Ultrasonic instruments, including both hollow core and solid core instruments, are used for the safe and effective treatment of many medical conditions. Ultrasonic instruments, and particularly solid core ultrasonic instruments, are advantageous because they may be used to cut and/or coagulate tissue using energy in the form of mechanical vibrations transmitted to a surgical end effector at ultrasonic frequencies. Ultrasonic vibrations, when transmitted to tissue at suitable energy levels and using a suitable end effector, may be used to cut, dissect, coagulate, elevate, or separate tissue. Ultrasonic instruments utilizing solid core technology are particularly advantageous because of the amount of ultrasonic energy that may be transmitted from the ultrasonic transducer, through an ultrasonic transmission waveguide, to the surgical end effector. Such instruments may be used for open procedures or minimally invasive procedures, such as endoscopic or laparoscopic procedures, wherein the end effector is passed through a trocar to reach the surgical site.
Activating or exciting the end effector (e.g., cutting blade, ball coagulator) of such instruments at ultrasonic frequencies induces longitudinal vibratory movement that generates localized heat within adjacent tissue, facilitating both cutting and coagulating. Because of the nature of ultrasonic instruments, a particular ultrasonically actuated end effector may be designed to perform numerous functions, including, for example, cutting and coagulating.
Ultrasonic vibration is induced in the surgical end effector by electrically exciting a transducer, for example. The transducer may be constructed of one or more piezoelectric or magnetostrictive elements in the instrument hand piece. Vibrations generated by the transducer section are transmitted to the surgical end effector via an ultrasonic waveguide extending from the transducer section to the surgical end effector. The waveguides and end effectors are designed to resonate at the same frequency as the transducer. When an end effector is attached to a transducer the overall system frequency may be the same frequency as the transducer itself.
The transducer and the end effector may be designed to resonate at two different frequencies and when joined or coupled may resonate at a third frequency. The zero-to-peak amplitude of the longitudinal ultrasonic vibration at the tip, d, of the end effector behaves as a simple sinusoid at the resonant frequency as given by:
d=A sin(ωt)
where:
ω=the radian frequency which equals 2π times the cyclic frequency, f; and
A=the zero-to-peak amplitude.
The longitudinal excursion is defined as the peak-to-peak (p-t-p) amplitude, which is just twice the amplitude of the sine wave or 2 A.
Solid core ultrasonic surgical instruments may be divided into two types, single element end effector devices and multiple-element end effectors. Single element end effector devices include a variety of blade types such as ball, hooked, curved, and coagulating shears. Single-element end effector instruments have limited ability to apply blade-to-tissue pressure when the tissue is soft and loosely supported. Substantial pressure may be necessary to effectively couple ultrasonic energy to the tissue. The inability of a single-element end effector to grasp the tissue results in a further inability to fully coapt tissue surfaces while applying ultrasonic energy, leading to less-than-desired hemostasis and tissue joining. Multiple-element end effectors include a clamping mechanism that works in conjunction with the vibrating blade. Ultrasonic clamping coagulators provide an improved ultrasonic surgical instrument for cutting/coagulating tissue, particularly loose and unsupported tissue. The clamping mechanism presses the tissue against the vibrating ultrasonic blade and applies a compressive or biasing force against the tissue to achieve faster cutting and hemostatis (e.g., coagulation) of the tissue with less attenuation of blade motion.
Tissue welding is a technique for closing wounds and vessels and is applied in many surgical specialties. Tissue welding is a technique for closing wounds by creating a hemostatic seal in the wounds or vessels as well as creating strong anastomoses in the tissue. Ultrasonic surgical instruments may be employed to achieve hemostatis with minimal lateral thermal damage to the tissue. The hemostatis or anastomoses occurs through the transfer of mechanical energy to the tissue. Internal cellular friction breaks hydrogen bonds resulting in protein denaturization. As the proteins are denatured, a sticky coagulum forms and seals small vessels at temperatures below 100° C. Anastomoses occurs when the effects are prolonged. Thus, the ultrasonic energy in the vibrating blade may be employed to create hemostatic seals in vessels and adjacent tissues in wounds and to create strong anastomoses in tissue. Ultrasonic vibrating single or multiple end effectors, either alone or in combination with clamping mechanisms, produce adequate mechanical energy to seal vessels regardless of the temperature of the end effector and/or the tissue. To create strong anastomoses of the tissue, the temperature of the end effector and the tissue should be maintained below approximately 50° C. to allow for the creation of a coagulum to seal the tissues together without desiccating the tissues. Desiccation occurs through the cavitational effect. As the blade vibrates, it produces an area of transient low pressure at the tip of the blade causing fluid inside the cells to vaporize and rupture. Ultrasonic devices have not been successfully employed in tissue welding applications because of the need to control the temperature of the end effector and the tissue to achieve suitable hemostatis and anastomoses to weld tissue together. As the temperature of the end effector increases with use, there exists the likelihood that the tissues will desiccate without forming a proper seal. Conventional ultrasonic instruments ascertain the tissue state of desiccation as a feedback mechanism to address temperature control of the ultrasonic end effector. These instruments, however, do not employ the temperature of the end effector as a feedback mechanism. Therefore, there is a need in the art to monitor and control the temperature of an ultrasonic end effector to effectively enable the welding of tissues in wounds and/or vessels.
Ultrasonic end effectors are known to build up heat with use. The heat build up may be greater when the blade is used in a shears system with high coaptation forces. Coaptation in the context of ultrasonic surgical instruments refers to the joining together or fitting of two surfaces, such as the edges of a wound, tissue and/or vessel. Standard methodologies of cooling the end effector blade, such as running fluid through the blade while cutting, can have the undesirable effect of reducing the cutting and coagulating effectiveness of the blade. Thus, there is a need for an ultrasonic end effector blade that is capable of generating adequate heat for hemostatis, coagulation, and/or anastomoses tissue but that quickly cools when it is not in use.
In one general aspect, the various embodiments are directed to a surgical instrument includes a transducer configured to produce vibrations at a predetermined frequency. An ultrasonic end effector extends along a longitudinal axis and is coupled to the transducer. The ultrasonic end effector comprises an ultrasonic blade and a clamping mechanism. A controller receives a feedback signal from the ultrasonic end effector and the feedback signal is measured by the controller. A lumen is adapted to couple to a pump. The controller is configured to control fluid flow through the lumen based on the feedback signal, and the lumen is located within the ultrasonic end effector.
The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
Before explaining the various embodiments in detail, it should be noted that the embodiments are not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. For example, the surgical instruments and end effector configurations disclosed below are illustrative only and not meant to limit the scope or application thereof. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not to limit the scope thereof.
The various embodiments relate, in general, to ultrasonic instruments with improved thermal characteristics. In one embodiment, the ultrasonic instruments provide end effectors with reduced heat build during use. The embodiments include, for example, blades used in a shears system with high coaptation forces where the heat build up may be greater. Coaptation in the context of ultrasonic surgical instruments refers to the joining together or fitting of two surfaces, such as the edges of a wound, tissue and/or vessel. The end effector may be cooled by running fluid through the end effector after cutting tissue when not in use. One embodiment provides an ultrasonic blade that is capable of generating adequate heat for hemostatis, coagulation, and/or anastomoses tissue but that quickly cools when it is not in use.
In various other embodiments the ultrasonic instruments with improved thermal characteristics provide improved tissue welding techniques for closing wounds and vessels as may be applied in many surgical specialties. Tissue welding is a technique for closing wounds by creating a hemostatic seal in the wounds or vessels as well as creating strong anastomoses in the tissue. Various embodiments of ultrasonic surgical instruments provide hemostatis with minimal lateral thermal damage to the tissue. The hemostatis or anastomoses occurs through the transfer of mechanical energy to the tissue. Internal cellular friction breaks hydrogen bonds resulting in protein denaturization. As the proteins are denatured, a sticky coagulum forms and seals small vessels at temperatures below 100° Celsius. Anastomoses occurs when the effects are prolonged. Thus, in various embodiments, the ultrasonic energy in the vibrating end effector may be employed to create hemostatic seals in vessels and adjacent tissues in wounds and to create strong anastomoses in tissue. Other embodiments provide ultrasonic vibrating single or multiple end effectors, either alone or in combination with clamping mechanisms, to produce suitable mechanical energy to seal vessels with controlled temperature end effectors. To create strong anastomoses of the tissue, the temperature of the end effector and the tissue should be maintained or regulated at or below approximately 50° C. to allow for the creation of a coagulum to seal the tissues together without desiccating the tissues. Desiccation occurs through the cavitational effect. As the end effector vibrates, it produces an area of transient low pressure at the tip of the end effector causing fluid inside the cells to vaporize and rupture. Various embodiments of controlled temperature ultrasonic devices may be employed in tissue welding applications because the temperature of the end effector is effectively controlled to achieve suitable hemostatis and anastomoses to weld tissue together. As the temperature of the end effector increases with use, the ultrasonic blade and/or clamping mechanism there is measured and cooling fluid is pumped through the blade and/or clamping mechanism. Various embodiments of the ultrasonic instruments ascertain the tissue state of desiccation as a feedback mechanism to address temperature control of the ultrasonic end effector. These instruments, employ the temperature of the end effector as a feedback mechanism to monitor and control the temperature of an ultrasonic end effector to effectively enable the welding of tissues in wounds and/or vessels.
Examples of ultrasonic surgical instruments are disclosed in U.S. Pat. Nos. 5,322,055 and 5,954,736 and in combination with ultrasonic end effectors and surgical instruments disclosed in U.S. Pat. Nos. 6,309,400 B2, 6,278,218 B1, 6,283,981 B1, and 6,325,811 B1, for example, are incorporated herein by reference in their entirety. These references disclose ultrasonic surgical instruments and end effector configurations where a longitudinal mode of the end effector is excited. Because of asymmetry or asymmetries, ultrasonic end effectors also may exhibit transverse and/or torsional motion where the characteristic “wavelength” of this non-longitudinal motion is less than that of the general longitudinal motion of the end effector and its extender portion. Therefore, the wave shape of the non-longitudinal motion will present nodal positions of transverse/torsional motion along the tissue effector while the net motion of the active end effector along its tissue effector is non-zero (i.e., will have at least longitudinal motion along the length extending from its distal end, an antinode of longitudinal motion, to the first nodal position of longitudinal motion that is proximal to the tissue effector portion).
Certain embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying-drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments and that the scope of the various embodiments is defined solely by the claims. The features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the claims.
In one embodiment, the temperature of an ultrasonic end effector may be approximately determined while in use by measuring the resonant frequency of the ultrasonic system and correlating variations in the end effector frequency with the end effector temperature. For example, as the temperature of the end effector increases, the frequency drops. The correlation between frequency shift or drift due to temperature variations may be determined empirically by experimentation or design parameters and programmed into the ultrasonic signal generator or in an electronic controller coupled to the ultrasonic instrument and/or the generator. In one embodiment, a technique measures the frequency of the ultrasonic system and utilizes this information to adjust the flow of fluid into the surgical area to adjust the temperature of the end effectors. In another embodiment, the temperature of the end effector may be determined directly with a temperature sensor. The temperature of the end effector may be measured with thermocouple, acoustic sensor, or thermistor type devices embedded within the end effector or the instrument sheath, allowing a correlation to be made with the temperature of the end effector. Once the temperature of the end effector is determined, the end effector may be cooled by flowing lower temperature fluid on the ultrasonic end effector, through the ultrasonic end effector, or surrounding tissue, keeping them at a predetermined temperature.
In various embodiments, the ultrasonic end effector or clamping mechanism may be formed with internal lumens or cannulas such that fluid may be flowed through the end effector or clamping mechanism at a suitable flow rate necessary to maintain or regulate the end effector at a predetermined temperature. In another embodiment, the fluid may be heated to a predetermined temperature and then flowed through the lumens at a suitable flow rate to transfer heat to the tissue to assist in coagulation or tissue welding.
In another embodiment, a phase change material may be provided in the lumen. The phase change material changes from a solid or liquid phase to a gaseous phase and may be located inside the end effector lumens to control the temperature of the end effector. Expansion of the phase change material from a solid or liquid phase to a gaseous phase absorbs heat and keeps the end effector at a specified temperature. In yet another embodiment, the phase change material may act like a heat pipe material, absorbing heat at the end effector/tissue interface and releasing the heat away from the interface.
A strong coagulation area, as may be needed in larger lumen tissue welding applications, may be achieved by maintaining the temperature of the end effector surface at a point between where coagulation of the tissue can occur but where desiccation of the tissue does not occur. Lowering the temperature of the ultrasonic end effector enables the end effector to contact the tissue for a longer period. This allows for both the side of the tissue in contact with the end effector and the side in contact with the coaptation pad to form viable coagulation zones, thus improving the weld strength of the tissue. In another embodiment, the same end effector cooling fluid may be routed through a coaptation pad to increase the temperature of the tissue on the side opposing the end effector.
Thus, in one embodiment, the temperature of the ultrasonic end effector may be controlled by employing end effector temperature measurement as a feedback mechanism and infusing water or another cooling fluid into the end effector to maintain or control the temperature of the end effector. Infusing water at a specified temperature keeps the end effector at that temperature and absorbs excess energy from the system that would otherwise desiccate the tissue. The end effector temperature may be measured using frequency change of the system or by direct measurement of the end effector sheath temperature. End effector temperature may be controlled by infusing a cooling fluid through the end effector. The cooling fluid may be employed to cool the ultrasonic end effector and to heat the coaptation pad side of the instrument.
Irrigation lumens formed within the body of an ultrasonic end effector have been employed in ultrasonic aspirators such as ultrasonic surgical aspirators (CUSA®) produced by CAVITRON®, for example. The lumens act as fluidic conduits to provide relatively constant irrigation to the target site. In one embodiment, a end effector irrigation lumen may be fluidically coupled to an irrigation pump that is programmed for intermittent activation. The ultrasonic end effector may be used for tissue cutting and/or hemostasis (e.g., coagulation). During this process, the pump remains in a no-flow condition. Once the tissue load is removed from the end effector, the ultrasonic signal generator or controller senses the no tissue load condition and then operates the pump either continuously or intermittently to supply cooling fluid to the end effector for a specified amount of time or until the end effector reaches a predetermined temperature. In one embodiment, the ultrasonic signal generator or a controller may be adapted and configured to sense the end effector temperature by a referred measurement of system frequency and fluid may be supplied to the end effector until the end effector reaches a predetermined temperature.
In another embodiment, the ultrasonic signal generator or a controller may be adapted and configured to control the supply of fluid to the end effector for a specified amount of time after the user discontinues using the end effector. This embodiment in combination with the temperature measuring embodiment may be employed to cool the end effector to a specified temperature. In yet another embodiment, a cooling fluid may be fed or supplied either from a lumen formed within the end effector sheath or from a fluid flow port attached to the sheath. Either of these methods would be suitable for spraying fluid over the exterior of the end effector to control the temperature thereof.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the hand piece assembly 60. Thus, the end effector 50 is distal with respect to the more proximal hand piece assembly 60. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the hand piece assembly 60. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
The distal end of the end-bell 20 is connected to the proximal end of the transduction portion 18, and the proximal end of the fore-bell 22 is connected to the distal end of the transduction portion 18. The fore-bell 22 and the end-bell 20 have a length determined by a number of variables, including the thickness of the transduction portion 18, the density and modulus of elasticity of the material used to manufacture the end-bell 20 and the fore-bell 22, and the resonant frequency of the ultrasonic transducer 14. The fore-bell 22 may be tapered inwardly from its proximal end to its distal end to amplify the ultrasonic vibration amplitude as the velocity transformer 28, or alternately may have no amplification. A suitable vibrational frequency range may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-100 kHz. A suitable operational vibrational frequency may be approximately 55.5 kHz, for example.
Piezoelectric elements 32 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, barium titanate, or other piezoelectric ceramic material. Each of positive electrodes 34, negative electrodes 36, and the piezoelectric elements 32 has a bore extending through the center. The positive and negative electrodes 34 and 36 are electrically coupled to wires 38 and 40, respectively. The wires 38 and 40 are encased within a cable 42 and electrically connectable to the ultrasonic signal generator 12 of the ultrasonic instrument 10.
The generator 12 also has a power line 6 for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 12 also can be powered by a direct current (DC) source, such as a battery. The generator 12 may comprise any suitable generator. The ultrasonic transducer 14 of the acoustic assembly 24 converts the electrical signal from the ultrasonic signal generator 12 into mechanical energy that results in primarily a standing wave of longitudinal vibratory motion of the ultrasonic transducer 24 and the end effector 50 at ultrasonic frequencies. In another embodiment, the vibratory motion of the ultrasonic transducer may act in a different direction. For example, the vibratory motion may comprise a local longitudinal component of a more complicated motion of the tip of the ultrasonic instrument 10. A suitable generator is available as model number GEN04, from Ethicon Endo-Surgery, Inc., Cincinnati, Ohio. When the acoustic assembly 24 is energized, a vibratory motion standing wave is generated through the acoustic assembly 24. The amplitude of the vibratory motion at any point along the acoustic assembly 24 depends upon the location along the acoustic assembly 24 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).
The wires 38 and 40 transmit an electrical signal from the ultrasonic signal generator 12 to the positive electrodes 34 and the negative electrodes 36. The piezoelectric elements 32 are energized by the electrical signal supplied from the ultrasonic signal generator 12 in response to an actuator or triggering mechanism 44, such as a foot switch, for example, to produce an acoustic standing wave in the acoustic assembly 24. The electrical signal causes disturbances in the piezoelectric elements 32 in the form of repeated small displacements resulting in large alternating compression and tension forces within the material. The repeated small displacements cause the piezoelectric elements 32 to expand and contract in a continuous manner along the axis of the voltage gradient, producing longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 24 to the single element end effector 50, such as the blade, via a transmission component or an ultrasonic transmission waveguide 104.
For the acoustic assembly 24 to deliver energy to the single element end effector 50, all components of the acoustic assembly 24 must be acoustically coupled to the end effector 50. The distal end of the ultrasonic transducer 14 may be acoustically coupled at the surface 30 to the proximal end of the ultrasonic transmission waveguide 104 by a threaded connection such as a cannulated threaded stud 48.
The components of the acoustic assembly 24 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 24, and where n is any positive integer. It is also contemplated that the acoustic assembly 24 may incorporate any suitable arrangement of acoustic elements.
The length of the end effector 50 may be substantially equal to an integral multiple of one-half wavelengths (nλ/2). A distal end 52 of the end effector 50 may be disposed near an antinode in order to provide the maximum longitudinal excursion of the distal end 52. When the transducer assembly is energized, the distal end 52 of the end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency of 55 kHz, for example.
The end effector 50 may comprise an inner lumen 68 extending longitudinally to receive and conduct fluid to a target site. The target site may be the cutting, coagulating, or tissue welding site, for example. The lumen 68 is in fluid communication with (e.g., is fluidically coupled to) a fluid pump 64. In various embodiments, the fluid pump 64 and the ultrasonic signal generator 12 may be combined in a single integral unit. In the embodiment, illustrated in
The piezoelectric elements 32 may be held in compression between the first and second resonators 20 and 22 by the bolt 35. The bolt 35 may have a head, a shank, and a threaded distal end. The bolt 35 may be inserted from the proximal end of the first resonator 92 through the bores of the first resonator 20, the electrodes 34 and 36, and the piezoelectric elements 32. The threaded distal end of the bolt 35 is screwed into a threaded bore in the proximal end of second resonator 22. The bolt 35 can be fabricated from steel, titanium, aluminum, or other suitable material. In various embodiments, the bolt 35 may be fabricated from Ti6Al4V Titanium, Ti6-4 Titanium, and most preferably from 4037 low alloy steel.
The end effector 50 may be coupled to the ultrasonic transmission waveguide 104. The end effector 50 and the ultrasonic transmission waveguide 104 as illustrated are formed as a single unit construction from a material suitable for transmission of ultrasonic energy. Examples of such materials include Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other suitable materials. Alternately, the end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 104, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The length of the ultrasonic transmission waveguide 104 may be substantially equal to an integral number of one-half wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 104 may be preferably fabricated from a solid core shaft constructed out of material suitable to propagate ultrasonic energy efficiently, such as the titanium alloy discussed above (i.e., Ti6Al4V) or any suitable aluminum alloy, or other alloys, for example.
In one embodiment, the ultrasonic transmission waveguide 104 includes a plurality of stabilizing silicone rings or compliant supports positioned at a plurality of nodes (not shown). The silicone rings dampen undesirable vibration and isolate the ultrasonic energy from an outer sheath (not shown) assuring the flow of ultrasonic energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.
The outer sheath protects a user of the ultrasonic surgical instrument 10 and a patient from the ultrasonic vibrations of the ultrasonic transmission waveguide 104. The sheath generally includes a hub and an elongated tubular member. The tubular member is attached to the hub and has an opening extending longitudinally therethrough. The sheath is threaded onto the distal end of the housing 16. The ultrasonic transmission waveguide 104 extends through the opening of the tubular member and the silicone rings isolate the ultrasonic transmission waveguide 104 from the outer sheath. The outer sheath may be attached to the waveguide 104 with an isolator pin. The hole in the waveguide 104 may occur nominally at a displacement. The waveguide 104 may screw or snap onto the hand piece assembly 60 by the cannulated threaded stud 48. Flat portions on the hub may allow the assembly to be torqued to a required level.
The hub of the sheath is preferably constructed from plastic and the tubular member is fabricated from stainless steel. Alternatively, the ultrasonic transmission waveguide 104 may comprise polymeric material surrounding it to isolate it from outside contact.
The distal end of the ultrasonic transmission waveguide 104 may be coupled to the proximal end of the end effector 50 by an internal cannulated threaded connection, preferably at or near an antinode. It is contemplated that the end effector 50 may be attached to the ultrasonic transmission waveguide 104 by any suitable means, such as a welded joint or the like. Although the end effector 50 may be detachable from the ultrasonic transmission waveguide 104, it is also contemplated that the single element end effector 50 (e.g., a blade) and the ultrasonic transmission waveguide 104 may be formed as a single unitary piece.
In the embodiment illustrated in
In the embodiment illustrated in
As previously described, the end effector 50 comprises an inner lumen 68 extending longitudinally to receive and transfer fluid to through the end effector 50 or to a target site. The target site may be the cutting, coagulating, or tissue welding site, for example. The lumen 68 is fluidically coupled to the fluid pump 64. In the embodiment, illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
As previously discussed, the generator 12 of the surgical system 200 sends an electrical signal through a cable 42 at a selected excursion, frequency, and phase determined by a control system of the generator 12. As previously discussed, the signal causes one or more piezoelectric elements of the acoustic assembly of the surgical instrument 202 to expand and contract along a longitudinal axis, thereby converting the electrical energy into longitudinal mechanical motion. The mechanical motion results in longitudinal waves of ultrasonic energy that propagate through the acoustic assembly in an acoustic standing wave to vibrate the acoustic assembly at a selected frequency and excursion. The end effector 206 is placed in contact with tissue of the patient to transfer the ultrasonic energy to the tissue. For example, a distal portion or blade 208 of the end effector 206 may be placed in contact with the tissue. As further described below, a surgical tool, such as, a jaw or clamping mechanism 210, may be utilized to press the tissue against the blade 208.
As the end effector 206 couples to the tissue, thermal energy or heat is generated as a result of friction, acoustic absorption, and viscous losses within the tissue. The heat is sufficient to break protein hydrogen bonds, causing the highly structured protein (e.g., collagen and muscle protein) to denature (e.g., become less organized). As the proteins are denatured, a sticky coagulum forms to seal or coagulate small blood vessels. Deep coagulation of larger blood vessels results when the effect is prolonged.
The transfer of the ultrasonic energy to the tissue causes other effects including mechanical tearing, cutting, cavitation, cell disruption, and emulsification. The amount of cutting as well as the degree of coagulation obtained varies with the excursion of the end effector 206, the frequency of vibration, the amount of pressure applied by the user, the sharpness of the blade 208, and the coupling between the end effector 206 and the tissue.
As previously discussed, the generator 12 comprises a control system integral with the generator 12, a power switch 8, and a triggering mechanism 44. The power switch 8 controls the electrical power to the generator 12, and when activated by the triggering mechanism 44, the generator 12 provides energy to drive the acoustic assembly of the surgical system 200 at a predetermined frequency and to drive the end effector 180 at a predetermined excursion level. The generator 12 drives or excites the acoustic assembly at any suitable resonant frequency of the acoustic assembly.
When the generator 12 is activated via the triggering mechanism 44, electrical energy in the form of an electrical signal is continuously applied by the generator 12 to a transducer stack or assembly of the acoustic assembly 24 (
The electrical signal supplied to the acoustic assembly will cause the distal end of the end effector 206, e.g., the blade 208, to vibrate longitudinally in the range of, for example, approximately 20 kHz to 250 kHz, and preferably in the range of about 54 kHz to 56 kHz, and most preferably at about 55.5 kHz. The excursion of the vibrations at the blade 208 can be controlled by, for example, controlling the amplitude of the electrical signal applied to the transducer assembly of the acoustic assembly by the generator 12.
As previously discussed, the triggering mechanism 44 of the generator 12 allows a user to activate the generator 12 so that electrical energy may be continuously supplied to the acoustic assembly. The triggering mechanism 44 may comprise a foot activated switch that is detachably coupled or attached to the generator 12 by a cable or cord. Alternatively, the triggering mechanism 44 can be configured as a hand switch incorporated in the ultrasonic drive unit 204 to allow the generator 12 to be activated by a user.
The generator 12 also has a power line 6 for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 12 also can be powered by a direct current (DC) source, such as a battery. The generator 12 may comprise any suitable generator, such as Model No. GEN04 available from Ethicon Endo-Surgery, Inc.
The ultrasonic drive unit 204 of the surgical instrument 202 includes a multi-piece housing 212 adapted to isolate the operator from the vibrations of the acoustic assembly. The drive unit housing 212 can be shaped to be held by a user in a conventional manner, but it is contemplated that the clamp coagulator instrument ultrasonic instrument 202 is principally grasped and manipulated by a pistol-like arrangement 214 provided by a housing of the apparatus. While the multi-piece housing 212 is illustrated, the housing 212 may comprise a single or unitary component.
The ultrasonic drive unit 204 housing 212 generally comprises a proximal end, a distal end, and a cavity extending longitudinally therein. The distal end of the housing 212 includes an opening 216 configured to allow the acoustic assembly of the surgical system 200 to extend therethrough, and the proximal end of the housing 212 is coupled to the generator 12 by the cable 42. The cable 42 may include ducts, conduits, or lumens 218 to allow cooling fluid to be introduced to and to cool the end effector 206.
The housing 212 of the ultrasonic drive unit 204 may be constructed from a durable plastic, such as ULTEM®. It is also contemplated that the housing 212 may alternatively be made from a variety of materials including other plastics (e.g., liquid crystal polymer [LCP], nylon, or polycarbonate). A suitable ultrasonic drive unit 204 is Model No. HP054, available from Ethicon Endo-Surgery, Inc.
The acoustic assembly of the surgical instrument 200 generally includes a first acoustic portion and a second acoustic portion. The first acoustic portion may be carried by the ultrasonic drive unit 204, and the second acoustic portion in the form of an end effector 206 is carried by the ultrasonic clamp coagulator ultrasonic instrument 202. The distal end of the first acoustic portion is operatively coupled to the proximal end of the second acoustic portion, preferably by a threaded connection.
In the embodiment illustrated in
As previously discussed, the components of the acoustic assembly may be acoustically tuned such that the length of each component is an integral number of one-half wavelengths (nλ/2). It is also contemplated that the acoustic assembly may incorporate any suitable arrangement of acoustic elements.
The transducer assembly of the acoustic assembly converts the electrical signal from the generator 12 into mechanical energy that results in longitudinal vibratory motion of the end effector 206 at ultrasonic frequencies. When the acoustic assembly is energized, a vibratory motion standing wave is generated through the acoustic assembly. The excursion of the vibratory motion at any point along the acoustic assembly depends on the location along the acoustic assembly at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (e.g., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node. The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).
As previously described with reference to
The mounting device 84 of the acoustic assembly has a proximal end, a distal end, and may have a length substantially equal to an integral number of one-half wavelengths (nλ/2). The proximal end of the mounting device 84 may be axially aligned and coupled to the distal end of the second resonator 94 by an internal threaded connection near an anti-node. It is also contemplated that the mounting device 84 may be attached to the second resonator 94 by any suitable means, and the second resonator 94 and mounting device 84 may be formed as a single or unitary component.
The proximal end of the clamp coagulator ultrasonic surgical instrument 202 preferably receives and is fitted to the distal end of the ultrasonic drive unit 204 by insertion of the drive unit 204 into the housing 212. The clamp coagulator ultrasonic surgical instrument 202 may be attached to and removed from the ultrasonic drive unit 204 as a unit. The clamp coagulator ultrasonic surgical instrument 202 may be disposed of after a single use.
The clamp coagulator ultrasonic surgical instrument 202 may comprise an elongated or endoscopic portion 222. When the present apparatus is configured for endoscopic use, the construction can be dimensioned such that the elongated portion 222 has an outside diameter of about 5.5 mm. The elongated portion 222 of the clamp coagulator ultrasonic surgical instrument 202 may extend substantially orthogonally from the apparatus housing 204. The elongated portion 222 can be selectively rotated with respect to the housing 204 as described below. The elongated portion 222 may include an outer tubular member or sheath 224, an inner tubular actuating member 226, and the second acoustic portion of the acoustic system in the form of an end effector 206 including a blade 208. The outer sheath 224, the actuating member 226, and the end effector 206 may be joined together for indexed rotation as a unit (together with ultrasonic drive unit 204) relative to housing 212 by way of a rotation knob 228.
The end effector 206 may include a waveguide 220. The waveguide 220 may be substantially semi-flexible. It will be recognized that, alternatively, the waveguide 220 can be substantially rigid or may comprise a flexible wire. The waveguide 220 may be configured to amplify the mechanical vibrations transmitted through the waveguide 220 to the blade 208 as is well known in the art. The waveguide 220 may further comprise features to control the gain of the longitudinal vibration along the waveguide 220 and features to tune the waveguide 220 to the resonant frequency of the system.
It will be recognized that the blade 208 may comprise any suitable cross-sectional dimension. For example, the blade 208 may have a substantially uniform cross-section or the blade 208 may be tapered at various sections or may be tapered along its entire length. According to various embodiments, the blade 208 may be mechanically sharp formed with a cutting edge or may be mechanically blunt. The distal end of the blade 208 is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency fo when the acoustic assembly is not loaded by tissue. When the transducer assembly is energized, the distal end of the blade 208 is configured to move longitudinally in the range of, for example, approximately 10-500 microns peak-to-peak, and preferably in the range of about 10 to about 100 microns at a predetermined vibrational frequency fo. In accordance with the illustrated embodiment, the blade 208 may be cylindrical for cooperation with the associated clamping mechanism of the clamp coagulator ultrasonic surgical instrument 202. The waveguide 220 and the blade 208 may receive suitable surface treatment, as is known in the art.
Pivotal movement of the clamp arm 230 with respect to the blade 208 is effected by the provision of at least one, and preferably a pair of lever portions 236 of the clamp arm 230 at the proximal end thereof. The lever portions 236 are positioned on respective opposite sides of the end effector 206 and the blade 208, and are in operative engagement with a drive portion 238 of the reciprocal actuating member 226. Reciprocal movement of the actuating member 226, relative to the outer tubular sheath 224 and the end effector 206, thereby effects pivotal movement of the clamp arm 230 relative to the blade 208. The lever portions 236 can be respectively positioned in a pair of openings defined by the drive portion 238, or otherwise suitably mechanically coupled therewith, whereby reciprocal movement of the actuating member 226 acts through the drive portion 238 and lever portions 236 to pivot the clamp arm 230.
The ultrasonic waveguide 220 and the blade 208 may comprise an inner lumen 240 extending longitudinally to receive and transfer fluid as indicated by arrow 242 to a target site. The target site may be the cutting, coagulating, or tissue welding site, for example. The lumen 240 is fluidically coupled to the fluid pump 64. In the embodiment, illustrated in
A fluid line 302 is fluidically coupled to a proximal end of the inner lumen 308 and conducts a fluid 304 therethrough. The fluid line 302 receives the fluid 304 from the fluid pump 64 and/or the fluid temperature regulator 65. If the fluid 304 is used for cooling, the fluid 304 is conducted directly from the fluid pump 64 to the inner lumen 308 where it exits out of the distal end 36 of the end effector 324. If the fluid 304 is used for heating or to maintain the end effector 324 at a predetermined temperature, the fluid 304 is circulated through the fluid temperature regulator 65 and then is conducted into the lumen 308 by the fluid pump 64 either continuously or intermittently. The fluid line 302 is received through a housing portion 306 of the instrument 300 and is fluidically coupled to the inner lumen 308. The fluid 304 emanates or flows out from the distal end 326 of the end effector 324. The fluid 304 regulates the temperature of the end effector 324 and/or the surrounding tissue in the surgical region or target site.
The generator 12 or a controller 67 (referred to hereinafter as the controller 67) comprise circuits that may be configured to control the operation of the fluid pump 64 and/or the fluid temperature regulator 65. The controller 67 receives a feedback signal that is a direct or indirect measure of the temperature of the end effector 324. In one embodiment, as discussed in more detail below, the controller 67 may be coupled to a temperature sensor and receives a first feedback signal that is directly indicative of the temperature of the end effector 324, the fluid 304 or other components of the instrument 300. In one embodiment, as discussed in more detail below, the controller 67 may be coupled to the generator 12 and receives a second feedback signal that is indirectly indicative of the temperature of the end effector 324, the fluid 304 or other components of the instrument 300. The controller 67 is in electrical communication with (e.g., is electrically coupled to) the fluid pump 64. The controller 67 may control the operation of the fluid pump 64 and/or the fluid temperature regulator 65 either in an open loop manner without employing the feedback signal; or in a closed loop manner by employing the feedback signal. In either implementation, the controller 67 may operate the fluid pump 64 and/or the fluid temperature regulator 65 either continuously or intermittently to heat, cool, or otherwise regulate the temperature of the fluid 304, the end effector 324, the tissue within the target site, and/or any other component of the surgical instrument 300.
In one embodiment, the temperature of the ultrasonic end effector 324 may be controlled or regulated by employing a end effector temperature measurement signal as a feedback mechanism to the controller 67. Based on the temperature feedback signal, the controller 67 controls the operation of the fluid pump 64 and/or the fluid temperature regulator 65 by conducting or infusing water or another cooling fluid 304 through the lumen 308 to control or regulate the temperature of the end effector 324 to a predetermined temperature. Conducting or infusing the fluid 304 at a specified temperature keeps the end effector 324 at that temperature and absorbs excess energy from the system that would otherwise desiccate the tissue at the target site. The temperature of the end effector 324 may be measured using frequency change of the system or by direct measurement of the end effector or sheath temperature. In various embodiments an acoustic sensor may be used to measure frequency. End effector temperature may be controlled by chilling the cooling fluid 304 and conducting or infusing it through the end effector 324. The cooling fluid 304 may be employed to cool the ultrasonic end effector 324. The controller 67 and/or the generator 12 may be employed to measure the frequency changes of the end effector 324.
It is known that the frequency of the end effector 324 changes as a function of the temperature of the end effector 324. Accordingly, it is possible to approximate the temperature of the ultrasonic end effector 324 during use by measuring the resonant frequency of the ultrasonic transducer 316 system. For example, the resonant frequency of the ultrasonic transducer 316 system drops as the temperature of the end effector 324 increases during use. In one embodiment, the controller 67 and/or the generator 12 may be employed to detect the frequency variations of the ultrasonic transducer 316 system to derive an indirect measurement of the temperature of the end effector 324. The controller 67 and/or the generator 12 may determine the temperature of the end effector 324 based on the frequency feedback signal 71. The frequency feedback signal 71 is proportional to the temperature of the end effector 324. Based on the frequency feedback signal 71, the controller 67 controls the flow rate and/or the temperature of the fluid 304 supplied to the surgical area or to the end effector 324 to regulate the temperature of the end effector 324. The end effector 324 may be cooled by conducting fluid 304 at a lower temperature than the end effector 324 through the end effector 324 or to the tissue at the target site either continuously or intermittently to set and/or maintain a predetermined temperature. The indirect measurement of the temperature of the end effector 324 based on the frequency variations of the ultrasonic transducer 316 system may be determined empirically by experimentation or design parameters and programmed into the ultrasonic signal generator 12 or the controller 67 (e.g., in an integrated circuit within the instrument). The temperature of the fluid or the frequency of intermittent operation of the fluid pump 64 needed to maintain the end effector 324 at a predetermined temperature also may be determined empirically. The cooling fluid 304 may be conducted through the internal lumen 308 or cannulas formed inside the instrument 300 at any predetermined flow rate as may be necessary to keep the end effector 324 at the prescribed temperature. In another embodiment, the fluid may be conditioned to a predetermined temperature by the fluid temperature regulator 65 and then flowed through the inner lumen 308 at a predetermined flow rate to transfer any excess heat out of the system.
The irrigation lumen 308 formed within the body of the ultrasonic end effector 324 also forms a fluidic conduit to provide relatively constant or intermittent irrigation to the target site. In one embodiment, the irrigation lumen 308 of the end effector 324 may be fluidically coupled to the irrigation pump 64 that is programmed for continuous or intermittent activation. The ultrasonic end effector 324 can be used for tissue cutting and/or hemostasis (e.g., coagulation). During this process, the pump 64 remains shut-off or in a no-flow condition. Once the tissue load is removed from the end effector 324, the ultrasonic signal generator 12 senses the no load condition and provides a feedback signal that indicates an operational state of the ultrasonic end effector 324 to the controller 67 to control the pump 64 continuously or intermittently to supply the fluid 304 to the end effector 324 for a specified period. In one embodiment, the fluid 304 may be a cooling fluid. As previously discussed, in one embodiment, the controller 67 and/or the ultrasonic signal generator 12 may be adapted and configured to sense the temperature of the end effector 324 by a referred or indirect measurement of the temperature based on the transducer 316 system frequency. The fluid 304 may be conducted or infused continuously or intermittently to the end effector 324 until the end effector 324 reaches a predetermined temperature.
In another embodiment, the ultrasonic signal generator 12 or the controller 67 may be adapted and configured to control the conduction or infusion of the fluid 304 to the end effector 324 for a specified period after the operation of the end effector 324 is discontinued. In various embodiments, the controller 67 may be adapted and configured to control the conduction or infusion of the fluid 304 to the end effector 324 when the ultrasonic signal generator 12 is not actively driving the ultrasonic transducer 316. The conduction or infusion of fluid 304 may be independent of any temperature or frequency feedback signals. The conduction or infusion of fluid 304 may be, for example, for a predetermined amount of time and/or for predetermined repeating cycle. In another embodiment, the temperature of the end effector 324 may be monitored during this period to control the temperature of the end effector 324 to a specified temperature.
As previously discussed, the full length inner lumen 308 extends from a proximal end of the instrument 300 to a distal end of the end effector 324 through the transducer 316 and the end effector 324. The lumen 308 is fluidically coupled to the fluid line 302 to receive the fluid 304 from the fluid pump 64 and/or the fluid temperature regulator 65 and to conduct the fluid 304 to the end effector 324. The fluid 304 emanates or flows out from the distal end 326 of the end effector 324 through the bore 322.
As previously discussed, the temperature of the end effector 324 may be measured directly or indirectly. In one embodiment, the temperature of the end effector 324 may be determined directly with a temperature sensor, indirectly by measuring the operating frequency of the end effector 324 and deriving the temperature, or using a combination of these techniques. The controller 67 receives either a temperature feedback signal 332 from a temperature sensor 330 (
In one embodiment, the inner lumen 352 is filled with a phase change material 350. The phase change material 350 is sealed within the inner lumen 352. The phase change material 350 may comprise any material that changes from a solid or liquid phase to a gaseous phase. The phase change material 350 controls the temperature of the end effector 354. As the phase change material 350 changes from a solid or liquid phase to a gaseous phase it absorbs heat to maintain the end effector 354 at a specified temperature. The phase change material 350 acts like a heat pipe material, absorbing heat at the end effector/tissue interface and releasing the heat away from the interface. The heat pipe is a heat transfer mechanism that can transport large quantities of heat with a very small difference in temperature between the hot and cold interfaces. A heat pipe may comprise a sealed hollow tube such as the sealed inner lumen 352. The waveguide 320 and the end effector 354 may be formed of Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other suitable materials, that have thermoconductive properties. The pipe is formed of the waveguide 320 and the end effector 354 comprising the inner sealed lumen 352 filled with a relatively small quantity of the phase change material 350 that acts as a “working fluid” or coolant (such as water, ethanol, or mercury). The rest of the pipe is filled with vapor phase of the phase change material 350 or working fluid, all other gases being excluded.
In one embodiment, the temperature sensor 330 may be embedded in an instrument sheath (e.g., the sheath 326 in
In one embodiment, the temperature sensor 330 may be embedded in an instrument sheath (e.g., the sheath 326 in
In the illustrated embodiment, the tissue welding end effector 1106 can be configured to clamp, sever, and weld soft tissue, for example. In other embodiments, different types of end effectors may be used such as graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound, RF and/or laser devices, for example. The tissue welding end effector 1106 can include, among other things, an ultrasonic tissue treating blade 1118 and a translatable clamping member, such as an anvil 1120, for example, where the ultrasonic tissue treating blade 1118 and the anvil 1120 can be relatively positioned, or spaced, in order to assure that the soft tissue 1112 clamped in the tissue welding end effector 1106 is properly welded and incised. The handle 1102 can include a pistol grip 1122 towards which a closure trigger 1114 can be pivotally drawn in order to move the anvil 1120 toward the ultrasonic tissue treating blade 1118 and clamp the tissue 1112 positioned between the anvil 1120 and the ultrasonic tissue treating blade 1118. Stated another way, once the clinician is satisfied with the positioning of the end effector 1106, the clinician may draw back the closure trigger 1114 to a position in which the anvil 1120 is fully closed and the closure trigger 1114 is locked into position. Thereafter, the firing trigger 1116 may be pivotally drawn toward the pistol grip 1122 to weld and sever the soft tissue 1120 clamped in the end effector 1106.
As shown in
In one embodiment, the clamp arm 1145 comprises an inner lumen 1150 to receive a first fluid 1154 from a fluid pump 64a. The fluid 1154 may be heated by a fluid temperature regulator 65a prior to flowing through the lumen 1150. In one embodiment, the ultrasonic blade 1142 comprises another inner lumen 1152 to receive a fluid 1156 from a fluid pump 64b. The fluid 1156 may be heated by a fluid temperature regulator 65b prior to flowing through the lumen 1152. The fluids 1150, 1152 may be the same or may be different fluids. The fluids 1150, 1152 may be supplied to the lumens 1150, 1152 from the same fluid source or from different fluid sources. For example, either one of the fluid pumps 64a,b and/or either one of the fluid temperature regulators 65a,b may supply the fluid to both lumens 1152, 1150.
As previously discussed, while in use, the temperature of the ultrasonic blade 1142 may be approximated by measuring the resonant frequency of the ultrasonic system. As the temperature of the blade 1142 varies, the resonant frequency of the ultrasonic system also varies. For example, as the temperature of the blade 1142 increases, the resonant frequency of the ultrasonic system decreases; and as the temperature of the blade 1142 decreases, the resonant frequency of the ultrasonic system increases. Accordingly, the temperature of the blade 1142 may be inferred by measuring the deviation of the resonant frequency from a reference frequency measured at a reference temperature point. In one embodiment, the temperature of the blade 1142 may be inferred and the deviation in the resonant frequency of the ultrasonic system may be measured and utilized to adjust the flow rate and/or temperature of the fluids 1154, 1156 flowing through the respective lumens 1150, 1152 into the surgical area. This mechanism may be employed to adjust the temperature of the blade 1142 and/or the coaptation pad 1146.
The actual frequency feedback mechanism and control required to maintain the blade 1142 and/or the pad 1146 at a predetermined temperature may be determined empirically by experimentation or design parameters and programmed into the ultrasonic signal generator 12, in an integrated circuit, or the controller 67, as previously discussed. The temperature of either the pad 1146 and/or the blade 1142 may be controlled or regulated by flowing the respective fluids 1154, 1156 at predetermined or desired temperatures. For example, the blade 1142 may be cooled by flowing the fluid 1156 that is colder than the temperature of the blade 1142 as derived from the frequency measurement of the ultrasonic system. For example, the pad 1146 may be heated by flowing the fluid 1154 at a temperature that is higher than the temperature of the blade 1142 as derived from the frequency measurement of the ultrasonic system. The fluids 1154, 1156 may be flowed through the pad 1146 and/or the blade 1142 at a flow rate necessary to keep them at the predetermined temperature. In another embodiment, either one of the fluids 1154, 1156 may be heated by the fluid temperature regulator 65a,b to a desired temperature and then flowed through either one of the lumens 1150, 1152 at a suitable rate to transfer heat energy into or out of the system.
In one embodiment, the temperature of the pad 1146 and/or the blade 1142 may be measured with respective temperature sensors 1158, 1160. The first and second temperature sensors 1158, 1160 may be thermocouple or thermistor type devices and may be embedded in the elongated member or endoscopic portion 1148 or sheath, the blade 1142, the pad 1146, and/or other suitable portions of the clamping mechanism 1144 such as the clamp arm 1145, for example. The temperature sensors 1158, 1160 provide respective first and second temperature feedback signals 1162, 1164 to the controller 67 to correlate temperature of the pad 1146 or the blade 1142. In tissue welding applications, a strong coagulation area may be achieved by maintaining the temperature of the surface of the blade 1142 at a point between where coagulation of the tissue can occur but where desiccation of the tissue does not occur. Lowering the temperature of the blade 1142 enables the blade 1142 to contact the tissue for a longer period. This allows for both the side of the tissue in contact with the blade 1142 and the side in contact with the coaptation pad 1146 to form viable coagulation zones, thus improving the weld strength of the tissue.
In one embodiment, the temperature of the ultrasonic blade 1142 or the coaptation pad 1146 may be controlled by employing blade temperature measurement as a feedback mechanism and infusing water or other fluids 1154, 1156 at predetermined temperatures into the blade pad 1146 or the blade 1142 to maintain, regulate, or otherwise control their temperature. For example, infusing water at a specified temperature, at a specified flow rate, and for a specified period maintains the blade 1142 at that temperature and absorbs excess energy from the system that would otherwise desiccate the tissue. The temperature of the pad 1146 or the blade 1142 may be measured using either frequency change or variation of the system or by direct measurement with the sensors 1162, 1164. The temperature of the pad 1146 or the blade 1142 may be regulated by infusing the fluids 1154, 1156 therethrough at a predetermined temperature. In one embodiment, the fluid 1156 may be employed to cool the ultrasonic blade 1142 and to the fluid 1154 may be employed to heat the coaptation pad 1146 side of the instrument.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
In various embodiments, the clamp arm may comprise a T-shaped slot for accepting a T-shaped flange of a proximal tissue pad segment, a distal tissue pad segment and a tissue pad insert segment. In various embodiments, a single unitary tissue pad assembly may comprise the proximal tissue pad segment, the distal tissue pad segment and the tissue pad insert segment, and further comprise a T-shaped flange for reception in a T-shaped slot in the clamp arm assembly. Additional configurations including dove tailed-shaped slots and wedge-shaped flanges are contemplated. As would be appreciated by those skilled in the art, flanges and corresponding slots have alternative shapes and sizes to removably secure the tissue pad segments to the clamp arm.
A method for replacing the proximal tissue pad segment, the distal tissue pad segment and/or the tissue pad insert segment include one or more of the steps of: a) disengaging the clamp arm assembly from the ultrasonic surgical instrument; b) removing at least one of the tissue pad segments from the clamp arm; c) inserting at least one new or reconditioned tissue pad segment into the clamp arm; and d) engaging the clamp arm assembly with the ultrasonic surgical instrument. In this removal and replacement process, the new or reconditioned proximal tissue pad segment, distal tissue pad segment and tissue pad insert segment may be multiple separate segments or of unitary construction.
Another method for replacing the proximal tissue pad segment, the distal tissue pad segment and/or the tissue pad insert segment include one or more of the steps of: a) opening flanges on the clamp arm; b) removing at least one of the tissue pad segments from the clamp arm; c) inserting at least one new or reconditioned tissue pad segment into the clamp arm; and d) closing flanges on the clamp arm. In this removal and replacement process, the new or reconditioned proximal tissue pad segment, distal tissue pad segment and tissue pad insert segment may be multiple separate segments or of unitary construction.
Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. In addition, combinations of the described embodiments may be used. For example, a concave blade tip may be coated with a hydrophobic material. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This application is a divisional application claiming priority under 35 U.S.C. §121 to U.S. patent application Ser. No. 12/181,816, entitled TEMPERATURE CONTROLLED ULTRASONIC SURGICAL INSTRUMENTS, filed Jul. 29, 2008, which issued on Jun. 2, 2015 as U.S. Pat. No. 9,044,261, which claims the benefit of provisional application Ser. No. 60/999,735, filed Jul. 31, 2007, which is a conversion of application Ser. No. 11/888,296, filed Jul. 31, 2007. These applications to which Applicant claims priority are relied upon and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
1813902 | Bovie | Jul 1931 | A |
2188497 | Calva | Jan 1940 | A |
2366274 | Luth et al. | Jan 1945 | A |
2425245 | Johnson | Aug 1947 | A |
2442966 | Wallace | Jun 1948 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2597564 | Bugg | May 1952 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2743726 | Grieshaber | May 1956 | A |
2748967 | Roach | Jun 1956 | A |
2845072 | Shafer | Jul 1958 | A |
2849788 | Creek | Sep 1958 | A |
2867039 | Zach | Jan 1959 | A |
2874470 | Richards | Feb 1959 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3033407 | Alfons | May 1962 | A |
3053124 | Balamuth et al. | Sep 1962 | A |
3082805 | Royce | Mar 1963 | A |
3166971 | Stoecker | Jan 1965 | A |
3322403 | Murphy | May 1967 | A |
3432691 | Shoh | Mar 1969 | A |
3433226 | Boyd | Mar 1969 | A |
3489930 | Shoh | Jan 1970 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3503397 | Fogarty et al. | Mar 1970 | A |
3503398 | Fogarty et al. | Mar 1970 | A |
3513848 | Winston et al. | May 1970 | A |
3514856 | Camp et al. | Jun 1970 | A |
3525912 | Wallin | Aug 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3554198 | Tatoian et al. | Jan 1971 | A |
3580841 | Cadotte et al. | May 1971 | A |
3606682 | Camp et al. | Sep 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3616375 | Inoue | Oct 1971 | A |
3629726 | Popescu | Dec 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3668486 | Silver | Jun 1972 | A |
3702948 | Balamuth | Nov 1972 | A |
3703651 | Blowers | Nov 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3777760 | Essner | Dec 1973 | A |
3792701 | Kloz et al. | Feb 1974 | A |
3805787 | Banko | Apr 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3832776 | Sawyer | Sep 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3885438 | Harris, Sr. et al. | May 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3924335 | Balamuth et al. | Dec 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
3989952 | Hohmann | Nov 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4012647 | Balamuth et al. | Mar 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4057660 | Yoshida et al. | Nov 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4074719 | Semm | Feb 1978 | A |
4085893 | Durley, III | Apr 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4167944 | Banko | Sep 1979 | A |
4169984 | Parisi | Oct 1979 | A |
4173725 | Asai et al. | Nov 1979 | A |
4188927 | Harris | Feb 1980 | A |
4193009 | Durley, III | Mar 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203430 | Takahashi | May 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4300083 | Heiges | Nov 1981 | A |
4302728 | Nakamura | Nov 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4352459 | Berger et al. | Oct 1982 | A |
4445063 | Smith | Apr 1984 | A |
4452473 | Ruschke | Jun 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4492231 | Auth | Jan 1985 | A |
4494759 | Kieffer | Jan 1985 | A |
4504264 | Kelman | Mar 1985 | A |
4512344 | Barber | Apr 1985 | A |
4526571 | Wuchinich | Jul 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4541638 | Ogawa et al. | Sep 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4553544 | Nomoto et al. | Nov 1985 | A |
4562838 | Walker | Jan 1986 | A |
4574615 | Bower et al. | Mar 1986 | A |
4582236 | Hirose | Apr 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4641053 | Takeda | Feb 1987 | A |
4646738 | Trott | Mar 1987 | A |
4646756 | Watmough | Mar 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4662068 | Polonsky | May 1987 | A |
4663677 | Griffith et al. | May 1987 | A |
4674502 | Imonti | Jun 1987 | A |
4696667 | Masch | Sep 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4750488 | Wuchinich et al. | Jun 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4783997 | Lynnworth | Nov 1988 | A |
4808154 | Freeman | Feb 1989 | A |
4819635 | Shapiro | Apr 1989 | A |
4821719 | Fogarty | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830462 | Karny et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4836186 | Scholz | Jun 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4852578 | Companion et al. | Aug 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4862890 | Stasz et al. | Sep 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4869715 | Sherburne | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4881550 | Kothe | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4915643 | Samejima et al. | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4978067 | Berger et al. | Dec 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
4983160 | Steppe et al. | Jan 1991 | A |
5013956 | Kurozumi et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5042461 | Inoue et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047043 | Kubota et al. | Sep 1991 | A |
5057119 | Clark et al. | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5059210 | Clark et al. | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5084052 | Jacobs | Jan 1992 | A |
5088687 | Stender | Feb 1992 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5105117 | Yamaguchi | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
D327872 | McMills et al. | Jul 1992 | S |
D330253 | Burek | Oct 1992 | S |
5152762 | McElhenney | Oct 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5156633 | Smith | Oct 1992 | A |
5159226 | Montgomery | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5167619 | Wuchinich | Dec 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
5172344 | Ehrlich | Dec 1992 | A |
5174276 | Crockard | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176677 | Wuchinich | Jan 1993 | A |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
D334173 | Liu et al. | Mar 1993 | S |
5190518 | Takasu | Mar 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5205817 | Idemoto et al. | Apr 1993 | A |
5209719 | Baruch et al. | May 1993 | A |
5209776 | Bass et al. | May 1993 | A |
5213103 | Martin et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5214339 | Naito | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5218529 | Meyer et al. | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5222937 | Kagawa | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5234436 | Eaton et al. | Aug 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5254129 | Alexander | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5264925 | Shipp et al. | Nov 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5275166 | Vaitekunas et al. | Jan 1994 | A |
5275607 | Lo et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282817 | Hoogeboom et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289436 | Terhune | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5306280 | Bregen et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312327 | Bales et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5323055 | Yamazaki | Jun 1994 | A |
5324297 | Hood et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5354265 | Mackool | Oct 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5357164 | Imabayashi et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5371429 | Manna | Dec 1994 | A |
5372585 | Tiefenbrun et al. | Dec 1994 | A |
5374813 | Shipp | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383883 | Wilk et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5387215 | Fisher | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5394187 | Shipp | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397293 | Alliger et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5408268 | Shipp | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5417709 | Slater | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5423844 | Miller | Jun 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451220 | Ciervo | Sep 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462604 | Shibano et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5483501 | Park et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496411 | Candy | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522832 | Kugo et al. | Jun 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5527273 | Manna et al. | Jun 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5562659 | Morris | Oct 1996 | A |
5562703 | Desai | Oct 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5582618 | Chin et al. | Dec 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618304 | Hart et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632717 | Yoon | May 1997 | A |
5640741 | Yano | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643301 | Mollenauer | Jul 1997 | A |
5647851 | Pokras | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649955 | Hashimoto et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5678568 | Uchikubo et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5695510 | Hood | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704791 | Gillio | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5717306 | Shipp | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722980 | Schulz et al. | Mar 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stock et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735875 | Bonutti et al. | Apr 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5766164 | Mueller et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800448 | Banko | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807310 | Hood | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810828 | Lightman et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5810869 | Kaplan et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5853290 | Winston | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5858018 | Shipp et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879363 | Urich | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893880 | Egan et al. | Apr 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5903607 | Tailliet | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5906627 | Spaulding | May 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5910150 | Saadat | Jun 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5941887 | Steen et al. | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5974342 | Petrofsky | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5980546 | Hood | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993465 | Shipp et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
5994855 | Lundell et al. | Nov 1999 | A |
6001120 | Levin | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007552 | Fogarty et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6031526 | Shipp | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6036707 | Spaulding | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6048224 | Kay | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6053906 | Honda et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063050 | Manna et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6096033 | Tu et al. | Aug 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
6120519 | Weber et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126629 | Perkins | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132427 | Jones et al. | Oct 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6156029 | Mueller | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6165186 | Fogarty et al. | Dec 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6179853 | Sachse et al. | Jan 2001 | B1 |
6183426 | Akisada et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6204592 | Hur | Mar 2001 | B1 |
6205855 | Pfeiffer | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6217591 | Egan et al. | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228104 | Fogarty et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6241724 | Fleischman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
D445092 | Lee | Jul 2001 | S |
D445764 | Lee | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6273902 | Fogarty et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6287344 | Wampler et al. | Sep 2001 | B1 |
6290575 | Shipp | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6293954 | Fogarty et al. | Sep 2001 | B1 |
6299591 | Banko | Oct 2001 | B1 |
6299621 | Fogarty et al. | Oct 2001 | B1 |
6306131 | Hareyama et al. | Oct 2001 | B1 |
6306157 | Shchervinsky | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6311783 | Harpell | Nov 2001 | B1 |
6312445 | Fogarty et al. | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6333488 | Lawrence et al. | Dec 2001 | B1 |
6338657 | Harper et al. | Jan 2002 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6358264 | Banko | Mar 2002 | B2 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6384690 | Wilhelmsson et al. | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6387112 | Fogarty et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6402748 | Schoenman et al. | Jun 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6409743 | Fenton, Jr. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6416469 | Phung et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416525 | Shibata | Jul 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6425906 | Young et al. | Jul 2002 | B1 |
6425907 | Shibata et al. | Jul 2002 | B1 |
6428538 | Blewett et al. | Aug 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6440062 | Ouchi | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6468286 | Mastri et al. | Oct 2002 | B2 |
6475211 | Chess et al. | Nov 2002 | B2 |
6475215 | Tanrisever | Nov 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6498421 | Oh et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6500312 | Wedekamp | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6526976 | Baran | Mar 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6562059 | Edwards et al. | May 2003 | B2 |
6565558 | Lindenmeier et al. | May 2003 | B1 |
6569109 | Sakurai et al. | May 2003 | B2 |
6569178 | Miyawaki et al. | May 2003 | B1 |
6572563 | Ouchi | Jun 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575929 | Sussman et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
D477408 | Bromley | Jul 2003 | S |
6585735 | Frazier et al. | Jul 2003 | B1 |
6588277 | Giordano et al. | Jul 2003 | B2 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602229 | Coss | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6607540 | Shipp | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623444 | Babaev | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626848 | Neuenfeldt | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6648839 | Manna et al. | Nov 2003 | B2 |
6648883 | Francischelli et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652539 | Shipp et al. | Nov 2003 | B2 |
6652545 | Shipp et al. | Nov 2003 | B2 |
6656124 | Flesch et al. | Dec 2003 | B2 |
6656132 | Ouchi | Dec 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6660017 | Beaupre | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6669690 | Okada et al. | Dec 2003 | B1 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679875 | Honda et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689145 | Lee et al. | Feb 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6690960 | Chen et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6699214 | Gellman | Mar 2004 | B2 |
6702761 | Damadian et al. | Mar 2004 | B1 |
6702821 | Bonutti | Mar 2004 | B2 |
6712805 | Weimann | Mar 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6719692 | Kleffner et al. | Apr 2004 | B2 |
6719765 | Bonutti | Apr 2004 | B2 |
6719766 | Buelna et al. | Apr 2004 | B1 |
6719776 | Baxter et al. | Apr 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
D490059 | Conway et al. | May 2004 | S |
6731047 | Kauf et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6739872 | Turri | May 2004 | B1 |
6740079 | Eggers et al. | May 2004 | B1 |
D491666 | Kimmell et al. | Jun 2004 | S |
6743245 | Lobdell | Jun 2004 | B2 |
6746284 | Spink, Jr. | Jun 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752154 | Fogarty et al. | Jun 2004 | B2 |
6752815 | Beaupre | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778023 | Christensen | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6789939 | Schrodinger et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6794027 | Araki et al. | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6809508 | Donofrio | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6814731 | Swanson | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6832988 | Sproul | Dec 2004 | B2 |
6835082 | Gonnering | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6863676 | Lee et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6882439 | Ishijima | Apr 2005 | B2 |
6887209 | Kadziauskas et al. | May 2005 | B2 |
6887221 | Baillargeon et al. | May 2005 | B1 |
6887252 | Okada et al. | May 2005 | B1 |
6893435 | Goble | May 2005 | B2 |
6899685 | Kermode et al. | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6908466 | Bonutti et al. | Jun 2005 | B1 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6915623 | Dey et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6926717 | Garito et al. | Aug 2005 | B1 |
6929602 | Hirakui et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932876 | Statnikov | Aug 2005 | B1 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942660 | Pantera et al. | Sep 2005 | B2 |
6942676 | Buelna | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6946779 | Birgel | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6974450 | Weber et al. | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6988295 | Tillim | Jan 2006 | B2 |
6989017 | Howell et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7001382 | Gallo, Sr. | Feb 2006 | B2 |
7002283 | Li et al. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014638 | Michelson | Mar 2006 | B2 |
7018354 | Tazi | Mar 2006 | B2 |
7018389 | Camerlengo | Mar 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7037306 | Podany et al. | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066893 | Hibner et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077845 | Hacker et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7104834 | Robinson et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7117034 | Kronberg | Oct 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7119516 | Denning | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7128720 | Podany | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135029 | Makin et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156201 | Peshkovskiy et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160259 | Tardy et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7182762 | Bortkiewicz | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7198635 | Danek et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207997 | Shipp et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210881 | Greenberg | May 2007 | B2 |
7211079 | Treat | May 2007 | B2 |
7217128 | Atkin et al. | May 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235071 | Gonnering | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7244262 | Wiener et al. | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7264618 | Murakami et al. | Sep 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7269873 | Brewer et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
D552241 | Bromley et al. | Oct 2007 | S |
7282048 | Goble et al. | Oct 2007 | B2 |
7282836 | Kwon et al. | Oct 2007 | B2 |
7285895 | Beaupre | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7300446 | Beaupre | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303531 | Lee et al. | Dec 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311706 | Schoenman et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7318832 | Young et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7335165 | Truwit et al. | Feb 2008 | B2 |
7335997 | Wiener | Feb 2008 | B2 |
7337010 | Howard et al. | Feb 2008 | B2 |
7338463 | Vigil | Mar 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7361172 | Cimino | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7413123 | Ortenzi | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7416437 | Sartor et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7419490 | Falkenstein et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422463 | Kuo | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431704 | Babaev | Oct 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442168 | Novak et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7449004 | Yamada et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455641 | Yamada et al. | Nov 2008 | B2 |
7462181 | Kraft et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7488285 | Honda et al. | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7502234 | Goliszek et al. | Mar 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7520865 | Radley Young et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530986 | Beaupre et al. | May 2009 | B2 |
7533830 | Rose | May 2009 | B1 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7540871 | Gonnering | Jun 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544200 | Houser | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7563259 | Takahashi | Jul 2009 | B2 |
7563269 | Hashiguchi | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7572268 | Babaev | Aug 2009 | B2 |
7578166 | Ethridge et al. | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7582084 | Swanson et al. | Sep 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7582095 | Shipp et al. | Sep 2009 | B2 |
7585181 | Olsen | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7587536 | McLeod | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7608054 | Soring et al. | Oct 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7627936 | Bromfield | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645245 | Sekino et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7645278 | Ichihashi et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7659833 | Warner et al. | Feb 2010 | B2 |
7662151 | Crompton, Jr. et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7670338 | Albrecht et al. | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7678125 | Shipp | Mar 2010 | B2 |
7682366 | Sakurai et al. | Mar 2010 | B2 |
7686763 | Vaezy et al. | Mar 2010 | B2 |
7686770 | Cohen | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7713267 | Pozzato | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7721935 | Racenet et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7727177 | Bayat | Jun 2010 | B2 |
7734476 | Wildman et al. | Jun 2010 | B2 |
7738969 | Bleich | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7749240 | Takahashi et al. | Jul 2010 | B2 |
7749273 | Cauthen, III et al. | Jul 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
7762979 | Wuchinich | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766693 | Sartor et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7778733 | Nowlin et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780593 | Ueno et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7796969 | Kelly et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799020 | Shores et al. | Sep 2010 | B2 |
7799045 | Masuda | Sep 2010 | B2 |
7803152 | Honda et al. | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7815658 | Murakami | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819819 | Quick et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
7821143 | Wiener | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7834521 | Habu et al. | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7867228 | Nobis et al. | Jan 2011 | B2 |
7871392 | Sartor | Jan 2011 | B2 |
7871423 | Livneh | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7878991 | Babaev | Feb 2011 | B2 |
7879033 | Sartor et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7897792 | Iikura et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909824 | Masuda et al. | Mar 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7922716 | Malecki et al. | Apr 2011 | B2 |
7931611 | Novak et al. | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7935114 | Takashino et al. | May 2011 | B2 |
7936203 | Zimlich | May 2011 | B2 |
7951095 | Makin et al. | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7972329 | Refior et al. | Jul 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981050 | Ritchart et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8002732 | Visconti | Aug 2011 | B2 |
8006358 | Cooke et al. | Aug 2011 | B2 |
8016843 | Escaf | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025630 | Murakami et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8033173 | Ehlert et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8048011 | Okabe | Nov 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8052672 | Laufer et al. | Nov 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8057467 | Faller et al. | Nov 2011 | B2 |
8057468 | Konesky | Nov 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070711 | Bassinger et al. | Dec 2011 | B2 |
8070762 | Escudero et al. | Dec 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8092475 | Cotter et al. | Jan 2012 | B2 |
8097012 | Kagarise | Jan 2012 | B2 |
8100894 | Mucko et al. | Jan 2012 | B2 |
8105230 | Honda et al. | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8105324 | Palanker et al. | Jan 2012 | B2 |
8114104 | Young et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8133218 | Daw et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8137263 | Marescaux et al. | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8142421 | Cooper et al. | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8147508 | Madan et al. | Apr 2012 | B2 |
8152801 | Goldberg et al. | Apr 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8172846 | Brunnett et al. | May 2012 | B2 |
8172870 | Shipp | May 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182501 | Houser et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8186877 | Klimovitch et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8207651 | Gilbert | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8221306 | Okada et al. | Jul 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8226665 | Cohen | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8231607 | Takuma | Jul 2012 | B2 |
8235917 | Joseph et al. | Aug 2012 | B2 |
8236018 | Yoshimine et al. | Aug 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241282 | Unger et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241312 | Messerly | Aug 2012 | B2 |
8246575 | Viola | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8253303 | Giordano et al. | Aug 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8273087 | Kimura et al. | Sep 2012 | B2 |
D669992 | Schafer et al. | Oct 2012 | S |
D669993 | Merchant et al. | Oct 2012 | S |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8277471 | Wiener et al. | Oct 2012 | B2 |
8282581 | Zhao et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298223 | Wham et al. | Oct 2012 | B2 |
8298225 | Gilbert | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8303576 | Brock | Nov 2012 | B2 |
8303580 | Wham et al. | Nov 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8303613 | Crandall et al. | Nov 2012 | B2 |
8306629 | Mioduski et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328833 | Cuny | Dec 2012 | B2 |
8328834 | Isaacs et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8353297 | Dacquay et al. | Jan 2013 | B2 |
8357103 | Mark et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8366727 | Witt et al. | Feb 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8372102 | Stulen et al. | Feb 2013 | B2 |
8374670 | Selkee | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382748 | Geisel | Feb 2013 | B2 |
8382775 | Bender et al. | Feb 2013 | B1 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8382792 | Chojin | Feb 2013 | B2 |
8388646 | Chojin | Mar 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8394096 | Moses et al. | Mar 2013 | B2 |
8394115 | Houser et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8409234 | Stahler et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8425161 | Nagaya et al. | Apr 2013 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430897 | Novak et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8435258 | Young et al. | May 2013 | B2 |
8439912 | Cunningham et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8454599 | Inagaki et al. | Jun 2013 | B2 |
8454639 | Du et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8460326 | Houser et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8484833 | Cunningham et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491578 | Manwaring et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
D687549 | Johnson et al. | Aug 2013 | S |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8509318 | Tailliet | Aug 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512364 | Kowalski et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8518067 | Masuda et al. | Aug 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8528563 | Gruber | Sep 2013 | B2 |
8529437 | Taylor et al. | Sep 2013 | B2 |
8529565 | Masuda et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8546999 | Houser et al. | Oct 2013 | B2 |
8551077 | Main et al. | Oct 2013 | B2 |
8551086 | Kimura et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568400 | Gilbert | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8574253 | Gruber et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8591459 | Clymer et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
D696631 | Price et al. | Dec 2013 | S |
8597193 | Grunwald et al. | Dec 2013 | B2 |
8602031 | Reis et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8610334 | Bromfield | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8628534 | Jones et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8641663 | Kirschenman et al. | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8651230 | Peshkovsky et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652132 | Tsuchiya et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8659208 | Rose et al. | Feb 2014 | B1 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8663262 | Smith et al. | Mar 2014 | B2 |
8668691 | Heard | Mar 2014 | B2 |
8668710 | Slipszenko et al. | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685016 | Wham et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8691268 | Weimann | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696366 | Chen et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8704425 | Giordano et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709031 | Stulen | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8715306 | Faller et al. | May 2014 | B2 |
8721640 | Taylor et al. | May 2014 | B2 |
8721657 | Kondoh et al. | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8734476 | Rhee et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8749116 | Messerly et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8754570 | Voegele et al. | Jun 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8758352 | Cooper et al. | Jun 2014 | B2 |
8764735 | Coe et al. | Jul 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8767970 | Eppolito | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8771269 | Sherman et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8773001 | Wiener et al. | Jul 2014 | B2 |
8777944 | Frankhouser et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801710 | Ullrich et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
8814870 | Paraschiv et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8821388 | Naito et al. | Sep 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8827995 | Schaller et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8845537 | Tanaka et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8848808 | Dress | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852184 | Kucklick | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8862955 | Cesari | Oct 2014 | B2 |
8864709 | Akagane et al. | Oct 2014 | B2 |
8864749 | Okada | Oct 2014 | B2 |
8864757 | Klimovitch et al. | Oct 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8870865 | Frankhouser et al. | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8882766 | Couture et al. | Nov 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8882792 | Dietz et al. | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888783 | Young | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8900259 | Houser et al. | Dec 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8911438 | Swoyer et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8920412 | Fritz et al. | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968294 | Maass et al. | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8974447 | Kimball et al. | Mar 2015 | B2 |
8974477 | Yamada | Mar 2015 | B2 |
8974479 | Ross et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986287 | Park et al. | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989855 | Murphy et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992526 | Brodbeck et al. | Mar 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9017355 | Smith et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9023072 | Young et al. | May 2015 | B2 |
9028397 | Naito | May 2015 | B2 |
9028476 | Bonn | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9031667 | Williams | May 2015 | B2 |
9033973 | Krapohl et al. | May 2015 | B2 |
9035741 | Hamel et al. | May 2015 | B2 |
9039690 | Kersten et al. | May 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9039705 | Takashino | May 2015 | B2 |
9043018 | Mohr | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050093 | Aldridge et al. | Jun 2015 | B2 |
9050098 | Deville et al. | Jun 2015 | B2 |
9050124 | Houser | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9059547 | McLawhorn | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9063049 | Beach et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9066747 | Robertson | Jun 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9072539 | Messerly et al. | Jul 2015 | B2 |
9084624 | Larkin et al. | Jul 2015 | B2 |
9084878 | Kawaguchi et al. | Jul 2015 | B2 |
9089327 | Worrell et al. | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107690 | Bales, Jr. et al. | Aug 2015 | B2 |
9113900 | Buysse et al. | Aug 2015 | B2 |
9113940 | Twomey | Aug 2015 | B2 |
9114245 | Dietz et al. | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9125722 | Schwartz | Sep 2015 | B2 |
9147965 | Lee | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168055 | Houser et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9168089 | Buysse et al. | Oct 2015 | B2 |
9168090 | Strobl et al. | Oct 2015 | B2 |
9173656 | Schurr et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186199 | Strauss et al. | Nov 2015 | B2 |
9186204 | Nishimura et al. | Nov 2015 | B2 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9198715 | Livneh | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204891 | Weitzman | Dec 2015 | B2 |
9204918 | Germain et al. | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9220483 | Frankhouser et al. | Dec 2015 | B2 |
9220527 | Houser et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9237923 | Worrell et al. | Jan 2016 | B2 |
9241060 | Fujisaki | Jan 2016 | B1 |
9241692 | Gunday et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9241768 | Sandhu et al. | Jan 2016 | B2 |
9247953 | Palmer et al. | Feb 2016 | B2 |
9254165 | Aronow et al. | Feb 2016 | B2 |
9254171 | Trees et al. | Feb 2016 | B2 |
9259234 | Robertson et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265567 | Orban, III et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9265973 | Akagane | Feb 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301772 | Kimball et al. | Apr 2016 | B2 |
9307388 | Liang et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9308014 | Fischer | Apr 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9314301 | Ben-Haim et al. | Apr 2016 | B2 |
9326754 | Polster | May 2016 | B2 |
9326787 | Sanai et al. | May 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9339289 | Robertson | May 2016 | B2 |
9339323 | Eder et al. | May 2016 | B2 |
9339326 | McCullagh et al. | May 2016 | B2 |
9345534 | Artale et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351642 | Nadkarni et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9352173 | Yamada et al. | May 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9358407 | Akagane | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9370611 | Ross et al. | Jun 2016 | B2 |
9375230 | Ross et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
D763442 | Price et al. | Aug 2016 | S |
9402680 | Ginnebaugh et al. | Aug 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414853 | Stulen et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9427249 | Robertson et al. | Aug 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439669 | Wiener et al. | Sep 2016 | B2 |
9439671 | Akagane | Sep 2016 | B2 |
9445784 | O'Keeffe | Sep 2016 | B2 |
9445832 | Wiener et al. | Sep 2016 | B2 |
9445833 | Akagane | Sep 2016 | B2 |
9451967 | Jordan et al. | Sep 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9468498 | Sigmon, Jr. | Oct 2016 | B2 |
9474542 | Slipszenko et al. | Oct 2016 | B2 |
9486235 | Harrington et al. | Nov 2016 | B2 |
9486236 | Price et al. | Nov 2016 | B2 |
9492187 | Ravikumar et al. | Nov 2016 | B2 |
9492224 | Boudreaux et al. | Nov 2016 | B2 |
9498245 | Voegele et al. | Nov 2016 | B2 |
9504483 | Houser et al. | Nov 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9504855 | Messerly et al. | Nov 2016 | B2 |
9510850 | Robertson et al. | Dec 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526565 | Strobl | Dec 2016 | B2 |
9545253 | Worrell et al. | Jan 2017 | B2 |
9545497 | Wenderow et al. | Jan 2017 | B2 |
9554846 | Boudreaux | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9592072 | Akagane | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9610091 | Johnson et al. | Apr 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9622729 | Dewaele et al. | Apr 2017 | B2 |
9623237 | Turner et al. | Apr 2017 | B2 |
9636135 | Stulen | May 2017 | B2 |
9638770 | Dietz et al. | May 2017 | B2 |
9642644 | Houser et al. | May 2017 | B2 |
9642669 | Takashino et al. | May 2017 | B2 |
9643052 | Tchao et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668806 | Unger et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9675374 | Stulen et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9687290 | Keller | Jun 2017 | B2 |
9700339 | Nield | Jul 2017 | B2 |
9700343 | Messerly et al. | Jul 2017 | B2 |
9707004 | Houser et al. | Jul 2017 | B2 |
9707027 | Ruddenklau et al. | Jul 2017 | B2 |
9707030 | Davison et al. | Jul 2017 | B2 |
9713507 | Stulen et al. | Jul 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724152 | Horlle et al. | Aug 2017 | B2 |
9737326 | Worrell et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9737358 | Beckman et al. | Aug 2017 | B2 |
9737735 | Dietz et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757186 | Boudreaux et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9795405 | Price et al. | Oct 2017 | B2 |
9795436 | Yates et al. | Oct 2017 | B2 |
9795808 | Messerly et al. | Oct 2017 | B2 |
9801648 | Houser et al. | Oct 2017 | B2 |
9801675 | Sanai et al. | Oct 2017 | B2 |
9808308 | Faller et al. | Nov 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9820771 | Norton et al. | Nov 2017 | B2 |
9820806 | Lee et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9839443 | Brockman et al. | Dec 2017 | B2 |
9839796 | Sawada | Dec 2017 | B2 |
9848901 | Robertson et al. | Dec 2017 | B2 |
9848902 | Price et al. | Dec 2017 | B2 |
9848937 | Trees et al. | Dec 2017 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9872725 | Worrell et al. | Jan 2018 | B2 |
9877720 | Worrell et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
9883884 | Neurohr et al. | Feb 2018 | B2 |
9888958 | Evans et al. | Feb 2018 | B2 |
9901339 | Farascioni | Feb 2018 | B2 |
9901359 | Faller et al. | Feb 2018 | B2 |
9907563 | Germain et al. | Mar 2018 | B2 |
9913655 | Scheib et al. | Mar 2018 | B2 |
9913656 | Stulen | Mar 2018 | B2 |
9913680 | Voegele et al. | Mar 2018 | B2 |
9918736 | Van Tol et al. | Mar 2018 | B2 |
9925003 | Parihar et al. | Mar 2018 | B2 |
9943325 | Faller et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9949788 | Boudreaux | Apr 2018 | B2 |
9962182 | Dietz et al. | May 2018 | B2 |
9987033 | Neurohr et al. | Jun 2018 | B2 |
10010339 | Witt et al. | Jul 2018 | B2 |
10010341 | Houser et al. | Jul 2018 | B2 |
10016207 | Suzuki et al. | Jul 2018 | B2 |
10022142 | Aranyi et al. | Jul 2018 | B2 |
10022567 | Messerly et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028765 | Hibner et al. | Jul 2018 | B2 |
10028786 | Mucilli et al. | Jul 2018 | B2 |
10034684 | Weisenburgh, II et al. | Jul 2018 | B2 |
10034685 | Boudreaux et al. | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
10039588 | Harper et al. | Aug 2018 | B2 |
10045794 | Witt et al. | Aug 2018 | B2 |
10045819 | Jensen et al. | Aug 2018 | B2 |
10070916 | Artale | Sep 2018 | B2 |
10085762 | Timm et al. | Oct 2018 | B2 |
10092310 | Boudreaux et al. | Oct 2018 | B2 |
10092344 | Mohr et al. | Oct 2018 | B2 |
10092348 | Boudreaux | Oct 2018 | B2 |
10092350 | Rothweiler et al. | Oct 2018 | B2 |
10111699 | Boudreaux | Oct 2018 | B2 |
10117667 | Robertson et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10182837 | Isola et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
D847990 | Kimball | May 2019 | S |
10363058 | Roberson et al. | Jul 2019 | B2 |
10368894 | Madan et al. | Aug 2019 | B2 |
10561436 | Asher et al. | Feb 2020 | B2 |
10677764 | Ross et al. | Jun 2020 | B2 |
10779848 | Houser | Sep 2020 | B2 |
10856896 | Eichmann et al. | Dec 2020 | B2 |
10874418 | Houser et al. | Dec 2020 | B2 |
10881451 | Worrell et al. | Jan 2021 | B2 |
20010011176 | Boukhny | Aug 2001 | A1 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020002378 | Messerly | Jan 2002 | A1 |
20020016603 | Wells | Feb 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052595 | Witt et al. | May 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020156466 | Sakurai et al. | Oct 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030014087 | Fang et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030040758 | Wang et al. | Feb 2003 | A1 |
20030050572 | Brautigam et al. | Mar 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030093113 | Fogarty et al. | May 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030114874 | Craig et al. | Jun 2003 | A1 |
20030120306 | Burbank et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030144680 | Kellogg et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030160698 | Andreasson et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212363 | Shipp | Nov 2003 | A1 |
20030212392 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040039242 | Tolkoff et al. | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040097912 | Gonnering | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040121159 | Cloud et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040132383 | Langford et al. | Jul 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040147945 | Fritzsch | Jul 2004 | A1 |
20040147946 | Mastri et al. | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040176686 | Hare et al. | Sep 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040199194 | Witt et al. | Oct 2004 | A1 |
20040204728 | Haefner | Oct 2004 | A1 |
20040215132 | Yoon | Oct 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20040267298 | Cimino | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050020967 | Ono | Jan 2005 | A1 |
20050021018 | Anderson et al. | Jan 2005 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050021078 | Vleugels et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050049546 | Messerly | Mar 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050085728 | Fukuda | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050182339 | Lee et al. | Aug 2005 | A1 |
20050188743 | Land | Sep 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050192611 | Houser | Sep 2005 | A1 |
20050222598 | Ho et al. | Oct 2005 | A1 |
20050234484 | Houser et al. | Oct 2005 | A1 |
20050249667 | Tuszynski et al. | Nov 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060030848 | Craig et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060066181 | Bromfield et al. | Mar 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079877 | Houser et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060224160 | Trieu et al. | Oct 2006 | A1 |
20060247558 | Yamada | Nov 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060257819 | Johnson | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060271030 | Francis et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070032704 | Gandini et al. | Feb 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070074584 | Talarico et al. | Apr 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070156163 | Davison et al. | Jul 2007 | A1 |
20070166663 | Telles et al. | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191712 | Messerly et al. | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239101 | Kellogg | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070288055 | Lee | Dec 2007 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080033465 | Schmitz et al. | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080077145 | Boyden et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080097281 | Zusman et al. | Apr 2008 | A1 |
20080097501 | Blier | Apr 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080125768 | Tahara et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080147092 | Rogge et al. | Jun 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208108 | Kimura | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080243162 | Shibata et al. | Oct 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080294051 | Koshigoe et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090023985 | Ewers | Jan 2009 | A1 |
20090043228 | Northrop et al. | Feb 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054889 | Newton et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090069830 | Mulvihill et al. | Mar 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090088785 | Masuda | Apr 2009 | A1 |
20090118751 | Wiener et al. | May 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090163807 | Sliwa | Jun 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090216157 | Yamada | Aug 2009 | A1 |
20090223033 | Houser | Sep 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090254077 | Craig | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090264909 | Beaupre | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270891 | Beaupre | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100022825 | Yoshie | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100034605 | Huckins et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100042126 | Houser et al. | Feb 2010 | A1 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100057118 | Dietz et al. | Mar 2010 | A1 |
20100063525 | Beaupre et al. | Mar 2010 | A1 |
20100063528 | Beaupre | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100106173 | Yoshimine | Apr 2010 | A1 |
20100109480 | Forslund et al. | May 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100168741 | Sanai et al. | Jul 2010 | A1 |
20100181966 | Sakakibara | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100204721 | Young et al. | Aug 2010 | A1 |
20100222714 | Muir et al. | Sep 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100228191 | Alvarez et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100280368 | Can et al. | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100312186 | Suchdev et al. | Dec 2010 | A1 |
20100331742 | Masuda | Dec 2010 | A1 |
20100331873 | Dannaher et al. | Dec 2010 | A1 |
20110004233 | Muir et al. | Jan 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110087220 | Felder et al. | Apr 2011 | A1 |
20110106141 | Nakamura | May 2011 | A1 |
20110125151 | Strauss et al. | May 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110291526 | Abramovich et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120004655 | Kim et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022583 | Sugalski et al. | Jan 2012 | A1 |
20120041358 | Mann et al. | Feb 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120071863 | Lee et al. | Mar 2012 | A1 |
20120078139 | Aldridge et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120078249 | Eichmann et al. | Mar 2012 | A1 |
20120101495 | Young et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116222 | Sawada et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120136279 | Tanaka et al. | May 2012 | A1 |
20120143211 | Kishi | Jun 2012 | A1 |
20120143233 | Sinelnikov | Jun 2012 | A1 |
20120172904 | Muir et al. | Jul 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130035685 | Fischer et al. | Feb 2013 | A1 |
20130090576 | Stulen et al. | Apr 2013 | A1 |
20130116717 | Balek et al. | May 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130165929 | Muir et al. | Jun 2013 | A1 |
20130231691 | Houser | Sep 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20130331873 | Ross et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140012299 | Stoddard et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140081299 | Dietz et al. | Mar 2014 | A1 |
20140114327 | Boudreaux et al. | Apr 2014 | A1 |
20140121569 | Schafer et al. | May 2014 | A1 |
20140135663 | Funakubo et al. | May 2014 | A1 |
20140135804 | Weisenburgh, II et al. | May 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140207135 | Winter | Jul 2014 | A1 |
20140207163 | Eichmann et al. | Jul 2014 | A1 |
20140276970 | Messerly et al. | Sep 2014 | A1 |
20140323926 | Akagane | Oct 2014 | A1 |
20140330271 | Dietz et al. | Nov 2014 | A1 |
20140371735 | Long | Dec 2014 | A1 |
20150011889 | Lee | Jan 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150088178 | Stulen et al. | Mar 2015 | A1 |
20150112335 | Boudreaux et al. | Apr 2015 | A1 |
20150148830 | Stulen et al. | May 2015 | A1 |
20150157356 | Gee | Jun 2015 | A1 |
20150164533 | Felder et al. | Jun 2015 | A1 |
20150164534 | Felder et al. | Jun 2015 | A1 |
20150164535 | Felder et al. | Jun 2015 | A1 |
20150164536 | Czarnecki et al. | Jun 2015 | A1 |
20150164537 | Cagle et al. | Jun 2015 | A1 |
20150164538 | Aldridge et al. | Jun 2015 | A1 |
20150182276 | Wiener et al. | Jul 2015 | A1 |
20150182277 | Wiener et al. | Jul 2015 | A1 |
20150230853 | Johnson et al. | Aug 2015 | A1 |
20150230861 | Woloszko et al. | Aug 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150272660 | Boudreaux et al. | Oct 2015 | A1 |
20150289854 | Cho et al. | Oct 2015 | A1 |
20150340586 | Wiener et al. | Nov 2015 | A1 |
20160030076 | Faller et al. | Feb 2016 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160051317 | Boudreaux | Feb 2016 | A1 |
20160058492 | Yates et al. | Mar 2016 | A1 |
20160074108 | Woodruff et al. | Mar 2016 | A1 |
20160114355 | Sakai et al. | Apr 2016 | A1 |
20160121143 | Mumaw et al. | May 2016 | A1 |
20160128762 | Harris et al. | May 2016 | A1 |
20160128769 | Rontal et al. | May 2016 | A1 |
20160144204 | Akagane | May 2016 | A1 |
20160157927 | Corbett et al. | Jun 2016 | A1 |
20160175024 | Yates et al. | Jun 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160175032 | Yang | Jun 2016 | A1 |
20160199123 | Thomas et al. | Jul 2016 | A1 |
20160199125 | Jones | Jul 2016 | A1 |
20160206342 | Robertson et al. | Jul 2016 | A1 |
20160213395 | Anim | Jul 2016 | A1 |
20160228171 | Boudreaux | Aug 2016 | A1 |
20160240768 | Fujii et al. | Aug 2016 | A1 |
20160262786 | Madan et al. | Sep 2016 | A1 |
20160270840 | Yates et al. | Sep 2016 | A1 |
20160270841 | Strobl et al. | Sep 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160270843 | Boudreaux et al. | Sep 2016 | A1 |
20160278848 | Boudreaux et al. | Sep 2016 | A1 |
20160296249 | Robertson | Oct 2016 | A1 |
20160296250 | Olson et al. | Oct 2016 | A1 |
20160296251 | Olson et al. | Oct 2016 | A1 |
20160296252 | Olson et al. | Oct 2016 | A1 |
20160296268 | Gee et al. | Oct 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20160302844 | Strobl et al. | Oct 2016 | A1 |
20160317217 | Batross et al. | Nov 2016 | A1 |
20160338726 | Stulen et al. | Nov 2016 | A1 |
20160346001 | Vakharia et al. | Dec 2016 | A1 |
20160367273 | Robertson et al. | Dec 2016 | A1 |
20160367281 | Gee et al. | Dec 2016 | A1 |
20160374708 | Wiener et al. | Dec 2016 | A1 |
20160374709 | Timm et al. | Dec 2016 | A1 |
20160374712 | Stulen et al. | Dec 2016 | A1 |
20170000512 | Conlon et al. | Jan 2017 | A1 |
20170000513 | Conlon et al. | Jan 2017 | A1 |
20170000541 | Yates et al. | Jan 2017 | A1 |
20170014152 | Noui et al. | Jan 2017 | A1 |
20170027624 | Wilson et al. | Feb 2017 | A1 |
20170036044 | Ito | Feb 2017 | A1 |
20170056056 | Wiener et al. | Mar 2017 | A1 |
20170056058 | Voegele et al. | Mar 2017 | A1 |
20170086876 | Wiener et al. | Mar 2017 | A1 |
20170086908 | Wiener et al. | Mar 2017 | A1 |
20170086909 | Yates et al. | Mar 2017 | A1 |
20170086910 | Wiener et al. | Mar 2017 | A1 |
20170086911 | Wiener et al. | Mar 2017 | A1 |
20170086912 | Wiener et al. | Mar 2017 | A1 |
20170086913 | Yates et al. | Mar 2017 | A1 |
20170086914 | Wiener et al. | Mar 2017 | A1 |
20170090507 | Wiener et al. | Mar 2017 | A1 |
20170095267 | Messerly et al. | Apr 2017 | A1 |
20170105757 | Weir et al. | Apr 2017 | A1 |
20170105786 | Scheib et al. | Apr 2017 | A1 |
20170105791 | Yates et al. | Apr 2017 | A1 |
20170119426 | Akagane | May 2017 | A1 |
20170135751 | Rothweiler et al. | May 2017 | A1 |
20170143371 | Witt et al. | May 2017 | A1 |
20170143877 | Witt et al. | May 2017 | A1 |
20170164972 | Johnson et al. | Jun 2017 | A1 |
20170172700 | Denzinger et al. | Jun 2017 | A1 |
20170189095 | Danziger et al. | Jul 2017 | A1 |
20170189096 | Danziger et al. | Jul 2017 | A1 |
20170189101 | Yates et al. | Jul 2017 | A1 |
20170196586 | Witt et al. | Jul 2017 | A1 |
20170196587 | Witt et al. | Jul 2017 | A1 |
20170202570 | Shelton, IV et al. | Jul 2017 | A1 |
20170202571 | Shelton, IV et al. | Jul 2017 | A1 |
20170202572 | Shelton, IV et al. | Jul 2017 | A1 |
20170202591 | Shelton, IV et al. | Jul 2017 | A1 |
20170202592 | Shelton, IV et al. | Jul 2017 | A1 |
20170202593 | Shelton, IV et al. | Jul 2017 | A1 |
20170202594 | Shelton, IV et al. | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170202596 | Shelton, IV et al. | Jul 2017 | A1 |
20170202597 | Shelton, IV et al. | Jul 2017 | A1 |
20170202598 | Shelton, IV et al. | Jul 2017 | A1 |
20170202599 | Shelton, IV et al. | Jul 2017 | A1 |
20170202605 | Shelton, IV et al. | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170202608 | Shelton, IV et al. | Jul 2017 | A1 |
20170202609 | Shelton, IV et al. | Jul 2017 | A1 |
20170207467 | Shelton, IV et al. | Jul 2017 | A1 |
20170209167 | Nield | Jul 2017 | A1 |
20170238991 | Worrell et al. | Aug 2017 | A1 |
20170245875 | Timm et al. | Aug 2017 | A1 |
20180014845 | Dannaher | Jan 2018 | A1 |
20180014846 | Rhee et al. | Jan 2018 | A1 |
20180014848 | Messerly et al. | Jan 2018 | A1 |
20180042634 | Conlon et al. | Feb 2018 | A1 |
20180049767 | Gee et al. | Feb 2018 | A1 |
20180055529 | Messerly et al. | Mar 2018 | A1 |
20180055530 | Messerly et al. | Mar 2018 | A1 |
20180055531 | Messerly et al. | Mar 2018 | A1 |
20180055532 | Messerly et al. | Mar 2018 | A1 |
20180055533 | Conlon et al. | Mar 2018 | A1 |
20180056095 | Messerly et al. | Mar 2018 | A1 |
20180078268 | Messerly et al. | Mar 2018 | A1 |
20180092660 | Houser et al. | Apr 2018 | A1 |
20180125523 | Johnson | May 2018 | A1 |
20180146975 | Zhang | May 2018 | A1 |
20180168680 | Houser et al. | Jun 2018 | A1 |
20180177521 | Faller et al. | Jun 2018 | A1 |
20180177545 | Boudreaux et al. | Jun 2018 | A1 |
20180199957 | Robertson et al. | Jul 2018 | A1 |
20180206881 | Price et al. | Jul 2018 | A1 |
20180221049 | Faller et al. | Aug 2018 | A1 |
20180263653 | Witt et al. | Sep 2018 | A1 |
20180289389 | Witt et al. | Oct 2018 | A1 |
20190008543 | Scoggins et al. | Jan 2019 | A1 |
20190053822 | Robertson et al. | Feb 2019 | A1 |
20190090900 | Rhee et al. | Mar 2019 | A1 |
20190133633 | Neurohr et al. | May 2019 | A1 |
20190239919 | Witt et al. | Aug 2019 | A1 |
20190262029 | Messerly et al. | Aug 2019 | A1 |
20190350615 | Messerly et al. | Nov 2019 | A1 |
20190380733 | Stulen et al. | Dec 2019 | A1 |
20190381339 | Voegele et al. | Dec 2019 | A1 |
20190381340 | Voegele et al. | Dec 2019 | A1 |
20200008857 | Conlon et al. | Jan 2020 | A1 |
20200015798 | Wiener et al. | Jan 2020 | A1 |
20200015838 | Robertson | Jan 2020 | A1 |
20200046401 | Witt et al. | Feb 2020 | A1 |
20200054386 | Houser et al. | Feb 2020 | A1 |
20200054899 | Wiener et al. | Feb 2020 | A1 |
20200085462 | Robertson | Mar 2020 | A1 |
20200085466 | Faller et al. | Mar 2020 | A1 |
20200323551 | Faller et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2003241752 | Sep 2003 | AU |
837241 | Mar 1970 | CA |
2535467 | Apr 1993 | CA |
2214413 | Sep 1996 | CA |
1233944 | Nov 1999 | CN |
1253485 | May 2000 | CN |
2460047 | Nov 2001 | CN |
1634601 | Jul 2005 | CN |
1640365 | Jul 2005 | CN |
1694649 | Nov 2005 | CN |
1775323 | May 2006 | CN |
1922563 | Feb 2007 | CN |
2868227 | Feb 2007 | CN |
1951333 | Apr 2007 | CN |
101035482 | Sep 2007 | CN |
101040799 | Sep 2007 | CN |
101396300 | Apr 2009 | CN |
101467917 | Jul 2009 | CN |
101674782 | Mar 2010 | CN |
101883531 | Nov 2010 | CN |
102160045 | Aug 2011 | CN |
202027624 | Nov 2011 | CN |
102335778 | Feb 2012 | CN |
102834069 | Dec 2012 | CN |
101313865 | Jan 2013 | CN |
103668171 | Mar 2014 | CN |
103921215 | Jul 2014 | CN |
106077718 | Nov 2016 | CN |
2065681 | Mar 1975 | DE |
3904558 | Aug 1990 | DE |
9210327 | Nov 1992 | DE |
4300307 | Jul 1994 | DE |
4323585 | Jan 1995 | DE |
4434938 | Feb 1996 | DE |
19608716 | Apr 1997 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
20021619 | Mar 2001 | DE |
10042606 | Aug 2001 | DE |
10201569 | Jul 2003 | DE |
0171967 | Feb 1986 | EP |
0336742 | Oct 1989 | EP |
0136855 | Nov 1989 | EP |
0342448 | Nov 1989 | EP |
0443256 | Aug 1991 | EP |
0456470 | Nov 1991 | EP |
0238667 | Feb 1993 | EP |
0340803 | Aug 1993 | EP |
0598976 | Jun 1994 | EP |
0630612 | Dec 1994 | EP |
0424685 | May 1995 | EP |
0677275 | Oct 1995 | EP |
0482195 | Jan 1996 | EP |
0695535 | Feb 1996 | EP |
0705571 | Apr 1996 | EP |
0741996 | Nov 1996 | EP |
0612570 | Jun 1997 | EP |
0557806 | May 1998 | EP |
0640317 | Sep 1999 | EP |
1108394 | Jun 2001 | EP |
1138264 | Oct 2001 | EP |
0908148 | Jan 2002 | EP |
1229515 | Aug 2002 | EP |
0722696 | Dec 2002 | EP |
1285634 | Feb 2003 | EP |
0908155 | Jun 2003 | EP |
0705570 | Apr 2004 | EP |
0765637 | Jul 2004 | EP |
1543854 | Jun 2005 | EP |
0870473 | Sep 2005 | EP |
0624346 | Nov 2005 | EP |
1594209 | Nov 2005 | EP |
1199044 | Dec 2005 | EP |
1609428 | Dec 2005 | EP |
1199043 | Mar 2006 | EP |
1293172 | Apr 2006 | EP |
0875209 | May 2006 | EP |
1433425 | Jun 2006 | EP |
1256323 | Aug 2006 | EP |
1698289 | Sep 2006 | EP |
1704824 | Sep 2006 | EP |
1749479 | Feb 2007 | EP |
1767157 | Mar 2007 | EP |
1254637 | Aug 2007 | EP |
1815950 | Aug 2007 | EP |
1839599 | Oct 2007 | EP |
1844720 | Oct 2007 | EP |
1862133 | Dec 2007 | EP |
1875875 | Jan 2008 | EP |
1878399 | Jan 2008 | EP |
1915953 | Apr 2008 | EP |
1532933 | May 2008 | EP |
1199045 | Jun 2008 | EP |
1707143 | Jun 2008 | EP |
1943957 | Jul 2008 | EP |
1964530 | Sep 2008 | EP |
1972264 | Sep 2008 | EP |
1974771 | Oct 2008 | EP |
1435852 | Dec 2008 | EP |
1498082 | Dec 2008 | EP |
1707131 | Dec 2008 | EP |
1477104 | Jan 2009 | EP |
2014218 | Jan 2009 | EP |
1849424 | Apr 2009 | EP |
2042112 | Apr 2009 | EP |
2042117 | Apr 2009 | EP |
2060238 | May 2009 | EP |
1832259 | Jun 2009 | EP |
2074959 | Jul 2009 | EP |
1810625 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2092905 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
1747761 | Oct 2009 | EP |
2106758 | Oct 2009 | EP |
2111813 | Oct 2009 | EP |
2131760 | Dec 2009 | EP |
1769766 | Feb 2010 | EP |
2151204 | Feb 2010 | EP |
2153791 | Feb 2010 | EP |
2200145 | Jun 2010 | EP |
1214913 | Jul 2010 | EP |
2238938 | Oct 2010 | EP |
2243439 | Oct 2010 | EP |
2298154 | Mar 2011 | EP |
2305144 | Apr 2011 | EP |
1510178 | Jun 2011 | EP |
1946708 | Jun 2011 | EP |
2335630 | Jun 2011 | EP |
1502551 | Jul 2011 | EP |
1728475 | Aug 2011 | EP |
2353518 | Aug 2011 | EP |
2361562 | Aug 2011 | EP |
2365608 | Sep 2011 | EP |
2420197 | Feb 2012 | EP |
2422721 | Feb 2012 | EP |
1927321 | Apr 2012 | EP |
2529681 | Dec 2012 | EP |
1767164 | Jan 2013 | EP |
2316359 | Mar 2013 | EP |
2090238 | Apr 2013 | EP |
2578172 | Apr 2013 | EP |
1586275 | May 2013 | EP |
1616529 | Sep 2013 | EP |
1997438 | Nov 2013 | EP |
2508143 | Feb 2014 | EP |
2583633 | Oct 2014 | EP |
2113210 | Mar 2016 | EP |
2510891 | Jun 2016 | EP |
2227155 | Jul 2016 | EP |
2859858 | Dec 2016 | EP |
2115068 | Jun 1998 | ES |
2454351 | Nov 1980 | FR |
2964554 | Mar 2012 | FR |
1482943 | Aug 1977 | GB |
2032221 | Apr 1980 | GB |
2317566 | Apr 1998 | GB |
2318298 | Apr 1998 | GB |
2379878 | Nov 2004 | GB |
2425480 | Nov 2006 | GB |
2472216 | Feb 2011 | GB |
2447767 | Aug 2011 | GB |
S50100891 | Aug 1975 | JP |
S5968513 | May 1984 | JP |
S59141938 | Aug 1984 | JP |
S62221343 | Sep 1987 | JP |
S62227343 | Oct 1987 | JP |
S62292153 | Dec 1987 | JP |
S62292154 | Dec 1987 | JP |
S63109386 | May 1988 | JP |
S63315049 | Dec 1988 | JP |
H01151452 | Jun 1989 | JP |
H01198540 | Aug 1989 | JP |
H0271510 | May 1990 | JP |
H02286149 | Nov 1990 | JP |
H02292193 | Dec 1990 | JP |
H0337061 | Feb 1991 | JP |
H0425707 | Feb 1992 | JP |
H0464351 | Feb 1992 | JP |
H0430508 | Mar 1992 | JP |
H04150847 | May 1992 | JP |
H04152942 | May 1992 | JP |
H04161078 | Jun 1992 | JP |
H0595955 | Apr 1993 | JP |
H05115490 | May 1993 | JP |
H0647048 | Feb 1994 | JP |
H0670938 | Mar 1994 | JP |
H06104503 | Apr 1994 | JP |
H06217988 | Aug 1994 | JP |
H06507081 | Aug 1994 | JP |
H 07500514 | Jan 1995 | JP |
H07185457 | Jul 1995 | JP |
H07508910 | Oct 1995 | JP |
H07299415 | Nov 1995 | JP |
H07308323 | Nov 1995 | JP |
H0824266 | Jan 1996 | JP |
H08229050 | Sep 1996 | JP |
H08275950 | Oct 1996 | JP |
H08275951 | Nov 1996 | JP |
H08299351 | Nov 1996 | JP |
H08336544 | Dec 1996 | JP |
H08336545 | Dec 1996 | JP |
H09503146 | Mar 1997 | JP |
H09135553 | May 1997 | JP |
H09140722 | Jun 1997 | JP |
H105236 | Jan 1998 | JP |
H105237 | Jan 1998 | JP |
H10295700 | Nov 1998 | JP |
H11501543 | Feb 1999 | JP |
H11128238 | May 1999 | JP |
H11192235 | Jul 1999 | JP |
H11253451 | Sep 1999 | JP |
H11318918 | Nov 1999 | JP |
2000041991 | Feb 2000 | JP |
2000070279 | Mar 2000 | JP |
2000139943 | May 2000 | JP |
2000210296 | Aug 2000 | JP |
2000210299 | Aug 2000 | JP |
2000271145 | Oct 2000 | JP |
2000287987 | Oct 2000 | JP |
2000312682 | Nov 2000 | JP |
2001029353 | Feb 2001 | JP |
2001502216 | Feb 2001 | JP |
2001057985 | Mar 2001 | JP |
2001170066 | Jun 2001 | JP |
2001198137 | Jul 2001 | JP |
2001309925 | Nov 2001 | JP |
2002177295 | Jun 2002 | JP |
2002186901 | Jul 2002 | JP |
2002204808 | Jul 2002 | JP |
2002233533 | Aug 2002 | JP |
2002238919 | Aug 2002 | JP |
2002263579 | Sep 2002 | JP |
2002301086 | Oct 2002 | JP |
2002306504 | Oct 2002 | JP |
2002330977 | Nov 2002 | JP |
2002542690 | Dec 2002 | JP |
2003000612 | Jan 2003 | JP |
2003010201 | Jan 2003 | JP |
2003510158 | Mar 2003 | JP |
2003116870 | Apr 2003 | JP |
2003126104 | May 2003 | JP |
2003126110 | May 2003 | JP |
2003153919 | May 2003 | JP |
2003230567 | Aug 2003 | JP |
2003530921 | Oct 2003 | JP |
2003310627 | Nov 2003 | JP |
2003339730 | Dec 2003 | JP |
2004129871 | Apr 2004 | JP |
2004147701 | May 2004 | JP |
2004209043 | Jul 2004 | JP |
2005027026 | Jan 2005 | JP |
2005040222 | Feb 2005 | JP |
2005066316 | Mar 2005 | JP |
2005074088 | Mar 2005 | JP |
2005507679 | Mar 2005 | JP |
2005094552 | Apr 2005 | JP |
2005253674 | Sep 2005 | JP |
2005534451 | Nov 2005 | JP |
2006006410 | Jan 2006 | JP |
2006512149 | Apr 2006 | JP |
2006116194 | May 2006 | JP |
2006158525 | Jun 2006 | JP |
2006217716 | Aug 2006 | JP |
2006218296 | Aug 2006 | JP |
2006288431 | Oct 2006 | JP |
3841627 | Nov 2006 | JP |
2007050181 | Mar 2007 | JP |
2007-524459 | Aug 2007 | JP |
2007229454 | Sep 2007 | JP |
2007527747 | Oct 2007 | JP |
2007296369 | Nov 2007 | JP |
2008018226 | Jan 2008 | JP |
2008036390 | Feb 2008 | JP |
2008508065 | Mar 2008 | JP |
2008119250 | May 2008 | JP |
2008515562 | May 2008 | JP |
2008521503 | Jun 2008 | JP |
D1339835 | Aug 2008 | JP |
2008212679 | Sep 2008 | JP |
2008536562 | Sep 2008 | JP |
2008284374 | Nov 2008 | JP |
2009511206 | Mar 2009 | JP |
2009082711 | Apr 2009 | JP |
2009517181 | Apr 2009 | JP |
4262923 | May 2009 | JP |
2009523567 | Jun 2009 | JP |
2009148557 | Jul 2009 | JP |
2009236177 | Oct 2009 | JP |
2009254819 | Nov 2009 | JP |
2009297352 | Dec 2009 | JP |
2010000336 | Jan 2010 | JP |
2010009686 | Jan 2010 | JP |
2010514923 | May 2010 | JP |
2010121865 | Jun 2010 | JP |
2010534522 | Nov 2010 | JP |
2010540186 | Dec 2010 | JP |
2011505198 | Feb 2011 | JP |
2011160586 | Aug 2011 | JP |
2012075899 | Apr 2012 | JP |
2012235658 | Nov 2012 | JP |
5208761 | Jun 2013 | JP |
5714508 | May 2015 | JP |
2015515339 | May 2015 | JP |
5836543 | Dec 2015 | JP |
100789356 | Dec 2007 | KR |
2154437 | Aug 2000 | RU |
22035 | Mar 2002 | RU |
2201169 | Mar 2003 | RU |
2304934 | Aug 2007 | RU |
2405603 | Dec 2010 | RU |
850068 | Jul 1981 | SU |
WO-8103272 | Nov 1981 | WO |
WO-9222259 | Dec 1992 | WO |
WO-9307817 | Apr 1993 | WO |
WO-9308757 | May 1993 | WO |
WO-9314708 | Aug 1993 | WO |
WO-9316646 | Sep 1993 | WO |
WO-9320877 | Oct 1993 | WO |
WO-9322973 | Nov 1993 | WO |
WO-9400059 | Jan 1994 | WO |
WO-9421183 | Sep 1994 | WO |
WO-9424949 | Nov 1994 | WO |
WO-9509572 | Apr 1995 | WO |
WO-9510978 | Apr 1995 | WO |
WO-9534259 | Dec 1995 | WO |
WO-9630885 | Oct 1996 | WO |
WO-9635382 | Nov 1996 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9710764 | Mar 1997 | WO |
WO-9800069 | Jan 1998 | WO |
WO-9805437 | Feb 1998 | WO |
WO-9816156 | Apr 1998 | WO |
WO-9816157 | Apr 1998 | WO |
WO-9826739 | Jun 1998 | WO |
WO-9835621 | Aug 1998 | WO |
WO-9837815 | Sep 1998 | WO |
WO-9840020 | Sep 1998 | WO |
WO-9847436 | Oct 1998 | WO |
WO-9857588 | Dec 1998 | WO |
WO-9920213 | Apr 1999 | WO |
WO-9923960 | May 1999 | WO |
WO-9940857 | Aug 1999 | WO |
WO-9940861 | Aug 1999 | WO |
WO-9952489 | Oct 1999 | WO |
WO-0024322 | May 2000 | WO |
WO-0024330 | May 2000 | WO |
WO-0024331 | May 2000 | WO |
WO-0025691 | May 2000 | WO |
WO-0064358 | Nov 2000 | WO |
WO-0074585 | Dec 2000 | WO |
WO-0124713 | Apr 2001 | WO |
WO-0128444 | Apr 2001 | WO |
WO-0132087 | May 2001 | WO |
WO-0154590 | Aug 2001 | WO |
WO-0167970 | Sep 2001 | WO |
WO-0195810 | Dec 2001 | WO |
WO-0224080 | Mar 2002 | WO |
WO-0238057 | May 2002 | WO |
WO-02062241 | Aug 2002 | WO |
WO-02076685 | Oct 2002 | WO |
WO-02080797 | Oct 2002 | WO |
WO-02080799 | Oct 2002 | WO |
WO-03001986 | Jan 2003 | WO |
WO-03013374 | Feb 2003 | WO |
WO-03020339 | Mar 2003 | WO |
WO-03028541 | Apr 2003 | WO |
WO-03030708 | Apr 2003 | WO |
WO-03068046 | Aug 2003 | WO |
WO-03082133 | Oct 2003 | WO |
WO-2004011037 | Feb 2004 | WO |
WO-2004012615 | Feb 2004 | WO |
WO-2004026104 | Apr 2004 | WO |
WO-2004032754 | Apr 2004 | WO |
WO-2004032762 | Apr 2004 | WO |
WO-2004032763 | Apr 2004 | WO |
WO-2004037095 | May 2004 | WO |
WO-2004060141 | Jul 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004098426 | Nov 2004 | WO |
WO-2004112618 | Dec 2004 | WO |
WO-2005052959 | Jun 2005 | WO |
WO-2005084250 | Sep 2005 | WO |
WO-2005117735 | Dec 2005 | WO |
WO-2005122917 | Dec 2005 | WO |
WO-2006012797 | Feb 2006 | WO |
WO-2006021269 | Mar 2006 | WO |
WO-2006036706 | Apr 2006 | WO |
WO-2006042210 | Apr 2006 | WO |
WO-2006055166 | May 2006 | WO |
WO-2006058223 | Jun 2006 | WO |
WO-2006063199 | Jun 2006 | WO |
WO-2006083988 | Aug 2006 | WO |
WO-2006101661 | Sep 2006 | WO |
WO-2006119139 | Nov 2006 | WO |
WO-2006119376 | Nov 2006 | WO |
WO-2006129465 | Dec 2006 | WO |
WO-2007008703 | Jan 2007 | WO |
WO-2007008710 | Jan 2007 | WO |
WO-2007038538 | Apr 2007 | WO |
WO-2007040818 | Apr 2007 | WO |
WO-2007047380 | Apr 2007 | WO |
WO-2007047531 | Apr 2007 | WO |
WO-2007056590 | May 2007 | WO |
WO-2007087272 | Aug 2007 | WO |
WO-2007089724 | Aug 2007 | WO |
WO-2007143665 | Dec 2007 | WO |
WO-2008016886 | Feb 2008 | WO |
WO-2008020964 | Feb 2008 | WO |
WO-2008042021 | Apr 2008 | WO |
WO-2008045348 | Apr 2008 | WO |
WO-2008049084 | Apr 2008 | WO |
WO-2008051764 | May 2008 | WO |
WO-2008089174 | Jul 2008 | WO |
WO-2008099529 | Aug 2008 | WO |
WO-2008101356 | Aug 2008 | WO |
WO-2008118709 | Oct 2008 | WO |
WO-2008130793 | Oct 2008 | WO |
WO-2009010565 | Jan 2009 | WO |
WO-2009018067 | Feb 2009 | WO |
WO-2009018406 | Feb 2009 | WO |
WO-2009022614 | Feb 2009 | WO |
WO-2009027065 | Mar 2009 | WO |
WO-2009036818 | Mar 2009 | WO |
WO-2009039179 | Mar 2009 | WO |
WO-2009046234 | Apr 2009 | WO |
WO-2009059741 | May 2009 | WO |
WO-2009073402 | Jun 2009 | WO |
WO-2009082477 | Jul 2009 | WO |
WO-2009088550 | Jul 2009 | WO |
WO-2009120992 | Oct 2009 | WO |
WO-2009141616 | Nov 2009 | WO |
WO-2009149234 | Dec 2009 | WO |
WO-2010017149 | Feb 2010 | WO |
WO-2010017266 | Feb 2010 | WO |
WO-2010068783 | Jun 2010 | WO |
WO-2010104755 | Sep 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044338 | Apr 2011 | WO |
WO-2011052939 | May 2011 | WO |
WO-2011060031 | May 2011 | WO |
WO-2011084768 | Jul 2011 | WO |
WO-2011089717 | Jul 2011 | WO |
WO-2011100321 | Aug 2011 | WO |
WO-2011144911 | Nov 2011 | WO |
WO-2012044597 | Apr 2012 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061722 | May 2012 | WO |
WO-2012066983 | May 2012 | WO |
WO-2012128362 | Sep 2012 | WO |
WO-2012135705 | Oct 2012 | WO |
WO-2012135721 | Oct 2012 | WO |
WO-2012166510 | Dec 2012 | WO |
WO-2013018934 | Feb 2013 | WO |
WO-2013034629 | Mar 2013 | WO |
WO-2013048963 | Apr 2013 | WO |
WO-2013062978 | May 2013 | WO |
WO-2013102602 | Jul 2013 | WO |
WO-2013154157 | Oct 2013 | WO |
WO-2014092108 | Jun 2014 | WO |
WO-2015197395 | Dec 2015 | WO |
WO-2016009921 | Jan 2016 | WO |
Entry |
---|
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995). |
Sullivan, “Cost-Constrained Selection of Strand Diameter and No. In a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970). |
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997). |
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961). |
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000). |
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984. |
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988). |
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988. |
http://www.apicalinstr.com/generators.htm. |
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724. |
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . . |
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html. |
http://www.megadyne.com/es_generator.php. |
http://www.valleylab.com/product/es/generators/index.html. |
Sullivan, “Optimal Choice for No. Of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages). |
http://www.4-traders.com/Johnson-Johnson-4832/news/Johnson-Johnson-Ethicon-E . . . . |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Covidien Brochure, [Value Analysis Brief], LigaSure Advanceυ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549. |
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541. |
Sadiq Muhammad et al: “High-performance planar ultrasonic tool based on d31-mode piezocrystal”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, vol. 62, No. 3, Mar. 30, 2015 (Mar. 30, 2015), pp. 428-438, XP011574640, ISSN: 0885-3010, DOI: 10.1109/TUFFC.2014.006437. |
Mitsui Chemicals Names DuPont™ Vespel® Business as Exclusive U.S., European Distributor of AUTUM® Thermoplastic Polyimide Resin, Feb. 24, 2003; http://www2.dupont.com/Vespel/en_US/news_events/article20030224.html. |
Emam, Tarek A. et al., “How Safe is High-Power Ultrasonic Dissection?,” Annals of Surgery, (2003), pp. 186-191, vol. 237, No. 2, Lippincott Williams & Wilkins, Inc., Philadelphia, PA. |
Feil, Wolfgang, M.D., et al., “Ultrasonic Energy for Cutting, Coagulating, and Dissecting,” (2005), pp. IV, 17, 21, and 23; ISBN 3-13-127521-9 (New York, NY, Thieme, New York). |
McCarus, Steven D. M.D., “Physiologic Mechanism of the Ultrasonically Activated Scalpel,” The Journal of the American Association of Gynecologic Laparoscopists; (Aug. 1996), vol. 3, No. 4., pp. 601-606 and 608. |
Number | Date | Country | |
---|---|---|---|
20150257780 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
60999735 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12181816 | Jul 2008 | US |
Child | 14727470 | US |