Temperature controller with model-based time to target calculation and display

Information

  • Patent Grant
  • 10082306
  • Patent Number
    10,082,306
  • Date Filed
    Wednesday, July 1, 2015
    9 years ago
  • Date Issued
    Tuesday, September 25, 2018
    6 years ago
Abstract
A thermostat is described for controlling air temperature in a building. The time associated with causing the controlled air temperature to reach a target temperature is estimated and displayed to a user. Input from a user indicating the target temperature can be received and the estimating and displaying can be carried out in real time. The thermostat can be wall-mounted or the user input can be received and estimated time can be displayed using a remote device, for example that communicates wirelessly with other components of the HVAC system.
Description
COPYRIGHT AUTHORIZATION

A portion of the disclosure of this patent document may contain material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.


BACKGROUND

This invention generally relates to temperature control systems. More particularly, embodiments of this invention relate to devices for controlling temperature in a building, such as a HVAC system and/or a water heating system, wherein the estimated time to reach a target temperature is displayed to a user.


Building heating ventilation and air-conditioning (HVAC) systems account for a significant percentage of total energy consumption. Thus, a significant savings in HVAC energy usage can have an impact on total energy consumption. Programmable thermostats have been commercially available for many years and are used in many residential and light industrial settings. However, the typical user in the residential and light-industrial setting is relatively unsophisticated in terms of HVAC technology and efficiency. Despite the fact that HVAC energy use makes up a significant portion of total energy use in a residential or light industrial setting, a typical residential or light industrial occupant using a thermostat to manually input a set point or target temperature—either to increase the current temperature in the case of heating, or decrease the current temperature in the case of cooling—does not have a good understanding of how much energy is required to carry out the increase or decrease in temperature being called for. For example, a typical user does not have a good idea of how much energy it takes to raise the temperature of his or her dwelling by various amounts on a cold winter day. Some sophisticated thermostats are capable of calculating and displaying cost information associated with set point changes. For example, see U.S. Pat. No. 7,392,661, which discusses an HVAC system controller which estimates the energy cost or savings incurred due to a user-instigated change in a climate control schedule. Estimated costs or savings can be displayed to the user in an effort to give the user a basis for making decisions. However, it is believed that displaying costs and/or savings alone does not necessarily give many users a good awareness of HVAC system usage.


SUMMARY

According to some embodiments a method is provided for controlling air temperature in a building, such as with an HVAC system. The method includes estimating an amount of time associated with the controlled air temperature reaching a target temperature; and displaying information to a user representative of the estimated amount of time. According to some embodiments, input from a user indicating the set point or target temperature can be received, and the estimating and displaying can be carried out in real time. The method can also include receiving further targets from a user and re-estimating and displaying an updated time to reach the target temperature. The method can be carried out using a wall-mounted thermostat or using a remote unit via wireless communication.


According to some embodiments, the displayed information includes a numeric representation of the estimated amount of time to reach the target temperature. The information includes can also a graphical representation of the estimated amount of time. The method can be used with an HVAC system that includes single-stage and/or multi-stage heating and/or cooling functionality.


According to some embodiments, the method can include estimating an amount of energy and/or cost associated with causing the controlled air temperature to reach the target temperature; and displaying energy information and/or cost to a user representative of the estimated amount of energy.


According to some embodiments, a system is provided for controlling air temperature in a building. The system includes a processing system adapted and programmed to estimate an amount of time associated with causing the controlled air temperature to reach a target temperature; and a display adapted to display to a user information representative of the estimated amount of time. According to some embodiments, the system is a circular thermostat which can have a rotating outer member adapted to receive input from a user indicating the target temperature.


According to some embodiments a system for controlling temperatures other than air temperature are provided, such a controlling system forming part of a hot water heating system.


As used herein the term “residential” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used as a single family dwelling. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration (1 ton of refrigeration=12,000 Btu/h).


As used herein the term “light commercial” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used for commercial purposes, but is of a size and construction that a residential HVAC system is considered suitable. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration.


As used herein the term “target temperature” refers to a temperature, such as a set point temperature toward which a structure or enclosure being conditioned by an HVAC system is moving. The change in temperature toward a target temperature may be under active heating or cooling by the HVAC system and/or it may be due to passive effects such as drifting due to influence of conditions external to the enclosure or structure being conditioned.


It will be appreciated that these systems and methods are novel, as are applications thereof and many of the components, systems, methods and algorithms employed and included therein. It should be appreciated that embodiments of the presently described inventive body of work can be implemented in numerous ways, including as processes, apparata, systems, devices, methods, computer readable media, computational algorithms, embedded or distributed software and/or as a combination thereof. Several illustrative embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The inventive body of work will be readily understood by referring to the following detailed description in conjunction with the accompanying drawings, in which:



FIG. 1 is a diagram of an enclosure for which thermodynamic behavior is predicted, according to some embodiments;



FIG. 2 is a diagram of an HVAC system, according to some embodiments;



FIGS. 3A, 3B and 3C illustrate a thermostat for controlling temperature in an enclosure, according to some embodiments;



FIG. 4 shows a thermostat adapted to display time to reach a target temperature, according to some other embodiments;



FIGS. 5A, 5B and 5C show a thermostat adapted to display time to reach a target temperature, according to some other embodiments;



FIG. 6 illustrates a thermostat displaying time to reach target temperature information, according to some other embodiments;



FIG. 7 illustrates a water heater control unit capable of displaying time to reach target temperature, according to some embodiments;



FIG. 8 illustrates a thermostat capable of displaying time as well as other values associated with reaching a target temperature, according to some embodiments;



FIG. 9 is a flow chart showing steps in real time display of estimated time to reach a target, temperature according to some embodiments;



FIG. 10 is a block diagram illustrating the calculation of a time to reach a target temperature, according to some embodiments;



FIG. 11 illustrates a thermostat capable of displaying times to reach target temperature based on various factors, according to some embodiments; and



FIGS. 12A-B illustrate a thermostat capable of displaying time to reach a target temperature without active HVAC system control, according to some embodiments





DETAILED DESCRIPTION

A detailed description of the inventive body of work is provided below. While several embodiments are described, it should be understood that the inventive body of work is not limited to any one embodiment, but instead encompasses numerous alternatives, modifications, and equivalents. In addition, while numerous specific details are set forth in the following description in order to provide a thorough understanding of the inventive body of work, some embodiments can be practiced without some or all of these details. Moreover, for the purpose of clarity, certain technical material that is known in the related art has not been described in detail in order to avoid unnecessarily obscuring the inventive body of work.



FIG. 1 is a diagram of an enclosure in which temperature is controlled, according to some embodiments. Enclosure 100, in this example is a single-family dwelling. According to other embodiments, the enclosure can be, for example, a duplex, an apartment within an apartment building, a light commercial structure such as an office or retail store, or a structure or enclosure that is a combination of the above. Thermostat 110 controls HVAC system 120 as will be described in further detail below. According to some embodiments, the HVAC system 120 has a cooling capacity less than about 5 tons. According to some embodiments, temperature is controlled by other systems such as hot water heater 130. According to some embodiments, a remote device 112 wirelessly communicates with the thermostat 110 and can be used to display information to a user and to receive user input from the remote location of the device 112. According to some embodiments, the device 112 can be located outside of the enclosure 100.



FIG. 2 is a diagram of an HVAC system, according to some embodiments. HVAC system 120 provides heating, cooling, ventilation, and/or air handling for the enclosure, such as a single-family home 100 depicted in FIG. 1. The system 120 depicts a forced air type heating system, although according to other embodiments, other types of systems could be used such as hydronic, in-floor radiant heating, heat pump, etc. In heating, heating coils or elements 242 within air handler 240 provide a source of heat using electricity or gas via line 236. Cool air is drawn from the enclosure via return air duct 246 through fan 238 and is heated heating coils or elements 242. The heated air flows back into the enclosure at one or more locations via supply air duct system 252 and supply air grills such as grill 250. In cooling an outside compressor 230 passes gas such as freon through a set of heat exchanger coils to cool the gas. The gas then goes to the cooling coils 234 in the air handlers 240 where it expands, cools and cools the air being circulated through the enclosure via fan 238. According to some embodiments a humidifier 254 is also provided. Although not shown in FIG. 2, according to some embodiments the HVAC system has other known functionality such as venting air to and from the outside, and one or more dampers to control airflow within the duct systems. The system is controlled by algorithms implemented via control electronics 212 that communicate with a thermostat 110. Thermostat 110 controls the HVAC system 120 through a number of control circuits. Thermostat 110 also includes a processing system 260 such as a microprocessor that is adapted and programmed to controlling the HVAC system and to carry out the techniques described in detail herein.



FIGS. 3A, 3B and 3C illustrate a thermostat for controlling temperature in an enclosure, according to some embodiments. Thermostat 310 includes control circuitry and is electrically connected to an HVAC system, such as thermostat 110 in FIGS. 1 and 2. Thermostat 310 is wall mounted, is circular in shape and has an outer rotatable ring 312 for receiving user input. Thermostat 310 has a large frontal display area 314. According to some embodiments, thermostat 310 is approximately 80 mm in diameter. The outer ring 312 allows the user to make adjustments, such as selecting a new target temperature. For example by rotating the outer ring 312 clockwise, the target temperature can be increased, and by rotating the outer ring 314 counter-clockwise, the target temperature can be decreased. According to some embodiments, the large central numbers 320 can be used to display the current temperature to users, as is shown in FIG. 3A. According to some embodiments a portion 316 of the display area 314 can be used to display a color that is associated with the current HVAC function. For example, if the HVAC system is currently heating the enclosure, the area 316 can be shown in red. If the HVAC system is currently cooling the enclosure, the area 316 can be shown in blue. If the HVAC system is neither heating or cooling, the area 316 can be shown in a neutral color, or a color such a black which is used as the background color for the display area 314.


According to some embodiments, the thermostat 310 displays the estimated time to reach the current target temperature. In the example shown, the time to reach the target temperature is displayed to the user in two ways. Numbers 322 display the numerical time in hours, minutes and seconds which is estimated to be needed to reach the target temperature. Additionally, or alternatively according to some embodiments, a graphical display 324 is used to indicate the amount of time to reach the target temperature. Thus as time elapses and the temperature in the enclosure gets closer to the target temperature, the numerical display 322 and the graphical display 324 change to reflect shorter times.


In FIG. 3B, the central numbers 320 display the target temperature, which in this case is 75 degrees. The smaller words 326 are used to indicate to the user that the central numbers represent the target temperature, instead of the current temperature, as well as indicate the HVAC function (e.g. heating or cooling) that is currently active. According to some embodiments, when the current temperature and the target temperature differ by more than a predetermined amount, for example 2 degrees, the central numbers 320 alternate between the current temperature as shown in FIG. 3A and the target temperature as shown in FIG. 3B. According to some embodiments, other graphical means, such as slowly oscillating the size of the numbers 320 can also be used to indicate that the HVAC system in the process of moving the enclosure temperature towards a target temperature. According to some embodiments, the target temperature is displayed as in FIG. 3B whenever the target temperature is being altered, such as when a user is making adjustments to the target, such as by rotating the outer ring 312 or by remote control, or when the target is automatically being adjusted according, for example, to a predetermined program. According to some embodiments, thermostat 310 is a remote unit, such as portable table-top thermostat controller and display unit, which is adapted to communicate wirelessly with a thermostat or component of an HVAC control system. According to some embodiments the target temperature is provided remotely by a user, for example, using a smart phone or remote internet connection from a location outside the enclosure, and the estimated time to reach the new target is displayed the user on the remote device.


According to some embodiments, a maximum time can be displayed, such as 24 hours, if the estimated time to reach the target temperature is greater than that amount, or if it is estimated that the HVAC system is unable to obtain the target temperature given its capacity and/or other conditions (e.g. such as outdoor temperature). FIG. 3C illustrates an example of such a display mode. In this example, the target temperature has been set to a high temperature as indicated by central number display 320. The graphical display 324 is showing a maximum time. Numerical display 322 is showing a maximum time, in this case 24 hours. According to some embodiments, the numerical display 322 and/or the graphical display 324 can blink so as to indicate a warning or error to the user.



FIG. 4 shows a thermostat adapted to display time to reach a target temperature according to some other embodiments. Thermostat 410 is similar to thermostat 310 as shown in FIGS. 3A, 3B and 3C with a large display area, rotatable outer ring 412, large central numbers 420 and numerical time to reach a target temperature display 422. However, the graphical display 424 is slightly different in that it shows a solid curved bar that fills up an annular section 426 instead of a group of radial bars such as shown in FIGS. 3A, 3B and 3C.



FIGS. 5A, 5B and 5C show a thermostat adapted to display time to reach a target temperature, according to some other embodiments. Thermostat 510 includes control circuitry and is electrically connected to an HVAC system, such as thermostat 110 in FIGS. 1 and 2. Thermostat 510 is circular in shape and has an outer rotatable ring 512 for receiving user input. Thermostat 510 has a large frontal display area 514. According to some embodiments, thermostat 510 is approximately 80 mm in diameter. The outer ring 512 allows the user to make adjustments, such as selecting a new target temperature, as is described with respect to FIGS. 3A-3C. According to some embodiments, the large numbers 520 can be used to display the current temperature to users, as is shown in FIG. 5A. According to some embodiments, the thermostat 510 displays the estimated time to reach the current target temperature. In addition to the numerical display 522, according to some embodiments, a graphical display in the form of a needle 524 is used to indicate the amount of time to reach the target temperature. Label 526 informs the user that the needle position represents the estimated time to reach the target temperature. Thus, as time elapses and the temperature in the enclosure gets closer to the target temperature, the numerical display 522 and the graphical display 524 change to reflect shorter times.


In FIG. 5B, the central numbers 520 display the target temperature, which in this case is 76 degrees. The smaller words 528 are used to indicate to the user that the central numbers represent the target temperature, instead of the current temperature, as well as to indicate the HVAC function (e.g. heating or cooling) that is currently active. In FIG. 5C, illustrates an example of when the HVAC cooling system is active, according to some embodiments. In the example shown, the central numbers 520 display the target temperature, which in this case is 72 degrees. The smaller words 528 are used to indicate to the user that the central numbers represent the target temperature, instead of the current temperature, as well as to indicate that the HVAC cooling function is currently active.



FIG. 6 illustrates a thermostat displaying time to reach target temperature information, according to some other embodiments. Thermostat 610 is a rectangular wall mounted thermostat having a large graphical display area 614. The user can manually input changes in target temperature using buttons 611 and 612. The display area 614 includes a graphical plot curve 624 that represents the time estimated to reach the target temperature. The vertical axis represents temperature and shows the current temperature 620 and the target temperature 626. The horizontal axis represents time, and displays the estimated time 622 to reach the target temperature.


According to some embodiments, a controller for controlling temperature in applications other than HVAC are provided. For example, FIG. 7 illustrates a water heater control unit capable of displaying the time to reach a target temperature, according to some embodiments. Water temperature controller 710 has a large graphical display area 714. The user can manually input changes to the target temperature using buttons 711 and 712. The display area 714 includes the current water temperature 720, the target temperature 722 and the estimated time 724 to reach the target temperature.


Providing a thermostat that displays the estimated time to reach a target temperature advantageously conveys to the user an impact of the target temperature decision on energy use as well as an increased awareness of HVAC system usage. When a user makes a decision to manually input a new target temperature, the user receives important feedback as to how hard the HVAC system needs to work to obtain that temperature. It has been found that time is a very good parameter to display to a user in order to convey to an average non-technical user the relative effort or difficulty for the HVAC system to obtain a given target temperature. As described more fully below, according to some embodiments, the display of the estimated time to reach the new target temperature is made in real time, so that the user can nearly immediately see the impact of the user's decisions. It has been found that in this way, the user is advantageously trained or educated so as to become more intuitively familiar with the HVAC system, which in turn leads to more economical and environmentally friendly use of energy. It has been found that many HVAC users falsely believe that setting a higher target temperature will make the space warm up faster in the case of heating, and/or believe that setting a lower target temperature will make the space cool down faster in the case of cooling. Displaying the time to reach the target temperature thus educates that user that this is usually not the case. Although displaying the time to the target temperature may not directly save energy, it gives the user a better understanding about HVAC usage and may therefore allow for greater savings in the long run. According to other embodiments, other parameters than time can be displayed to a user to provide useful feedback to the user.



FIG. 8 illustrates a thermostat capable of displaying time as well as other values associated with reaching a target temperature, according to some embodiments. Thermostat 810 is a circular wall mounted thermostat having a large graphical display 814 adapted to display information to a user, and a rotatable outer ring 812 adapted to receive user input. As in the case of other embodiments described above, the display area 814 includes a numerical display 820 of the target temperature and/or the current temperature. The time estimated to reach the target temperature is displayed both graphically by bars 824 and numerically by the hours, minutes and seconds display 822. Additionally, other information is displayed to the user relating to reaching the target temperature, including estimated Therms 828 to reach the target temperature, and the estimated cost 826 to reach the target temperature. According to some embodiments, other units of energy such as Calories and/or joules are displayed instead of, or in addition to Therms display 828.



FIG. 11 illustrates a thermostat capable of displaying times to reach target temperature based on various factors, according to some embodiments. Thermostat 1110 is a circular wall mounted thermostat having a large graphical display 1114 adapted to display information to a user, and a rotatable outer ring 1112 adapted to receive user input. As in the case of other embodiments described above, the display area 1114 includes a numerical display 1120 of the target temperature and/or the current temperature. Multiple times are calculated and displayed to the user based on the use of resources. For example, display 1122 shows the time to the target temperature when using a single stage, and display 1124 shows the time to the target temperature when using two stages in a building having a multi-stage equipped HVAC system. Additionally, according to some embodiments a display 1126 displays the time to reach the target temperature by using passive resources, such as opening a window. By displaying information such as shown in FIG. 11, the user can be educated as to the behavior of the conditioned enclosure under the influence of various passive and active conditioning systems.



FIGS. 12A-B illustrate a thermostat capable of displaying time to reach a target temperature without active HVAC system control, according to some embodiments. Thermostat 1210 is a circular wall mounted thermostat having a large graphical display 1214 adapted to display information to a user, and a rotatable outer ring 1212 adapted to receive user input. As in the case of other embodiments described above, the display area 1214 includes a numerical display 1220 of the target temperature and/or the current temperature 1221. The time estimated to reach the target temperature is displayed both graphically by bars 1224 and numerically by the hours, minutes and seconds display 1222. In the case of FIG. 12A, the time to reach the target temperature 1220 is calculated and displayed as drifting, that is, without active HVAC input. For example the display as shown in FIG. 12A could be used when the target temperature is being lowered during the nighttime or an expected un-occupied time. In the case of FIG. 12B the target temperature is a resting temperature which is calculated as the temperature the conditioned area would come to rest at without any active HVAC system input. By displaying information such as illustrated in FIGS. 12A and 12B, the user can be further educated as to the behavior of the conditioned enclosure.



FIG. 9 is a flow chart showing steps in real time display of estimated time to reach a target temperature, according to some embodiments. In step 910 the user inputs a new target temperature, for example by rotating the outer ring in the example of the thermostats of FIGS. 3A-C. In step 912, the thermostat's processing system calculates a time estimated to reach the target temperature. In step 914 the estimated time is displayed to the user. The steps 912 and 914 are preferably performed quickly, such as a few hundreds of milliseconds or less, such that the user perceives a nearly instantaneous response to the new target temperature input. In step 916, the user views the displayed estimated time and decides in step 918 if the new target should be kept in light of the estimated time to reach the new target temperature. If the estimated time is not reasonable, the user sets a new target. If the estimated time is reasonable, in step 920, the target temperature is kept and the HVAC system heats or cools the enclosure to the new target temperature. It has been found that if the calculation and display is performed in real time, a beneficial education of the user as to the workings, efficiencies and limitations of the HVAC system is provided.


According to some embodiments, the HVAC system being controlled by the thermostat as described herein includes a multi-stage heating and/or multistage cooling system. It has been found that real time calculation and display as described in the flow chart of FIG. 9 is especially useful to educating users in the case where multi-stage heating and/or cooling is used. In the case of multi-stage heating or cooling, providing real-time feedback to the user of manual target temperature changes informs the user as to how large of a change is required in order for a second stage to be activated.


According to some embodiments the HVAC system being controlled is one in which the user is likely to be relatively unsophisticated in terms of HVAC technology and operation. In such cases the education of user as described is highly beneficial. Thus, according to some embodiments, the use of the techniques described herein are preferably used in residential and/or light commercial HVAC installations. Such systems commonly have a maximum cooling capacity of about 5 tons.



FIG. 10 is a block diagram illustrating the calculation of a time to reach a target temperature, according to some embodiments. A model of thermodynamic characteristics of the enclosure is preferably used. For further details of such models, please refer to co-pending U.S. patent application Ser. No. 12/881,463 entitled “Thermodynamic Modeling for Enclosures,” filed on Sep. 14, 2010 (hereinafter “the '463 Application”) which is incorporated herein by reference. According to some embodiments, a system identification algorithm 1010 is used as described in the '463 Application.


According to some embodiments, system identification algorithm in 1010 is a mathematical model that can learn the dependence of time to temperature on several thermal and climate factors. According to some embodiments, the inputs 1020 can include both current indoor temperature and a window of temperature measurements immediately prior to the calculation. Other inputs can be an indicator of whether a single stage or several stages of cooling or heating are activated at the time. The algorithm may also take the length of each of the cooling or heating time elapsed. Other environmental factors such as outdoor temperature, indoor and/or outdoor humidity can also be inputs to the algorithm. The output 1030 of the algorithm is the estimated time to reach the target temperature. In some embodiments, the output may also contain an optional statistical confidence value representing our belief in the estimate.


The algorithm may learn the dependence of the outputs on the inputs using statistical methods and machine learning algorithms. For example, the computation may be done using a weighted mean of past observations, linear or non-linear regression, recursive filtering including Kalman filtering or other online or batch system identification methods for dynamical systems.


According to some embodiments, the computation is carried out continuously to account for continually changing inputs. The display of the time to temperature is updated continually to reflect the current estimate from the algorithm.


According to some embodiments, other types of algorithms are used to calculate the time to reach a target temperature. For example other techniques can be used to calculate certain intermediate values, such as house rest temperature, which can be used along with current temperature and outdoor temperature to calculate the time to target. According to some embodiments, a look up table is used in the algorithm 1010.


According to some embodiments the computation system that carries out the algorithm may reside at a location external to the thermostat, such as a computer located within the structure being conditioned or a computer or processing system located at a remote location. According to such embodiments, the computer or processing system making the computation may communicate with the thermostat to gather the inputs and communicate back the output for display.


According to some embodiments, the computation and display is made to the user during the time in which an observer sees the display. According to some embodiments, the computation and display is made in less than about 1 second. According to some embodiments, the computation and display is made in less than about 0.5 seconds.


Although the foregoing has been described in some detail for purposes of clarity, it will be apparent that certain changes and modifications may be made without departing from the principles thereof. It should be noted that there are many alternative ways of implementing both the processes and apparatuses described herein. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the inventive body of work is not to be limited to the details given herein, which may be modified within the scope and equivalents of the appended claims.

Claims
  • 1. A thermostat, comprising: an electronic display;a heating, ventilation, and air conditioning (HVAC) system control interface;a user input component that receives user input;a processing system comprising one or more processors, the processing system being in communication with the electronic display, the HVAC system control interface, and the user input component and the processing system being configured to: calculate a first time to reach a target temperature using a first configuration of the HVAC system;calculate a second time to reach the target temperature using a second configuration of the HVAC system, wherein: the second configuration of the HVAC system represents a more energy intensive configuration than the first configuration of the HVAC system; andthe second time is shorter than the first time; andoutput the first time and the second time to the electronic display for simultaneous presentation.
  • 2. The thermostat of claim 1, wherein the processing system is further configured to: output, to the electronic display, the target temperature to the electronic display for simultaneous presentation with the first time and the second time.
  • 3. The thermostat of claim 1, wherein: the first configuration of the HVAC system involves only a first stage of the HVAC system being activated; and the second configuration of the HVAC system comprises the first stage of the HVAC system being activated in combination with a second stage of the HVAC system being activated.
  • 4. The thermostat of claim 1, wherein the user input component comprises a circular rotatable ring that rotates clockwise and counterclockwise, the circular rotatable ring encircling the electronic display of the thermostat.
  • 5. The thermostat of claim 4, wherein the processing system is further configured to: increase the target temperature in response to user input that rotates the circular rotatable ring clockwise; anddecrease the target temperature in response to user input that rotates the circular rotatable ring counterclockwise.
  • 6. The thermostat of claim 5, wherein the processing system is further configured to, in response to the user input that rotates the circular rotatable ring: recalculate the first time to reach an increased or decreased target temperature using the first configuration of the HVAC system;recalculate the second time to reach the increased or decreased target temperature using the second configuration of the HVAC system; andoutput the recalculated first time and the recalculated second time to the electronic display for simultaneous presentation.
  • 7. A method for using a thermostat to control a heating, ventilation, and air conditioning (HVAC) system, the method comprising: calculating, by the thermostat, a first time to reach a target temperature using a first configuration of the HVAC system;calculating, by the thermostat, a second time to reach the target temperature using a second configuration of the HVAC system, wherein: the second time is shorter than the first time; andsimultaneously presenting, by the thermostat, the first time and the second time on an electronic display of the thermostat.
  • 8. The method for using the thermostat to control the HVAC system of claim 7, the method further comprising: presenting by the thermostat, the target temperature on the electronic display of the thermostat, wherein the target temperature is presented simultaneously with the first time and the second time.
  • 9. The method for using the thermostat to control the HVAC system of claim 7, wherein: the first configuration of the HVAC system comprises only a first stage of the HVAC system being activated; and the second configuration of the HVAC system comprises the first stage of the HVAC system being activated in combination with a second stage of the HVAC system being activated.
  • 10. The method for using the thermostat to control the HVAC system of claim 7, the method further comprising: increasing, by the thermostat, the target temperature in response to user input that rotates a circular rotatable ring of the thermostat clockwise, wherein the circular rotatable ring encircles the electronic display; anddecreasing, by the thermostat, the target temperature in response to user input that rotates the circular rotatable ring counterclockwise.
  • 11. The method for using the thermostat to control the HVAC system of claim 10, the method further comprising: in response to the user input that rotates the circular rotatable ring, recalculating, by the thermostat, the first time to reach an increased or decreased target temperature using the first configuration of the HVAC system;in response to the user input that rotates the circular rotatable ring, recalculating, by the thermostat, the second time to reach the increased or decreased target temperature using the second configuration of the HVAC system; andpresenting, by the thermostat, the recalculated first time and the recalculated second time for simultaneous presentation on the electronic display of the thermostat.
  • 12. A non-transitory processor-readable medium for a thermostat comprising processor-readable instructions configured to cause one or more processors of the thermostat to: calculate a first time to reach a target temperature using a first configuration of a heating system;calculate a second time to reach the target temperature using a second configuration of the heating system, wherein: the second time is shorter than the first time; andoutput for presentation the first time and the second time to an electronic display of the thermostat for simultaneous presentation.
  • 13. The non-transitory processor-readable medium of claim 12, wherein the processor-readable instructions are further configured to cause the one or more processors to: output, to the electronic display, the target temperature to the electronic display for simultaneous presentation with the first time and the second time.
  • 14. The non-transitory processor-readable medium of claim 12, wherein: the first configuration of the heating system involves only a first stage of the heating system being activated; and the second configuration of the heating system comprises the first stage of the heating system being activated in combination with a second stage of the heating system being activated.
  • 15. The non-transitory processor-readable medium of claim 12, wherein the processor-readable instructions are further configured to cause the one or more processors to: increase the target temperature in response to user input that rotates a circular rotatable ring clockwise, wherein the circular rotatable ring rotates clockwise and counterclockwise; anddecrease the target temperature in response to user input that rotates the circular rotatable ring counterclockwise.
  • 16. The non-transitory processor-readable medium of claim 15, wherein the processor-readable instructions are further configured to cause the one or more processors to: in response to the user input that rotates the circular rotatable ring: recalculate the first time to reach an increased or decreased target temperature using the first configuration of an HVAC system;recalculate the second time to reach the increased or decreased target temperature using the second configuration of the HVAC system; andoutput the recalculated first time and the recalculated second time to the electronic display for simultaneous presentation.
CROSS REFERENCES

This application is a continuation of U.S. patent application Ser. No. 12/984,602, filed Jan. 4, 2011, which claims priority to U.S. Provisional No. 61/429,093, filed Dec. 31, 2010 and claims priority to U.S. Provisional No. 61/415,771, filed Nov. 19, 2010. This application is hereby incorporated by reference for all purposes.

US Referenced Citations (314)
Number Name Date Kind
4223831 Szarka Sep 1980 A
4316577 Adams et al. Feb 1982 A
4335847 Levine Jun 1982 A
4408711 Levine Oct 1983 A
4615380 Beckey Oct 1986 A
4621336 Brown Nov 1986 A
4674027 Beckey Jun 1987 A
4685614 Levine Aug 1987 A
4751961 Levine et al. Jun 1988 A
4768706 Parfitt Sep 1988 A
4897798 Cler Jan 1990 A
5005365 Lynch Apr 1991 A
D321903 Chepaitis Nov 1991 S
5088645 Bell Feb 1992 A
5211332 Adams May 1993 A
5240178 Dewolf et al. Aug 1993 A
D341848 Bigelow et al. Nov 1993 S
5294047 Schwer et al. Mar 1994 A
5395042 Riley et al. Mar 1995 A
5415346 Bishop May 1995 A
5428964 Lobdell Jul 1995 A
5476221 Seymour Dec 1995 A
5482209 Cochran et al. Jan 1996 A
5485954 Guy et al. Jan 1996 A
5499196 Pacheco Mar 1996 A
5555927 Shah Sep 1996 A
5603451 Helander et al. Feb 1997 A
5611484 Uhrich Mar 1997 A
5627531 Posso et al. May 1997 A
5673850 Uptegraph Oct 1997 A
D396488 Kunkler Jul 1998 S
5808602 Sellers Sep 1998 A
5902183 D'Souza May 1999 A
5909378 De Milleville Jun 1999 A
5931378 Schramm Aug 1999 A
5959621 Nawaz et al. Sep 1999 A
5973662 Singers et al. Oct 1999 A
5977964 Williams et al. Nov 1999 A
6020881 Naughton et al. Feb 2000 A
6032867 Dushane et al. Mar 2000 A
6062482 Gauthier et al. May 2000 A
D428399 Kahn et al. Jul 2000 S
6098893 Berglund et al. Aug 2000 A
6164374 Rhodes et al. Dec 2000 A
6206295 LaCoste Mar 2001 B1
6209794 Webster et al. Apr 2001 B1
6211921 Cherian et al. Apr 2001 B1
6213404 Dushane et al. Apr 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6286764 Garvey et al. Sep 2001 B1
6298285 Addink et al. Oct 2001 B1
D450059 Itou Nov 2001 S
6349883 Simmons et al. Feb 2002 B1
6351693 Monie et al. Feb 2002 B1
6356204 Guindi et al. Mar 2002 B1
6431457 Dirkes, II Aug 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464660 Weng et al. Oct 2002 S
6478233 Shah Nov 2002 B1
6502758 Cottrell Jan 2003 B2
D471825 Peabody Mar 2003 S
6595430 Shah Jul 2003 B1
6619055 Addy Sep 2003 B1
D480401 Kahn et al. Oct 2003 S
6641054 Morey Nov 2003 B2
6641055 Tiernan Nov 2003 B1
6644557 Jacobs Nov 2003 B1
6645066 Gutta et al. Nov 2003 B2
D485279 DeCombe Jan 2004 S
6726112 Ho Apr 2004 B1
D491956 Ombao et al. Jun 2004 S
6769482 Wagner et al. Aug 2004 B2
D497617 Decombe et al. Oct 2004 S
6824069 Rosen Nov 2004 B2
D503631 Peabody Apr 2005 S
6951306 Deluca Oct 2005 B2
D511527 Hernandez et al. Nov 2005 S
7000849 Ashworth et al. Feb 2006 B2
7024336 Salsbury et al. Apr 2006 B2
7028912 Rosen Apr 2006 B1
7040104 Bogner et al. May 2006 B2
7083109 Pouchak Aug 2006 B2
7099748 Rayburn Aug 2006 B2
7111788 Reponen Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7117129 Bash et al. Oct 2006 B1
7141748 Tanaka et al. Nov 2006 B2
7142948 Metz Nov 2006 B2
7152806 Rosen Dec 2006 B1
7159790 Schwendinger et al. Jan 2007 B2
7181317 Amundson et al. Feb 2007 B2
7222494 Peterson et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
D544877 Sasser Jun 2007 S
7258280 Wolfson Aug 2007 B2
D550691 Hally et al. Sep 2007 S
7264175 Schwendinger et al. Sep 2007 B2
7274972 Amundson et al. Sep 2007 B2
7287709 Proffitt et al. Oct 2007 B2
7299996 Garrett et al. Nov 2007 B2
7302642 Smith et al. Nov 2007 B2
7333880 Brewster et al. Feb 2008 B2
D566587 Rosen Apr 2008 S
RE40437 Rosen Jul 2008 E
7392661 Alles Jul 2008 B2
7418663 Pettinati et al. Aug 2008 B2
7434742 Mueller et al. Oct 2008 B2
7451937 Flood et al. Nov 2008 B2
7455240 Chapman, Jr. et al. Nov 2008 B2
7469550 Chapman, Jr. et al. Dec 2008 B2
D588152 Okada Mar 2009 S
7509753 Nicosia et al. Mar 2009 B2
D589792 Clabough et al. Apr 2009 S
D590412 Saft et al. Apr 2009 S
D593120 Bouchard et al. May 2009 S
D594015 Singh et al. Jun 2009 S
D595309 Sasaki et al. Jun 2009 S
7555364 Poth et al. Jun 2009 B2
D596194 Vu et al. Jul 2009 S
D597101 Chaudhri et al. Jul 2009 S
7558648 Hoglund et al. Jul 2009 B2
D598463 Hirsch et al. Aug 2009 S
7571014 Lambourne et al. Aug 2009 B1
7575179 Morrow et al. Aug 2009 B2
D599810 Scalisi et al. Sep 2009 S
7584899 de Pauw et al. Sep 2009 B2
7596431 Forman et al. Sep 2009 B1
7600694 Helt et al. Oct 2009 B2
D603277 Clausen et al. Nov 2009 S
D603421 Ebeling et al. Nov 2009 S
D604740 Matheny et al. Nov 2009 S
7620996 Torres et al. Nov 2009 B2
D607001 Ording Dec 2009 S
7624931 Chapman, Jr. et al. Dec 2009 B2
7634504 Amundson Dec 2009 B2
7641126 Schultz et al. Jan 2010 B2
7644869 Hoglund et al. Jan 2010 B2
7667163 Ashworth et al. Feb 2010 B2
D613301 Lee et al. Apr 2010 S
D614194 Guntaur et al. Apr 2010 S
D614196 Guntaur et al. Apr 2010 S
7693582 Bergman et al. Apr 2010 B2
7702424 Cannon et al. Apr 2010 B2
7703694 Mueller et al. Apr 2010 B2
D614976 Skafdrup et al. May 2010 S
D615546 Lundy et al. May 2010 S
D616460 Pearson et al. May 2010 S
7721209 Tilton May 2010 B2
7726581 Naujok et al. Jun 2010 B2
D619613 Dunn Jul 2010 S
7778734 Oswald et al. Aug 2010 B2
7784704 Harter Aug 2010 B2
7802618 Simon et al. Sep 2010 B2
D625325 Vu et al. Oct 2010 S
D625734 Kurozumi et al. Oct 2010 S
D626133 Murphy et al. Oct 2010 S
7823076 Borovsky et al. Oct 2010 B2
RE41922 Gough et al. Nov 2010 E
7845576 Siddaramanna et al. Dec 2010 B2
7848900 Steinberg et al. Dec 2010 B2
7854389 Ahmed Dec 2010 B2
D630649 Tokunaga et al. Jan 2011 S
7904209 Podgorny et al. Mar 2011 B2
7904830 Hoglund et al. Mar 2011 B2
D638835 Akana et al. May 2011 S
D640269 Chen Jun 2011 S
D640273 Arnold et al. Jun 2011 S
D640278 Woo Jun 2011 S
D641373 Gardner et al. Jul 2011 S
7984384 Chaudhri et al. Jul 2011 B2
D643045 Woo Aug 2011 S
8010237 Cheung et al. Aug 2011 B2
8019567 Steinberg et al. Sep 2011 B2
D648735 Arnold et al. Nov 2011 S
D651529 Mongell et al. Jan 2012 S
8090477 Steinberg Jan 2012 B1
8091794 Siddaramanna et al. Jan 2012 B2
8131497 Steinberg et al. Mar 2012 B2
8136052 Shin et al. Mar 2012 B2
D656950 Shallcross et al. Apr 2012 S
D656952 Weir et al. Apr 2012 S
8156060 Borzestowski et al. Apr 2012 B2
8166395 Omi et al. Apr 2012 B2
D658674 Shallcross et al. May 2012 S
8180492 Steinberg May 2012 B2
8185164 Kim May 2012 B2
8195313 Fadell et al. Jun 2012 B1
D663743 Tanghe et al. Jul 2012 S
D663744 Tanghe et al. Jul 2012 S
D664559 Ismail et al. Jul 2012 S
8223134 Forstall et al. Jul 2012 B1
8234581 Kake Jul 2012 B2
D664978 Tanghe et al. Aug 2012 S
D665397 Naranjo et al. Aug 2012 S
8243017 Brodersen et al. Aug 2012 B2
8253704 Jang Aug 2012 B2
8253747 Niles et al. Aug 2012 B2
8280536 Fadell et al. Oct 2012 B1
8281244 Neuman et al. Oct 2012 B2
D671136 Barnett et al. Nov 2012 S
8316022 Matsuda et al. Nov 2012 B2
D673171 Peters et al. Dec 2012 S
D673172 Peters et al. Dec 2012 S
8341557 Pisula et al. Dec 2012 B2
8442695 Imes et al. May 2013 B2
8606374 Fadell et al. Dec 2013 B2
9104211 Fadell et al. Aug 2015 B2
20020005435 Cottrell Jan 2002 A1
20030112262 Adatia et al. Jun 2003 A1
20040034484 Solomita, Jr. et al. Feb 2004 A1
20040055446 Robbin et al. Mar 2004 A1
20040074978 Rosen Apr 2004 A1
20040249479 Shorrock Dec 2004 A1
20040256472 DeLuca Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20040262410 Hull Dec 2004 A1
20050055432 Rodgers Mar 2005 A1
20050071780 Muller et al. Mar 2005 A1
20050119766 Amundson et al. Jun 2005 A1
20050119793 Amundson et al. Jun 2005 A1
20050128067 Zakrewski Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050159924 Shah Jul 2005 A1
20050189429 Breeden Sep 2005 A1
20050192915 Ahmed et al. Sep 2005 A1
20050194455 Alles Sep 2005 A1
20050204997 Fournier Sep 2005 A1
20050280421 Yomoda et al. Dec 2005 A1
20060079983 Willis Apr 2006 A1
20060186214 Simon et al. Aug 2006 A1
20060196953 Simon et al. Sep 2006 A1
20070001830 Dagci et al. Jan 2007 A1
20070045430 Chapman et al. Mar 2007 A1
20070045433 Chapman et al. Mar 2007 A1
20070045444 Gray et al. Mar 2007 A1
20070050732 Chapman et al. Mar 2007 A1
20070057079 Stark et al. Mar 2007 A1
20070115902 Shamoon et al. May 2007 A1
20070158442 Chapman et al. Jul 2007 A1
20070173978 Fein et al. Jul 2007 A1
20070225867 Moorer et al. Sep 2007 A1
20070227721 Springer et al. Oct 2007 A1
20070228183 Kennedy et al. Oct 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070257120 Chapman et al. Nov 2007 A1
20070278320 Lunacek et al. Dec 2007 A1
20080006709 Ashworth et al. Jan 2008 A1
20080015742 Kulyk et al. Jan 2008 A1
20080054082 Evans et al. Mar 2008 A1
20080191045 Harter Aug 2008 A1
20080245480 Knight et al. Oct 2008 A1
20080273754 Hick et al. Nov 2008 A1
20080290183 Laberge et al. Nov 2008 A1
20080317292 Baker et al. Dec 2008 A1
20090001180 Siddaramanna et al. Jan 2009 A1
20090005912 Srivastava et al. Jan 2009 A1
20090062970 Forbes, Jr. et al. Mar 2009 A1
20090112335 Mehta et al. Apr 2009 A1
20090140056 Leen Jun 2009 A1
20090140057 Leen Jun 2009 A1
20090143916 Boll et al. Jun 2009 A1
20090171862 Harrod et al. Jul 2009 A1
20090195349 Frader-Thompson et al. Aug 2009 A1
20090216380 Kolk Aug 2009 A1
20090254225 Boucher et al. Oct 2009 A1
20090259713 Blumrich et al. Oct 2009 A1
20090263773 Kotlyar et al. Oct 2009 A1
20090273610 Busch et al. Nov 2009 A1
20090283603 Peterson et al. Nov 2009 A1
20090297901 Kilian et al. Dec 2009 A1
20090312999 Kasztenny et al. Dec 2009 A1
20100019051 Rosen Jan 2010 A1
20100025483 Hoeynck et al. Feb 2010 A1
20100070084 Steinberg et al. Mar 2010 A1
20100070085 Harrod et al. Mar 2010 A1
20100070086 Harrod et al. Mar 2010 A1
20100070089 Harrod et al. Mar 2010 A1
20100070093 Harrod et al. Mar 2010 A1
20100070234 Steinberg et al. Mar 2010 A1
20100070907 Harrod et al. Mar 2010 A1
20100084482 Kennedy et al. Apr 2010 A1
20100106305 Pavlak et al. Apr 2010 A1
20100107070 Devineni et al. Apr 2010 A1
20100107076 Grohman et al. Apr 2010 A1
20100163633 Barrett et al. Jul 2010 A1
20100167783 Alameh et al. Jul 2010 A1
20100198425 Donovan Aug 2010 A1
20100211224 Keeling et al. Aug 2010 A1
20100262298 Johnson et al. Oct 2010 A1
20100262299 Cheung et al. Oct 2010 A1
20100280667 Steinberg Nov 2010 A1
20100289643 Trundle et al. Nov 2010 A1
20100308119 Steinberg et al. Dec 2010 A1
20100318227 Steinberg et al. Dec 2010 A1
20110015798 Golden et al. Jan 2011 A1
20110015802 Imes Jan 2011 A1
20110035060 Oswald Feb 2011 A1
20110046792 Imes et al. Feb 2011 A1
20110046805 Bedros et al. Feb 2011 A1
20110046806 Nagel et al. Feb 2011 A1
20110077896 Steinberg et al. Mar 2011 A1
20110106328 Zhou et al. May 2011 A1
20110153089 Tiemann et al. Jun 2011 A1
20110160913 Parker et al. Jun 2011 A1
20110167369 van Os Jul 2011 A1
20110185895 Freen Aug 2011 A1
20110196539 Nair et al. Aug 2011 A1
20110251933 Egnor et al. Oct 2011 A1
20110307103 Cheung et al. Dec 2011 A1
20120065935 Steinberg et al. Mar 2012 A1
20120085831 Kopp Apr 2012 A1
20120131504 Fadell et al. May 2012 A1
20120158350 Steinberg et al. Jun 2012 A1
20120221151 Steinberg Aug 2012 A1
Foreign Referenced Citations (22)
Number Date Country
2202008 Feb 2000 CA
19609390 Sep 1997 DE
434926 Jul 1991 EP
196069 Dec 1991 EP
720077 Jul 1996 EP
802471 Oct 1997 EP
1065079 Jan 2001 EP
1731984 Dec 2006 EP
2157492 Feb 2010 EP
1703356 Sep 2011 EP
2212317 May 1992 GB
59106311 Jun 1984 JP
01252850 Oct 1989 JP
11020824 Jan 1999 JP
2002087050 Mar 2002 JP
2003054290 Feb 2003 JP
1024986 Jun 2005 NL
0235304 May 2002 WO
0248851 Jun 2002 WO
2009073496 Jun 2009 WO
2011128416 Oct 2011 WO
2012068453 May 2012 WO
Non-Patent Literature Citations (71)
Entry
Braeburn Model 5200, Braeburn Systems, LLC, Jul. 20, 2011, 11 pages.
Braeburn 5300 Installer Guide, Braeburn Systems, LLC, Dec. 9, 2009, 10 pages.
VisionPRO TH8000 Series Installation Guide, Honeywell International, Inc., Jan. 2012, 12 pages.
VisionPRO TH8000 Series Operating Manual, Honeywell International, Inc., Mar. 2011, 96 pages.
Venstar T5800 Manual, Venstar, Inc., Sep. 7, 2011, 63 pages.
International Patent Application PCT/US2011/061379, International Search Report and Written Opinion dated Mar. 30, 2012, 7 pages.
Aprilaire Electronic Thermostats Model 8355 User's Manual, Research Products Corporation, Dec. 2000, 16 pages.
Ecobee Smart Si Thermostat Installation Manual, Ecobee, Apr. 3, 2012, 40 pages.
Ecobee Smart Si Thermostat User Manual, Ecobee, Apr. 3, 2012, 44 pages.
Ecobee Smart Thermostat Installation Manual, Jun. 29, 2011, 20 pages.
Ecobee Smart Thermostat User Manual, May 11, 2010, 20 pages.
Electric Heat Lock Out on Heat Pumps Washington State University Extension Energy Program, Apr. 2010, pp. 1-3.
Energy Joule Ambient Devices, 2011. Retrieved from: http://web.archive.org/web/20110723210421/http://www.ambientdevices.com/products/energyjoule.html on Aug. 1, 2012, 3 pages.
Honeywell CT2700, An Electronic Round Programmable Thermostat—User's Guide, Honeywell, Inc., 1997, 8 pages.
Honeywell CT8775A,C, The digital Round Non-Programmable Thermostats—Owner's Guide, Honeywell International Inc., 2003, 20 pages.
Honeywell Installation Guide FocusPRO TH6000 Series, Honeywell International, Inc., Jan. 5, 2012, 24 pages.
Honeywell Operating Manual FocusPRO TH6000 Series, Honeywell International, Inc., Mar. 25, 2011, 80 pages.
Honeywell Prestige IAQ Product Data 2, Honeywell International, Inc., Jan. 12, 2012, 126 pages.
Honeywell Prestige THX9321 and TXH9421 Product Data, Honeywell International, Inc., 68-0311, Jan. 2012, 126 pages.
Honeywell Prestige THX9321-9421 Operating Manual, Honeywell International, Inc., Jul. 6, 2011, 120 pages.
Honeywell T8700C, An Electronic Round Programmable Thermostat—Owner's Guide, Honeywell, Inc., 1997, 12 pages.
Honeywell T8775 The Digital Round Thermostat, Honeywell, 2003, 2 pages.
Honeywell T8775AC Digital Round Thermostat Manual No. 69-1679EF-1, www.honeywell.com/yourhome, Jun. 2004, pp. 1-16.
Hunter Internet Thermostat Installation Guide, Hunter Fan Co., Aug. 14, 2012, 8 pages.
ICY 3815TT-001 Timer-Thermostat Package Box, ICY BV Product Bar Code No. 8717953007902, 2009, 2 pages.
Introducing the New Smart Si Thermostat, Datasheet [online]. Ecobee, Mar. 2012 [retrieved on Feb. 25, 2013]. Retrieved from the Internet: <URL: https://www.ecobee.com/solutions/home/smart-si/>, Mar. 12, 2012, 4 pages.
Lennox ComfortSense 5000 Owners Guide, Lennox Industries, Inc., Feb. 2008, 32 pages.
Lennox ComfortSense 7000 Owners Guide, Lennox Industries, Inc., May, 2009, 15 pages.
Lennox iComfort Manual, Lennox Industries, Inc., Dec. 2010, 20 pages.
Lux PSPU732T Manual, LUX Products Corporation, Jan. 6, 2009, 48 pages.
NetX RP32-WIFI Network Thermostat Consumer Brochure, Network Thermostat, May 2011, 2 pages.
NetX RP32-WIFI Network Thermostat Specification Sheet, Network Thermostat, Feb. 28, 2012, 2 pages.
RobertShaw Product Manual 9620, Maple Chase Company, Jun. 12, 2001, 14 pages.
RobertShaw Product Manual 9825i2, Maple Chase Company, Jul. 17, 2006, 36 pages.
SYSTXCCUIZ01-V Infinity Control Installation Instructions, Carrier Corp, May 31, 2012, 20 pages.
T8611G Chronotherm IV Deluxe Programmable Heat Pump Thermostat Product Data, Honeywell International Inc., Oct. 1997, 24 pages.
TB-PAC, TB-PHP, Base Series Programmable Thermostats, Carrier Corp, May 14, 2012, 8 pages.
The Clever Thermostat, ICY BV Web Page, http://www.icy.nl/en/consumer/products/clever-thermostat, ICY BV, 2012, 1 page.
The Clever Thermostat User Manual and Installation Guide, ICY BV ICY3815 Timer-Thermostat, 2009, pp. 1-36.
The Perfect Climate Comfort Center PC8900A W8900A-C Product Data Sheet, Honeywell International Inc., Apr. 2001, 44 pages.
Trane Communicating Thermostats for Fan Coil, Trane, May 2011, 32 pages.
Trane Communicating Thermostats for Heat Pump Control, Trane, May 2011, 32 pages.
Trane Install XL600 Installation Manual, Trane, Mar. 2006, 16 pages.
Trane XL950 Installation Guide, Trane, Mar. 2011, 20 pages.
Venstar T2900 Manual, Venstar, Inc., Apr. 2008, 113 pages.
VisionPRO Wi-Fi Programmable Thermostat, Honeywell International, Inc., Operating Manual, Aug. 2012, 48 pages.
White Rodgers (Emerson) Model 1F81-261 Installation and Operating Instructions, White Rodgers, Apr. 15, 2010, 8 pages.
White Rodgers (Emerson) Model IF98EZ-1621 Homeowner's User Guide, White Rodgers, Jan. 25, 2012, 28 pages.
U.S. Appl. No. 60/512,886 Volkswagen Rotary Knob for Motor Vehicle—English Translation of German Application filed Oct. 20, 2003.
Allen et al., “Real-Time Earthquake Detection and Hazard Assessment by ElarmS Across California”, Geophysical Research Letters, vol. 36, L00B08, 2009, pp. 1-6.
Arens et al., “Demand Response Electrical Appliance Manager—User Interface Design, Development and Testing”, Poster, Demand Response Enabling Technology Development, University of California Berkeley, Retrieved from dr.berkeley.edu/dream/posters/2005_6GUIposter.pdf, 2005, 1 page.
Arens et al., “Demand Response Enabled Thermostat—Control Strategies and Interface”, Demand Response Enabling Technology Development Poster, University of California Berkeley, Retrieved from dr.berkeley.edu/dream/posters/2004_11CEC_TstatPoster.pdf, 2004, 1 page.
Arens et al., “Demand Response Enabling Technology Development”, Phase I Report: Jun. 2003-Nov. 2005, Jul. 27, P:DemandRes/UC Papers/DR-Phase1Report-Final DraftApril24-26.doc, University of California Berkeley, pp. 1-108.
Arens et al., “New Thermostat Demand Response Enabling Technology”, Poster, University of California Berkeley, Jun. 10, 2004.
Auslander et al., “UC Berkeley DR Research Energy Management Group”, Power Point Presentation, DR ETD Workshop, State of California Energy Commission, Jun. 11, 2007, pp. 1-35.
Chen et al., “Demand Response-Enabled Residential Thermostat Controls”, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Mechanical Engineering Dept. and Architecture Dept., University of California Berkeley, 2008, pp. 1-24 through 1-36.
Deleeuw, “Ecobee WiFi Enabled Smart Thermostat Part 2: The Features Review”, Retrieved from <URL: http://www.homenetworkenabled.com/content.php?136-ecobee-WiFi-enabled-Smart-Thermostat-Part-2-The-Features-review>, Dec. 2, 2011, 5 pages.
Gao et al., “The Self-Programming Thermostat: Optimizing Setback Schedules Based on Home Occupancy Patterns”, In Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Nov. 3, 2009, 6 pages.
Green, “Thermo Heat Tech Cool”, Popular Mechanics Electronic Thermostat Guide, Oct. 1985, pp. 155-158.
Loisos et al., “Buildings End-Use Energy Efficiency: Alternatives to Compressor Cooling”, California Energy Commission, Public Interest Energy Research, Jan. 2000, 80 pages.
Lu et al., “The Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes”, In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Nov. 3-5, 2010, pp. 211-224.
Meier et al., “Thermostat Interface Usability: A Survey”, Ernest Orlando Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Berkeley California, Sep. 2010, pp. 1-73.
Mozer, “The Neural Network House: An Environmental that Adapts to its Inhabitants”, AAAI Technical Report SS-98-02, 1998, pp. 110-114.
Peffer et al., “A Tale of Two Houses: The Human Dimension of Demand Response Enabling Technology from a Case Study of Adaptive Wireless Thermostat”, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Architecture Dept. and Mechanical Engineering Dept., University of California Berkeley., 2008, pp. 7-242 through 7-253.
Peffer et al., “Smart Comfort At Home: Design of a Residential Thermostat to Achieve Thermal Comfort, and Save Money and Peak Energy”, University of California Berkeley, Mar. 2007, 1 page.
Salus, “S-Series Digital Thermostat Instruction Manual-ST620 Model No. Instruction Manual”, www.salus-tech.com, Version 005, Apr. 29, 2010, 24 pages.
Sanford, “iPod (Click Wheel) (2004)”, www.apple-history.com [retrieved on Apr. 9, 2012]. Retrieved from: http://apple-history.com/ipod, Apr. 9, 2012, 2 pages.
Wright et al., “DR ETD—Summary of New Thermostate, TempNode, & New Meter (UC Berkeley Project)”, Power Point Presentation, Public Interest Energy Research, University of California Berkeley. Retrieved from: http://dr.berkeley.edu/dream/presentations/2005_6CEC.pdf, 2005, pp. 1-49.
International Patent Application No. PCT/US2011/051579, International Search Report and Written Opinion dated Jan. 6, 2012, 13 pages.
International Search Report and Written Opinion dated Mar. 30, 2012, for International Patent Application No. PCT/US2011/061379 filed Nov. 18, 2011, 7 pages.
International Preliminary Report on Patentability dated May 21, 2013, for International Patent Application No. PCT/US2011/061379 filed Nov. 18, 2011, 6 pages.
Related Publications (1)
Number Date Country
20150300672 A1 Oct 2015 US
Provisional Applications (2)
Number Date Country
61429093 Dec 2010 US
61415771 Nov 2010 US
Continuations (1)
Number Date Country
Parent 12984602 Jan 2011 US
Child 14789786 US