The present disclosure is generally related to devices used in electrospinning and/or heat sealing.
Electrospun mats or biopapers, such as those described in US Pat. Appl. Pub. No. 2017/0183622 and U.S. Pat. No. 8,669,086, are useful for many cell culture processes (Bischel et al., “Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue” J. Biomed. Mat. Res. A, 104(4), 901-909). However, fundamental aspects such as their thin profile and degradable nature make them very delicate. They are not easily sealed to devices using standard ultrasonic horns, as the vibrations damage the biopapers. The biopapers can be sealed with precise application of heat, but the application has to be only applied to small areas where bonding is desired. Furthermore, too much heat in either intensity or duration will degrade the paper and ruin its function. This process when done by hand is time consuming, increasing cost and limiting scalability.
Disclosed herein is a device comprising: an article having a flat surface and a lower surface opposed to the flat surface; a cavity formed in the lower surface forming a complete loop surrounding a central portion of the article; a heating element having the same shape as the complete loop disposed in the cavity and positioned to warm a portion of the flat surface adjacent to the heating element when the heating element is activated; a cooling device positioned to cool a portion of the flat surface in the central portion; and a release layer on the flat surface.
Also disclosed herein is a device comprising: an article having an upper surface; a heating element disposed on the upper surface forming a complete loop surrounding a central portion of the article; and an electrically insulating material disposed on the upper surface within the central portion.
A more complete appreciation will be readily obtained by reference to the following Description of the Example Embodiments and the accompanying drawings.
In the following description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one skilled in the art that the present subject matter may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known methods and devices are omitted so as to not obscure the present disclosure with unnecessary detail.
Disclosed is a biomaterial heat sealing array to heat seal a biomaterial to an appropriate substrate (e.g. plastic frame) in defined geometries by combining resistive heating and fluid cooling. Also disclosed is a device for electrospinning deposition and further such heat sealing.
A first embodiment is illustrated in
In this example, the outer cavity is a circle. The outer cavity has an electrically insulated resistive heating wire laid within the continuous loop. To heat seal the biomaterial, a current is passed through the wire, transferring heat from the wire to the metal alloy of the heat sealing unit. Heat transfer is primarily through conduction, passing through the thin metal between the outer cavity and the bottom of the heat sealing unit. Heat transferred from the resistive wire to the interior area of the outer cavity is dispersed by fluid cooling in the middle section. The middle section consists of two holes in which a fitting can be placed, and through which a fluid coolant (water or another coolant) may flow. The fitting holes connect tubing located outside of the unit to a hollow chamber, which directs the path of the fluid coolant. Coolant is circulated by means of a fluid pump; the coolant flows through the tubing, into the hollow chamber, and then back out of the chamber in a closed circuit. The bottom surface of the hollow chamber has several solid metal cooling fins designed to transfer heat from the metal to the fluid coolant. An alternative arrangement could use a thermoelectric cold plate (e.g. Peltier cooling with heat conducting fingers cooling the center area rather than fluid cooling) with electrical connections and an insulating material between cooling fingers and heat coils.
The process consists of depositing the biomaterial to be sealed to the flat surface of the heat sealing array, on top of the non-stick coating, as shown in
A potential advantage is the ability to more uniformly create heat sealed biopaper constructs, and do so more quickly, at higher volume and with less effort. Through the use of materials with high thermal conductivity (e.g. metal) and small surface area/volume ratios, heat can be transferred quickly to the defined heat sealing pattern, drastically decreasing the amount of time needed for complete sealing. The ability to heat seal multiple substrates at once greatly increases the volume that can be produced in a given time compared to manual methods. As currently described, the heat sealing process requires little human intervention; the biomaterial deposition, heat sealing, and fluid cooling can all be controlled through automated processes.
The overall design may be highly adaptable, and may be easily altered to fit a number of different heat sealing geometries, biomaterials, and deposition methods. Different biomaterials may require different temperatures for heat sealing, which can be simply controlled by varying the electrical current supplied to the resistive heating wire. The heat sealing array could also be revised for other deposition methods, such as extrusion bioprinting (Ozbolat et al., “Current advances and future perspectives in extrusion-based bioprinting” Biomaterials, 76, 321-343 (2016)) or microcontact printing (Qin et al., “Soft lithography for micro- and nanoscale patterning” Nature Protocols, 5(3), 491-502 (2010)), amongst others. The only constraint of the deposition process is that it produces a uniform layer of the biomaterial over a defined area. The implementation of individual heat sealing units clustered into an array provides the potential for high scalability, as the deposition area can be as large or small as desired.
The scalability heat sealing array design and process may be particularly attractive for commercial applications. The primary costs and constraints are associated with the design of the heat sealing geometry and the size of the array. Once the geometry design has been finalized and the array fabricated, the device can be repeatedly used indefinitely. Much like commercial plastic injection molding, the price per heat sealed unit will drastically decrease as higher volumes are needed.
Obviously, many modifications and variations are possible in light of the above teachings. It is therefore to be understood that the claimed subject matter may be practiced otherwise than as specifically described. Any reference to claim elements in the singular, e.g., using the articles “a”, “an”, “the”, or “said” is not construed as limiting the element to the singular.
This application is a divisional application of U.S. application Ser. No. 15/952,174, filed on Apr. 12, 2018, which claims the benefit of U.S. Provisional Application No. 62/484,513, filed on Apr. 12, 2017. These applications and all other publications and patent documents referred to throughout this nonprovisional application are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62484513 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15952174 | Apr 2018 | US |
Child | 17488738 | US |