The instant invention relates to temperature sensitive products, temperature controlled product shippers, a phase change material (PCM) bladder for use in a temperature controlled product shipper and method of packing temperature sensitive products. More specifically, the invention relates to a PCM bladder or bladder system for use in a “cold-chain” product shipper.
Throughout this specification, the exemplary embodiments refer to product shippers which are typically maintained at controlled temperatures below ambient temperature, i.e. cold-chain applications. However, while the focus of the exemplary embodiments is on “cold chain” packaging, it is to be understood that the concepts as disclosed herein are equally applicable to product shippers which are to be maintained at controlled temperatures above ambient, even though not specifically discussed herein.
Currently, phase change materials (PCM's) in the form of gel packs or gel bricks are used to heat or cool the interior of a temperature controlled product shipper. Engineers calculate the heat loss of a product shipper design based on a client's desired “target” temperature. The engineers then use a mixture of “ambient” temperature gel packs and “frozen” or “heated” gel packs to achieve the desired results. Before use, the gel packs must be preconditioned to a temperature designated by the engineer who designed the package. For example, in most cold chain applications, there are two temperatures used: −20° C. and +5° C.
As indicated above, the most advantageous use of the invention is in cold chain applications, because there is a tremendous expense involved in pre-conditioning these gel packs at the desired temperatures and then maintaining the gel packs at temperature prior to pack-out.
In this regard, the instant invention provides a novel phase change material (PCM) bladder which is designed and configured to receive and hold a flowable PCM at the point of packaging, thus completely eliminating the need to pre-condition and store large volumes of PCM gel packs.
In a first embodiment, the PCM bladder includes a single bladder chamber having a filling port. The bladder is constructed from overlaid polyethylene sheets which are heated sealed around the peripheral edges. The filling port comprises a filling bung which is sealed to the top sheet and a stopper removably seated in the bung hole. To accommodate the rectangular shape of most typical product boxes, the bladder is formed in the shape of a cross including a central body portion and appendage portions extending outwardly therefrom. The central portion and appendage portions effectively overlay five (5) of the six (6) sides of the product box. An alternate version is asymmetrical and effectively overlays all six (6) sides of the product box. The bladder chamber is configured so that it has a substantially uniform thickness when filled with the flowable PCM whereby the bladder provides a substantially uniform thermal profile around all sides of the product box.
In a second embodiment, a PCM bladder system is provided comprising two discrete PCM bladders which are overlaid in coextensive relation to provide a desired thermal profile. The first bladder receives a PCM pre-conditioned at a first temperature while the second bladder receives a PCM pre-conditioned at a second temperature. The first, or inner, bladder includes a first filling port sealed on the upper sheet, while the second, or outer, bladder includes a second filling port sealed on the upper sheet and further includes an aperture through which the first filling port extends when the second bladder is overlaid on top of the first bladder. Both bladders are formed in the shape of crosses in the exemplary embodiments.
In a third embodiment, a dual chamber PCM bladder is provided in a single heat sealed construction. The dual chamber PCM bladder comprises a first bladder chamber having a first filling port and a second bladder chamber having a second filling port. Each bladder receives a flowable PCM preconditioned at a predetermined temperature. The bladder comprises a lower sheet, a middle sheet and an upper sheet overlaid in substantially coextensive relation and sealed around the peripheral edges thereof. The first bladder chamber is defined between the lower sheet and the middle sheet and the second bladder chamber is defined between the middle sheet and the upper sheet. The first filling port is sealed on the upper surface of the middle sheet and the upper sheet is sealed around the peripheral edge of the first filling port. The second filling port is sealed on the upper surface of the upper sheet whereby the first and second filling ports are both accessible for filling from above the upper surface of the upper sheet. The bladder is preferably formed in the shape of a cross as described hereinabove.
A fourth embodiment comprises a PCM bladder that includes a plurality flutes which divide the chamber, or chambers, into a plurality of sections for greater support and stability of the bladder.
A fifth embodiment comprises a more rigid blow molded box structure which is open at the top for receiving the product box therein.
Accordingly, among the objects of the instant invention are: the provision of a phase change material bladder for use in a temperature controlled product shipper; the provision of a PCM bladder that receives and holds a flowable PCM; the provision of a bladder having a filling port that can be selectively accessed for filling of the bladder chamber with a PCM at the point of packing; and the provision of a method of packing a temperature sensitive product using the PCM bladder.
Other objects, features and advantages of the invention shall become apparent as the description thereof proceeds when considered in connection with the accompanying illustrative drawings.
In the drawings which illustrate the best mode presently contemplated for carrying out the present invention:
Referring now to the drawings, a first embodiment of a phase change material bladder of the instant invention is illustrated and generally indicated at 10 in
The term “phase change material” (PCM) as used within the specification refers to a material having a high heat of fusion which, when melting or solidifying at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid and vice-versa.
The term “flowable PCM” as used within the specification refers to a PCM material which can be pumped with conventional pumping devices from a storage tank or container into the PCM bladder 10 as described herein. At the present time, the exemplary embodiment of a “flowable PCM” comprises a “slurry ice” material that is produced on-site and pumped through insulated hoses to a filling head. However, the inventive concepts herein should not be limited to any specific “flowable PCM”.
In the present disclosure, slurry ice is produced by a crystal ice generator (not shown) and held in a storage tank (not shown). A brine is incorporated into the “ice” solution to increase the “flowability” of the “ice” solution. Pumping stations (not shown) are employed to deliver the slurry ice to pack-out stations as needed.
Referring briefly to
Turning now to the PCM bladder 10, in a first embodiment, the PCM bladder 10 includes a single bladder chamber 22 having a filling port 24. The bladder 10 is constructed from polyethylene sheets 26, 28 which are overlaid in substantially coextensive adjacent relation and heated sealed around the peripheral edges to form the interior bladder chamber 22. Referring to
The filling port 24 comprises a filling bung 30 which is sealed to the top sheet 26 and a stopper 32 removably seated in the bung hole 34 (
To accommodate the rectangular shape of most typical product boxes 16, the bladder 10 is formed in the shape of a cross including a central body portion 36 and appendage portions 38 extending outwardly therefrom (See
An alternate version indicated at 10A in
While the exemplary embodiment illustrated a rectangular shaped product box 16 and associated shape for the PCM bladder 10, it should be understood that the shape of the bladder 10 may be altered to accommodate other product box shapes, such as for example, a cylinder. In the case of a cylindrical product box (not shown), the PCM bladder may comprise a circular central portion and appendages which extend radially outward from the central portion.
Referring now to
Referring to
An alternate version indicated at 100A in
Yet another alternate version indicated at 100B in
In a third embodiment as illustrated in
The dual chambered bladder 200 comprises a lower sheet 214, a middle sheet 216 and an upper sheet 218 overlaid in substantially coextensive relation and sealed around the peripheral edges thereof to form the two chambers 202, 204. The first bladder chamber 202 is defined between the lower sheet 214 and the middle sheet 216 and the second bladder chamber 206 is defined between the middle sheet 216 and the upper sheet 218. The first filling port 204 is sealed at aperture 205 on the upper surface of the middle sheet 216 and the upper sheet 218 is sealed around the peripheral edge of the first filling port 204. The second filling port 208 is sealed at aperture 207 on the upper surface of the upper sheet 218 whereby the first and second filling ports 204, 208 are both accessible for filling from above the upper surface of the upper sheet 218. Referring to
As described hereinabove the PCM bladder 200 is preferably formed in the shape of a cross and is received into a product shipper 14 as described hereinabove.
An alternate version indicated at 200A in
A fourth embodiment, as illustrated in
A fifth embodiment, as illustrated in
It can therefore be seen that the present disclosure provides the following unique concepts: a novel phase change material (PCM) bladder for use in a temperature controlled product shipper; a PCM bladder that receives and holds a flowable PCM; a PCM bladder having a filling port that can be selectively accessed for filling of the bladder chamber with a PCM at the point of packing; a dual bladder system including overlaid first and second bladders which receive PCM's preconditioned at two different temperatures; a dual chamber PCM bladder which provides two different PCM's in a single layered construction; and a PCM bladder including flutes which divide the chamber into a plurality of sections to provide support and stability to the structure.
For these reasons, the instant invention is believed to represent a significant advancement in the art which has substantial commercial merit.
While there is shown and described herein certain specific structure embodying the invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 15/401,050, filed Jan. 8, 2017, which is a continuation of U.S. application Ser. No. 15/014,428, filed Feb. 3, 2016 now U.S. Pat. No. 10,288,337, issued May 14, 2019, which is a continuation of U.S. application Ser. No. 13/891,259, filed May 10, 2013, now U.S. Pat. No. 9,267,722, issued Feb. 23, 2016, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2303369 | Kleist | Dec 1942 | A |
3802220 | Pompo | Apr 1974 | A |
3974658 | Starrett | Aug 1976 | A |
4069844 | Zahid | Jan 1978 | A |
4319629 | Hotta | Mar 1982 | A |
4579170 | Moses et al. | Apr 1986 | A |
4628705 | Nave | Dec 1986 | A |
4695051 | Jenison | Sep 1987 | A |
4924935 | Van Winckel | May 1990 | A |
5435143 | Silber | Jul 1995 | A |
5564570 | Jaszai | Oct 1996 | A |
6427225 | Duncan | Aug 2002 | B1 |
6761041 | Roth | Jul 2004 | B2 |
6868982 | Gordon | Mar 2005 | B2 |
6875486 | Miller | Apr 2005 | B2 |
7240513 | Conforti | Jul 2007 | B1 |
7328583 | Hillman | Feb 2008 | B2 |
7681405 | Williams | Mar 2010 | B2 |
7802446 | Overgaard | Sep 2010 | B2 |
20030052786 | Dickinson | Mar 2003 | A1 |
20040123391 | Call | Jun 2004 | A1 |
20050031809 | Romero | Feb 2005 | A1 |
20070028642 | Glade et al. | Feb 2007 | A1 |
20080057574 | Romero | Mar 2008 | A1 |
20080135564 | Romero | Jun 2008 | A1 |
20080164265 | Conforti | Jul 2008 | A1 |
20080178629 | Meether | Jul 2008 | A1 |
20080202128 | Flanagan | Aug 2008 | A1 |
20100314397 | Williams et al. | Dec 2010 | A1 |
20110072847 | Crespo et al. | Mar 2011 | A1 |
20110168727 | Williams et al. | Jul 2011 | A1 |
20110174835 | Mamiye | Jul 2011 | A1 |
20120037148 | Tudor et al. | Feb 2012 | A1 |
20120118554 | Mathur et al. | May 2012 | A1 |
20120248101 | Tumber et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
485247 | Jun 1937 | GB |
Entry |
---|
Extended European search report, Application No. 14794286.6-1605/2994704—PCT/US201403743, dated Mar. 9, 2017. |
Number | Date | Country | |
---|---|---|---|
20200033045 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15401050 | Jan 2017 | US |
Child | 16579755 | US | |
Parent | 15014428 | Feb 2016 | US |
Child | 15401050 | US | |
Parent | 13891259 | May 2013 | US |
Child | 15014428 | US |