1944 A
2363168 Findley Nov 1944 A
2499901 Brown, Jr. Mar 1950 A
2912832 Clark Nov 1959 A
2944404 Fritts Jul 1960 A
2949014 Belton, Jr. et al. Aug 1960 A
2984077 Gaskill May 1961 A
2997514 Roeder, Jr. Aug 1961 A
3040538 Alsing Jun 1962 A
3085405 Frantti Apr 1963 A
3125860 Reich Mar 1964 A
3136577 Richard Jun 1964 A
3137142 Venema Jun 1964 A
3138934 Roane Jun 1964 A
3165900 Huntington Jan 1965 A
3196620 Elfving et al. Jul 1965 A
3212275 Tillman, Jr. Oct 1965 A
3213630 Mole Oct 1965 A
3220198 Muller et al. Nov 1965 A
3236056 Phillips et al. Feb 1966 A
3252504 Newton May 1966 A
3391727 Topouszian Jul 1968 A
3527621 Newton Sep 1970 A
3599437 Panas Aug 1971 A
3635037 Hubert Jan 1972 A
3681929 Schering Aug 1972 A
3779307 Weiss et al. Dec 1973 A
3817043 Zoleta Jun 1974 A
3885126 Sugiyama et al. May 1975 A
4038831 Gaudel et al. Aug 1977 A
4051691 Dawkins Oct 1977 A
4065936 Fenton et al. Jan 1978 A
4193271 Honigsbaum Mar 1980 A
4280330 Harris et al. Jul 1981 A
4402188 Skala Sep 1983 A
4448157 Eckstein et al. May 1984 A
4459466 Nakagawa et al. Jul 1984 A
4494380 Cross Jan 1985 A
4531379 Diefenthaler, Jr. Jul 1985 A
4565072 Fujiwara et al. Jan 1986 A
4570450 Takemi et al. Feb 1986 A
4572430 Takagi et al. Feb 1986 A
4637220 Sakano Jan 1987 A
4658599 Kajiwara Apr 1987 A
4665707 Hamilton May 1987 A
4665971 Sakurai May 1987 A
4707995 Assaf Nov 1987 A
4753682 Cantoni Jun 1988 A
4823554 Trachtenberg et al. Apr 1989 A
4848090 Peters Jul 1989 A
4858069 Hughes Aug 1989 A
4905475 Tuomi Mar 1990 A
4907060 Nelson et al. Mar 1990 A
4922721 Robertson et al. May 1990 A
4922998 Carr May 1990 A
4923248 Feher May 1990 A
4947735 Guillemin Aug 1990 A
4988847 Argos et al. Jan 1991 A
5029446 Suzuki Jul 1991 A
5038569 Shirota et al. Aug 1991 A
5042566 Hildebrand Aug 1991 A
5092129 Bayes et al. Mar 1992 A
5097829 Quisenberry Mar 1992 A
5099654 Baruschke et al. Mar 1992 A
5111664 Yang May 1992 A
5119640 Conrad Jun 1992 A
5138851 Mardikian Aug 1992 A
5167129 Akasaka Dec 1992 A
5193347 Apisdorf Mar 1993 A
5198930 Muratomi Mar 1993 A
5232516 Hed Aug 1993 A
5269145 Krause et al. Dec 1993 A
5269146 Kerner Dec 1993 A
5279459 Single, II Jan 1994 A
5291960 Brandenburg et al. Mar 1994 A
5300197 Mitani et al. Apr 1994 A
5303771 Des Champs Apr 1994 A
5316078 Cesaroni May 1994 A
5385020 Gwilliam et al. Jan 1995 A
5386823 Chen Feb 1995 A
5399120 Burns et al. Mar 1995 A
5407130 Uyeki et al. Apr 1995 A
5431021 Gwilliam et al. Jul 1995 A
5448891 Nakagiri et al. Sep 1995 A
5450894 Inoue et al. Sep 1995 A
5483807 Abersfelder et al. Jan 1996 A
5497625 Manz et al. Mar 1996 A
5499504 Mill et al. Mar 1996 A
5549153 Baruschke et al. Aug 1996 A
5556028 Khelifa Sep 1996 A
5564276 Abadilla et al. Oct 1996 A
5566774 Yoshida Oct 1996 A
5576512 Doke Nov 1996 A
5590532 Bachman Jan 1997 A
5592363 Atarashi et al. Jan 1997 A
5605047 Park et al. Feb 1997 A
5626021 Karunasiri et al. May 1997 A
5641016 Isaji et al. Jun 1997 A
5653111 Attey et al. Aug 1997 A
5673964 Roan et al. Oct 1997 A
5694770 Bruck et al. Dec 1997 A
5705770 Ogassawara et al. Jan 1998 A
5711155 DeVilbiss et al. Jan 1998 A
5713426 Okamura Feb 1998 A
5715695 Lord Feb 1998 A
5722249 Miller, Jr. Mar 1998 A
5724818 Iwata et al. Mar 1998 A
5725048 Burk et al. Mar 1998 A
5740681 Karl Apr 1998 A
5802856 Schaper et al. Sep 1998 A
5816236 Moroi et al. Oct 1998 A
5878589 Tanaka et al. Mar 1999 A
5878950 Faccone et al. Mar 1999 A
5890371 Rajasubramanian et al. Apr 1999 A
5899086 Noda et al. May 1999 A
5901572 Peiffer et al. May 1999 A
RE36242 Apisdorf Jun 1999 E
5910159 Matsuo et al. Jun 1999 A
5918930 Kawai et al. Jul 1999 A
5921088 Imaizumi et al. Jul 1999 A
5921314 Schuller et al. Jul 1999 A
5955772 Shakouri et al. Sep 1999 A
5964092 Tozuka et al. Oct 1999 A
5966940 Gower et al. Oct 1999 A
5966941 Ghoshal Oct 1999 A
5975856 Welle Nov 1999 A
5977785 Burward-Hoy Nov 1999 A
5987890 Chiu et al. Nov 1999 A
6002105 Tamada Dec 1999 A
6016662 Tanaka et al. Jan 2000 A
6047770 Suzuki et al. Apr 2000 A
6050326 Evans Apr 2000 A
6059198 Moroi et al. May 2000 A
6082445 Dugan Jul 2000 A
6084172 Kishi et al. Jul 2000 A
6105659 Pocol et al. Aug 2000 A
6119463 Bell Sep 2000 A
6122588 Shehan et al. Sep 2000 A
6138749 Kawai et al. Oct 2000 A
6158225 Muto et al. Dec 2000 A
6203939 Wilson Mar 2001 B1
6205802 Drucker et al. Mar 2001 B1
6205805 Takahashi et al. Mar 2001 B1
6213198 Shikata et al. Apr 2001 B1
6223539 Bell May 2001 B1
6230496 Hofmann et al. May 2001 B1
6247530 Mochizuki et al. Jun 2001 B1
6254179 Kortum et al. Jul 2001 B1
6270015 Hirota Aug 2001 B1
6276166 Sarkisian et al. Aug 2001 B1
6282907 Ghoshal Sep 2001 B1
6293107 Kitagawa Sep 2001 B1
6324860 Maeda et al. Dec 2001 B1
6334311 Kim et al. Jan 2002 B1
6346668 McGrew Feb 2002 B1
6347521 Kadotani et al. Feb 2002 B1
6366832 Lomonaco et al. Apr 2002 B2
6393842 Kim May 2002 B2
6401462 Bielinski Jun 2002 B1
6412287 Hughes et al. Jul 2002 B1
6431257 Sano et al. Aug 2002 B1
6435273 Futernik Aug 2002 B1
6438964 Giblin Aug 2002 B1
6453993 Bujak, Jr. Sep 2002 B1
6457324 Zeigler et al. Oct 2002 B2
6464027 Dage et al. Oct 2002 B1
6474073 Uetsuji et al. Nov 2002 B1
6474081 Feuerecker Nov 2002 B1
6481213 Carr et al. Nov 2002 B2
6505886 Gielda et al. Jan 2003 B2
6510696 Guttman et al. Jan 2003 B2
6530231 Nagy et al. Mar 2003 B1
6530842 Wells et al. Mar 2003 B1
6530920 Whitcroft et al. Mar 2003 B1
6539725 Bell Apr 2003 B2
6539729 Tupis et al. Apr 2003 B2
6554088 Severinsky et al. Apr 2003 B2
6560968 Ko May 2003 B2
6568205 Bureau et al. May 2003 B2
6569550 Khelifa May 2003 B2
RE38128 Gallup et al. Jun 2003 E
6598403 Ghoshal Jul 2003 B1
6605773 Kok Aug 2003 B2
6606877 Tomita et al. Aug 2003 B2
6607142 Boggs et al. Aug 2003 B1
6611115 Wakashiro et al. Aug 2003 B2
6613972 Cohen et al. Sep 2003 B2
6625990 Bell Sep 2003 B2
6640889 Harte et al. Nov 2003 B1
6653002 Parise Nov 2003 B1
6658861 Ghoshal et al. Dec 2003 B1
6682844 Gene Jan 2004 B2
6700052 Bell Mar 2004 B2
6705089 Chu et al. Mar 2004 B2
6715307 Hatakeyama et al. Apr 2004 B2
6722139 Moon et al. Apr 2004 B2
6732534 Spry May 2004 B2
6779348 Taban Aug 2004 B2
6792259 Parise Sep 2004 B1
6793016 Aoki et al. Sep 2004 B2
6796399 Satou et al. Sep 2004 B2
6803766 Kobayashi et al. Oct 2004 B2
6807811 Lee Oct 2004 B2
6810977 Suzuki Nov 2004 B2
6812395 Bell Nov 2004 B2
6854286 Bureau et al. Feb 2005 B2
6862892 Meyer Mar 2005 B1
6883602 Drucker Apr 2005 B2
6886351 Palfy et al. May 2005 B2
6886356 Kubo et al. May 2005 B2
6894369 Irino et al. May 2005 B2
6896047 Currie et al. May 2005 B2
6907739 Bell Jun 2005 B2
6910345 Horstmann et al. Jun 2005 B2
6915641 Harvie Jul 2005 B2
6942728 Caillat et al. Sep 2005 B2
6951114 Grisham et al. Oct 2005 B2
6959555 Bell Nov 2005 B2
6962195 Smith et al. Nov 2005 B2
6973799 Kuehl et al. Dec 2005 B2
6986247 Parise Jan 2006 B1
7007491 Grimm et al. Mar 2006 B2
7063139 Horn et al. Jun 2006 B2
7073338 Harwood et al. Jul 2006 B2
7074122 Haupt et al. Jul 2006 B2
7089756 Hu Aug 2006 B2
7100369 Yamaguchi et al. Sep 2006 B2
7111465 Bell Sep 2006 B2
7134288 Crippen et al. Nov 2006 B2
7168398 Ap et al. Jan 2007 B2
7171955 Perkins Feb 2007 B2
7231772 Bell Jun 2007 B2
7238101 Kadle et al. Jul 2007 B2
7240725 Horn et al. Jul 2007 B2
7246496 Goenka et al. Jul 2007 B2
7263835 Lin Sep 2007 B2
7264046 Futernik et al. Sep 2007 B1
7272936 Feher Sep 2007 B2
7290400 Heberle et al. Nov 2007 B2
7310953 Pham et al. Dec 2007 B2
7338117 Iqbal et al. Mar 2008 B2
7350368 Heberle et al. Apr 2008 B2
7363766 Eisenhour Apr 2008 B2
7380586 Gawthrop Jun 2008 B2
7416138 Ellison et al. Aug 2008 B2
7426835 Bell Sep 2008 B2
7430875 Sasaki et al. Oct 2008 B2
7530390 Feuerecker et al. May 2009 B2
7533535 Kadle et al. May 2009 B2
7578341 Ichishi et al. Aug 2009 B2
7581584 Yoneno et al. Sep 2009 B2
7587901 Petrovski Sep 2009 B2
7587902 Bell Sep 2009 B2
7603205 Barry et al. Oct 2009 B2
7629530 Inaoka Dec 2009 B2
7650757 Bhatti Jan 2010 B2
7743614 Goenka et al. Jun 2010 B2
7765824 Wong et al. Aug 2010 B2
7779639 Goenka Aug 2010 B2
7784289 Scherer et al. Aug 2010 B2
7788933 Goenka Sep 2010 B2
7828050 Esaki Nov 2010 B2
7870745 Goenka Jan 2011 B2
7870892 Gawthrop Jan 2011 B2
7905278 Sato et al. Mar 2011 B2
7926293 Bell Apr 2011 B2
7932460 Bell Apr 2011 B2
7937952 Johnson May 2011 B2
7942010 Bell May 2011 B2
7946120 Bell May 2011 B2
7950735 Major et al. May 2011 B2
8015835 Lee et al. Sep 2011 B2
8039726 Zhang et al. Oct 2011 B2
8069674 Bell Dec 2011 B2
8079223 Bell Dec 2011 B2
8082752 Liu et al. Dec 2011 B2
8104294 Reeve Jan 2012 B2
8136874 Negrini et al. Mar 2012 B2
8261868 Goenka et al. Sep 2012 B2
8359871 Woods et al. Jan 2013 B2
8408012 Goenka et al. Apr 2013 B2
8490412 Bell et al. Jul 2013 B2
8495884 Bell et al. Jul 2013 B2
8613200 LaGrandeur et al. Dec 2013 B2
8631659 Goenka Jan 2014 B2
8640466 Bell et al. Feb 2014 B2
8656710 Bell et al. Feb 2014 B2
8678492 Benton Mar 2014 B2
8722222 Kossakovski et al. May 2014 B2
8733126 Sekiya et al. May 2014 B2
8783397 Goenka et al. Jul 2014 B2
8784166 Mazzocco et al. Jul 2014 B2
8806882 Bennion et al. Aug 2014 B2
8839632 Goenka et al. Sep 2014 B2
8915091 Goenka Dec 2014 B2
8955578 Kwon et al. Feb 2015 B2
8974942 Bell et al. Mar 2015 B2
9038400 Goenka May 2015 B2
9103573 Goenka Aug 2015 B2
9310112 Bell et al. Apr 2016 B2
9365090 Gawthrop et al. Jun 2016 B2
9366461 Bell et al. Jun 2016 B2
9447994 Barnhart et al. Sep 2016 B2
9555686 Ranalli et al. Jan 2017 B2
9719701 Bell et al. Aug 2017 B2
9863672 Goenka Jan 2018 B2
10106011 Goenka Oct 2018 B2
10464391 Bell et al. Nov 2019 B2
10603976 Androulakis et al. Mar 2020 B2
10625566 Androulakis et al. Apr 2020 B2
20020014330 Guyonvarch Feb 2002 A1
20020173264 Ottman et al. Nov 2002 A1
20030140636 Van Winkle Jul 2003 A1
20030159455 Aikawa et al. Aug 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040025516 Van Winkle Feb 2004 A1
20040098991 Heyes May 2004 A1
20040163395 Ichishi et al. Aug 2004 A1
20040237541 Murphy Dec 2004 A1
20050061497 Amaral Mar 2005 A1
20050074646 Rajashekara et al. Apr 2005 A1
20050087333 Horn et al. Apr 2005 A1
20050139692 Yamamoto Jun 2005 A1
20050161193 McKenzie et al. Jul 2005 A1
20050204768 Di Vito et al. Sep 2005 A1
20050229629 Burk et al. Oct 2005 A1
20050257545 Ziehr et al. Nov 2005 A1
20050278863 Bahash et al. Dec 2005 A1
20060000592 Bosquet et al. Jan 2006 A1
20060005548 Ruckstuhl Jan 2006 A1
20060011152 Hayes Jan 2006 A1
20060016203 Hayashi Jan 2006 A1
20060059933 Axakov et al. Mar 2006 A1
20060075758 Rice et al. Apr 2006 A1
20060102335 Fujiki et al. May 2006 A1
20060124165 Bierschenk et al. Jun 2006 A1
20060137359 Ghoshal Jun 2006 A1
20060137360 Ghoshal Jun 2006 A1
20060137853 Haller et al. Jun 2006 A1
20060150657 Spurgeon et al. Jul 2006 A1
20060157102 Nakajima et al. Jul 2006 A1
20060174633 Beckley Aug 2006 A1
20060188418 Park et al. Aug 2006 A1
20060254284 Ito et al. Nov 2006 A1
20070000255 Elliot et al. Jan 2007 A1
20070034356 Kenny et al. Feb 2007 A1
20070056295 De Vilbiss Mar 2007 A1
20070101737 Akei et al. May 2007 A1
20070157630 Kadle et al. Jul 2007 A1
20070193617 Taguchi Aug 2007 A1
20070272290 Sims et al. Nov 2007 A1
20080223064 Feuerecker et al. Sep 2008 A1
20090020620 Douarre Jan 2009 A1
20090032080 Kawauchi et al. Feb 2009 A1
20090118869 Cauchy et al. May 2009 A1
20100031987 Bell et al. Feb 2010 A1
20100101239 LaGrandeur et al. Apr 2010 A1
20100112419 Jang et al. May 2010 A1
20100155018 Goenka et al. Jun 2010 A1
20100293966 Yokomachi et al. Nov 2010 A1
20110061403 Jun et al. Mar 2011 A1
20110107773 Gawthrop May 2011 A1
20110114739 Misumi et al. May 2011 A1
20110120146 Ota et al. May 2011 A1
20110139397 Haussmann Jun 2011 A1
20110164652 ReFalo et al. Jul 2011 A1
20110165830 Smith Jul 2011 A1
20110236731 Bell et al. Sep 2011 A1
20110284202 Hirai et al. Nov 2011 A1
20120202413 Kawashima Aug 2012 A1
20120266608 Kadle et al. Oct 2012 A1
20130068440 Kamiyama Mar 2013 A1
20130192272 Ranalli et al. Aug 2013 A1
20130206382 Ichishi et al. Aug 2013 A1
20130299128 Bergamini Nov 2013 A1
20130317728 Hall et al. Nov 2013 A1
20140173946 Gerrits et al. Jun 2014 A1
20140213168 Goenka et al. Jul 2014 A1
20140338882 Rollinson et al. Nov 2014 A1
20150375597 Callahan Dec 2015 A1
20160355067 Barnhart et al. Dec 2016 A1
20160361967 Gawthrop Dec 2016 A1
20160361968 Bell et al. Dec 2016 A1
20170259643 Ranalli et al. Sep 2017 A1
20170361676 Androulakis et al. Dec 2017 A1
20180001734 Faust et al. Jan 2018 A1
20180195777 Goenka Jul 2018 A1
20180251008 Androulakis et al. Sep 2018 A1
20200130457 Bell et al. Apr 2020 A1
20200215870 Androulakis et al. Jul 2020 A1
Foreign Referenced Citations (168)
Number Date Country
1094500 Nov 1994 CN
1158655 Sep 1997 CN
1195090 Oct 1998 CN
2813357 Sep 2006 CN
2827781 Oct 2006 CN
101508236 Aug 2009 CN
101720414 Jun 2010 CN
102328569 Jan 2012 CN
202174959 Mar 2012 CN
202200804 Apr 2012 CN
102555870 Jul 2012 CN
103438629 Dec 2013 CN
1 301 454 Aug 1969 DE
2 220 009 Nov 1973 DE
2 319 155 Oct 1974 DE
4 329 816 Mar 1994 DE
4 238 364 May 1994 DE
196 45 544 May 1998 DE
197 30 678 Jan 1999 DE
299 04 238 Jun 1999 DE
198 29 440 Jan 2000 DE
199 51 224 May 2001 DE
201 05 487 Oct 2001 DE
102 37 420 Sep 2003 DE
103 37 889 Dec 2004 DE
20 2005 013 039 Nov 2005 DE
10 2005 024 074 Dec 2005 DE
10 2006 001 304 Jul 2007 DE
10 2010 052 019 Jun 2011 DE
10 2009 003 737 Dec 2012 DE
0 206 151 Dec 1986 EP
0 389 407 Sep 1990 EP
0 418 995 Mar 1991 EP
0 545 021 Jun 1993 EP
0 791 497 Aug 1997 EP
0 834 421 Apr 1998 EP
1 038 701 Sep 2000 EP
1 199 206 Apr 2002 EP
1 462 281 Sep 2004 EP
1 088 696 Nov 2005 EP
1 641 067 Mar 2006 EP
1 932 695 Jun 2008 EP
2 419 479 Oct 1979 FR
2 806 666 Sep 2001 FR
2 907 064 Apr 2008 FR
231 192 May 1926 GB
1 040 485 Aug 1966 GB
2 267 338 Dec 1993 GB
2 278 432 Nov 1994 GB
2 333 352 Jul 1999 GB
2 440 312 Jan 2008 GB
39-027735 Dec 1964 JP
56-018231 Feb 1981 JP
62-191212 Aug 1987 JP
01-131830 May 1989 JP
01-200122 Aug 1989 JP
01-281344 Nov 1989 JP
04-103925 Apr 1992 JP
04-165234 Jun 1992 JP
05-037521 May 1993 JP
05-278451 Oct 1993 JP
06-024235 Feb 1994 JP
06-135218 May 1994 JP
07-089334 Apr 1995 JP
07-054189 Jun 1995 JP
07-253224 Oct 1995 JP
08-197937 Aug 1996 JP
08-316388 Nov 1996 JP
09-042801 Feb 1997 JP
09-092761 Apr 1997 JP
09-254630 Sep 1997 JP
09-276076 Oct 1997 JP
10-035268 Feb 1998 JP
11-042933 Feb 1999 JP
11-129735 May 1999 JP
11-301254 Nov 1999 JP
11-342731 Dec 1999 JP
2000-130883 May 2000 JP
2000-142095 May 2000 JP
2000-161721 Jun 2000 JP
2000-185542 Jul 2000 JP
2000-274788 Oct 2000 JP
2000-274871 Oct 2000 JP
2000-274874 Oct 2000 JP
2000-289451 Oct 2000 JP
2000-318434 Nov 2000 JP
2000-335230 Dec 2000 JP
2001-206053 Jul 2001 JP
2001-227840 Aug 2001 JP
2002-13758 Jan 2002 JP
2002-059736 Feb 2002 JP
2002-232028 Aug 2002 JP
2002-359370 Dec 2002 JP
2003-237357 Aug 2003 JP
2004-050874 Feb 2004 JP
2005-212564 Aug 2005 JP
2005-219700 Aug 2005 JP
2005-269738 Sep 2005 JP
2005-302851 Oct 2005 JP
2006-001530 Jan 2006 JP
2006-015965 Jan 2006 JP
2006-168463 Jun 2006 JP
2007-161110 Jun 2007 JP
2007-253947 Oct 2007 JP
2008-094366 Apr 2008 JP
2010-125997 Jun 2010 JP
2010-240045 Oct 2010 JP
2011-001048 Jan 2011 JP
2011-131871 Jul 2011 JP
2011-152855 Aug 2011 JP
2012-011928 Jan 2012 JP
1997-0000845 Jan 1997 KR
1998-0022458 Jul 1998 KR
1998-0040187 Sep 1998 KR
10-0189462 Jun 1999 KR
2001-111646 Dec 2001 KR
10-2002-0057600 Jul 2002 KR
10-2003-0082589 Oct 2003 KR
10-0503239 Jul 2005 KR
10-2007-0077546 Jul 2007 KR
10-0756937 Sep 2007 KR
10-2008-0010646 Jan 2008 KR
2008-0008875 Jan 2008 KR
10-2011-0013876 Feb 2011 KR
2011-0011230 Dec 2011 KR
2012-0041861 May 2012 KR
2012-0088042 Aug 2012 KR
66619 Feb 1973 LU
337 227 May 1971 SE
184886 Jul 1966 SU
1196627 Dec 1985 SU
WO 94020801 Sep 1994 WO
WO 9501500 Jan 1995 WO
WO 95014899 Jun 1995 WO
WO 9605475 Feb 1996 WO
WO 9747930 Dec 1997 WO
WO 9815420 Apr 1998 WO
WO 9909360 Feb 1999 WO
WO 9910191 Mar 1999 WO
WO 9958907 Nov 1999 WO
WO 0012948 Mar 2000 WO
WO 0200458 Jan 2002 WO
WO 03014634 Feb 2003 WO
WO 2004027328 Apr 2004 WO
WO 2004092662 Oct 2004 WO
WO 2005023571 Mar 2005 WO
WO 2005063567 Jul 2005 WO
WO 2005098225 Oct 2005 WO
WO 2006037178 Apr 2006 WO
WO 2006064432 Jun 2006 WO
WO 2007001289 Jan 2007 WO
WO 2007002891 Jan 2007 WO
WO 2007021273 Feb 2007 WO
WO 2007097059 Aug 2007 WO
WO 2008013946 Jan 2008 WO
WO 2008072251 Jun 2008 WO
WO 2008091293 Jul 2008 WO
WO 2008123663 Oct 2008 WO
WO 2008147305 Dec 2008 WO
WO 2008148042 Dec 2008 WO
WO 2010008158 Jan 2010 WO
WO 2010048575 Apr 2010 WO
WO 2010135363 Nov 2010 WO
WO 2013009759 Jan 2013 WO
WO 2013151903 Oct 2013 WO
WO 2014065702 May 2014 WO
WO 2016100697 Jun 2016 WO
WO 2017065847 Apr 2017 WO
Non-Patent Literature Citations (11)
Entry
Behr, “Thermal Management For Hybrid Vehicles”, Power Point Presentation, Technical Press Day 2009, 20 pages.
Bell, L.E., “Alternate Thermoelectric Thermodynamic Cycles with Improved Power Generation Efficiencies” Thermoelectrics, 2003 Twenty-Second International Conference on—ICT LA Grande Motte, France Aug. 17-21, 2003, Piscataway, NJ, USA, IEEE, Aug. 17, 2003 (Aug. 17, 2003), pp. 558-562, XP010697375, ISBN: 0-7803-8301-X.
Diller, R. W., et al.: “Experimental results confirming improved performance of systems using thermal isolation” Thermoelectrics, 2002. Proceedings ICT '02. Twenty-First International Conference on Aug. 25-29, 2002, Piscataway, NJ USA, IEEE, Aug. 25, 2002 (Aug. 25, 2002), pp. 548-550, XP010637541 ISBN: 0-7803-7683-8.
Heckenberger, Thomas, “Li-on Battery Cooling,” BEHR Power Point Presentation, Technical Press Day, Stuttgart, May 20, 2009, 13 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2010/035313, dated Nov. 15, 2011.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2010/035313, dated May 15, 2012.
Japanese Office Action re JP Patent Application No. 2006-305938, dated Jul. 21, 2009.
Jeon et al., “Development of Battery Pack Design for High Power Li-Ion Battery Pack of HEV”, The World Electric Vehicle Association Journal, 2007, vol. 1, pp. 94-99.
Lofy, John et al., “Thermoelectrics for Environmental Control Automobiles,” 21st International Conference on Thermoelecuonics, 2002, p. 471-476.
Sabbah et al., “Passive Thermal Management System for Plug-in Hybrid and Comparison with Active Cooling: Limitation of Temperature Rise and Uniformity of Temperature Distribution,” ECS Transactions, The Electrochemical Society, 2008, 13 (19) pp. 41-52.
Stockholm, John G.: “Large-Scale Cooling: Integrated Thermoelectric Element Technology,” CRC Handbook of Thermoelectrics, Chapter 53, pp. 657-666. 0-8493-0146, Jul. 1995.
Related Publications (1)
Number Date Country
20190152292 A1 May 2019 US
Provisional Applications (1)
Number Date Country
61179314 May 2009 US
Continuations (2)
Number Date Country
Parent 14693607 Apr 2015 US
Child 16164072 US
Parent 12782569 May 2010 US
Child 14693607 US