A portion of the disclosure of this patent document may contain material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This invention generally relates to temperature control systems. More particularly, embodiments of this invention relate to devices for controlling temperature in a building, such as a HVAC system and/or a water heating system, wherein the estimated time to reach a target temperature is displayed to a user.
Building heating ventilation and air-conditioning (HVAC) systems account for a significant percentage of total energy consumption. Thus, a significant savings in HVAC energy usage can have an impact on total energy consumption. Programmable thermostats have been commercially available for many years and are used in many residential and light industrial settings. However, the typical user in the residential and light-industrial setting is relatively unsophisticated in terms of HVAC technology and efficiency. Despite the fact that HVAC energy use makes up a significant portion of total energy use in a residential or light industrial setting, a typical residential or light industrial occupant using a thermostat to manually input a set point or target temperature—either to increase the current temperature in the case of heating, or decrease the current temperature in the case of cooling—does not have a good understanding of how much energy is required to carry out the increase or decrease in temperature being called for. For example, a typical user does not have a good idea of how much energy it takes to raise the temperature of his or her dwelling by various amounts on a cold winter day. Some sophisticated thermostats are capable of calculating and displaying cost information associated with set point changes. For example, see U.S. Pat. No. 7,392,661, which discusses an HVAC system controller which estimates the energy cost or savings incurred due to a user-instigated change in a climate control schedule. Estimated costs or savings can be displayed to the user in an effort to give the user a basis for making decisions. However, it is believed that displaying costs and/or savings alone does not necessarily give many users a good awareness of HVAC system usage.
According to some embodiments a method is provided for controlling air temperature in a building, such as with an HVAC system. The method includes estimating an amount of time associated with the controlled air temperature reaching a target temperature; and displaying information to a user representative of the estimated amount of time. According to some embodiments, input from a user indicating the set point or target temperature can be received, and the estimating and displaying can be carried out in real time. The method can also include receiving further targets from a user and re-estimating and displaying an updated time to reach the target temperature. The method can be carried out using a wall-mounted thermostat or using a remote unit via wireless communication.
According to some embodiments, the displayed information includes a numeric representation of the estimated amount of time to reach the target temperature. The information includes can also a graphical representation of the estimated amount of time. The method can be used with an HVAC system that includes single-stage and/or multi-stage heating and/or cooling functionality.
According to some embodiments, the method can include estimating an amount of energy and/or cost associated with causing the controlled air temperature to reach the target temperature; and displaying energy information and/or cost to a user representative of the estimated amount of energy.
According to some embodiments, a system is provided for controlling air temperature in a building. The system includes a processing system adapted and programmed to estimate an amount of time associated with causing the controlled air temperature to reach a target temperature; and a display adapted to display to a user information representative of the estimated amount of time. According to some embodiments, the system is a circular thermostat which can have a rotating outer member adapted to receive input from a user indicating the target temperature.
According to some embodiments a system for controlling temperatures other than air temperature are provided, such a controlling system forming part of a hot water heating system.
As used herein the term “residential” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used as a single family dwelling. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration (1 ton of refrigeration=12,000 Btu/h).
As used herein the term “light commercial” when referring to an HVAC system means a type of HVAC system that is suitable to heat, cool and/or otherwise condition the interior of a building that is primarily used for commercial purposes, but is of a size and construction that a residential HVAC system is considered suitable. An example of a cooling system that would be considered residential would have a cooling capacity of less than about 5 tons of refrigeration.
As used herein the term “target temperature” refers to a temperature, such as a set point temperature toward which a structure or enclosure being conditioned by an HVAC system is moving. The change in temperature toward a target temperature may be under active heating or cooling by the HVAC system and/or it may be due to passive effects such as drifting due to influence of conditions external to the enclosure or structure being conditioned.
It will be appreciated that these systems and methods are novel, as are applications thereof and many of the components, systems, methods and algorithms employed and included therein. It should be appreciated that embodiments of the presently described inventive body of work can be implemented in numerous ways, including as processes, apparata, systems, devices, methods, computer readable media, computational algorithms, embedded or distributed software and/or as a combination thereof. Several illustrative embodiments are described below.
The inventive body of work will be readily understood by referring to the following detailed description in conjunction with the accompanying drawings, in which:
A detailed description of the inventive body of work is provided below. While several embodiments are described, it should be understood that the inventive body of work is not limited to any one embodiment, but instead encompasses numerous alternatives, modifications, and equivalents. In addition, while numerous specific details are set forth in the following description in order to provide a thorough understanding of the inventive body of work, some embodiments can be practiced without some or all of these details. Moreover, for the purpose of clarity, certain technical material that is known in the related art has not been described in detail in order to avoid unnecessarily obscuring the inventive body of work.
According to some embodiments, the thermostat 310 displays the estimated time to reach the current target temperature. In the example shown, the time to reach the target temperature is displayed to the user in two ways. Numbers 322 display the numerical time in hours, minutes and seconds which is estimated to be needed to reach the target temperature. Additionally, or alternatively according to some embodiments, a graphical display 324 is used to indicate the amount of time to reach the target temperature. Thus as time elapses and the temperature in the enclosure gets closer to the target temperature, the numerical display 322 and the graphical display 324 change to reflect shorter times.
In
According to some embodiments, a maximum time can be displayed, such as 24 hours, if the estimated time to reach the target temperature is greater than that amount, or if it is estimated that the HVAC system is unable to obtain the target temperature given its capacity and/or other conditions (e.g. such as outdoor temperature).
In
According to some embodiments, a controller for controlling temperature in applications other than HVAC are provided. For example,
Providing a thermostat that displays the estimated time to reach a target temperature advantageously conveys to the user an impact of the target temperature decision on energy use as well as an increased awareness of HVAC system usage. When a user makes a decision to manually input a new target temperature, the user receives important feedback as to how hard the HVAC system needs to work to obtain that temperature. It has been found that time is a very good parameter to display to a user in order to convey to an average non-technical user the relative effort or difficulty for the HVAC system to obtain a given target temperature. As described more fully below, according to some embodiments, the display of the estimated time to reach the new target temperature is made in real time, so that the user can nearly immediately see the impact of the user's decisions. It has been found that in this way, the user is advantageously trained or educated so as to become more intuitively familiar with the HVAC system, which in turn leads to more economical and environmentally friendly use of energy. It has been found that many HVAC users falsely believe that setting a higher target temperature will make the space warm up faster in the case of heating, and/or believe that setting a lower target temperature will make the space cool down faster in the case of cooling. Displaying the time to reach the target temperature thus educates that user that this is usually not the case. Although displaying the time to the target temperature may not directly save energy, it gives the user a better understanding about HVAC usage and may therefore allow for greater savings in the long run. According to other embodiments, other parameters than time can be displayed to a user to provide useful feedback to the user.
According to some embodiments, the HVAC system being controlled by the thermostat as described herein includes a multi-stage heating and/or multistage cooling system. It has been found that real time calculation and display as described in the flow chart of
According to some embodiments the HVAC system being controlled is one in which the user is likely to be relatively unsophisticated in terms of HVAC technology and operation. In such cases the education of user as described is highly beneficial. Thus, according to some embodiments, the use of the techniques described herein are preferably used in residential and/or light commercial HVAC installations. Such systems commonly have a maximum cooling capacity of about 5 tons.
According to some embodiments, system identification algorithm in 1010 is a mathematical model that can learn the dependence of time to temperature on several thermal and climate factors. According to some embodiments, the inputs 1020 can include both current indoor temperature and a window of temperature measurements immediately prior to the calculation. Other inputs can be an indicator of whether a single stage or several stages of cooling or heating are activated at the time. The algorithm may also take the length of each of the cooling or heating time elapsed. Other environmental factors such as outdoor temperature, indoor and/or outdoor humidity can also be inputs to the algorithm. The output 1030 of the algorithm is the estimated time to reach the target temperature. In some embodiments, the output may also contain an optional statistical confidence value representing our belief in the estimate.
The algorithm may learn the dependence of the outputs on the inputs using statistical methods and machine learning algorithms. For example, the computation may be done using a weighted mean of past observations, linear or non-linear regression, recursive filtering including Kalman filtering or other online or batch system identification methods for dynamical systems.
According to some embodiments, the computation is carried out continuously to account for continually changing inputs. The display of the time to temperature is updated continually to reflect the current estimate from the algorithm.
According to some embodiments, other types of algorithms are used to calculate the time to reach a target temperature. For example other techniques can be used to calculate certain intermediate values, such as house rest temperature, which can be used along with current temperature and outdoor temperature to calculate the time to target. According to some embodiments, a look up table is used in the algorithm 1010.
According to some embodiments the computation system that carries out the algorithm may reside at a location external to the thermostat, such as a computer located within the structure being conditioned or a computer or processing system located at a remote location. According to such embodiments, the computer or processing system making the computation may communicate with the thermostat to gather the inputs and communicate back the output for display.
According to some embodiments, the computation and display is made to the user during the time in which an observer sees the display. According to some embodiments, the computation and display is made in less than about 1 second. According to some embodiments, the computation and display is made in less than about 0.5 seconds.
Although the foregoing has been described in some detail for purposes of clarity, it will be apparent that certain changes and modifications may be made without departing from the principles thereof. It should be noted that there are many alternative ways of implementing both the processes and apparatuses described herein. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the inventive body of work is not to be limited to the details given herein, which may be modified within the scope and equivalents of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/984,602, filed Jan. 4, 2011, which claims priority to U.S. Provisional No. 61/429,093, filed Dec. 31, 2010 and claims priority to U.S. Provisional No. 61/415,771, filed Nov. 19, 2010. This application is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4223831 | Szarka | Sep 1980 | A |
4316577 | Adams et al. | Feb 1982 | A |
4335847 | Levine | Jun 1982 | A |
4408711 | Levine | Oct 1983 | A |
4615380 | Beckey | Oct 1986 | A |
4621336 | Brown | Nov 1986 | A |
4674027 | Beckey | Jun 1987 | A |
4685614 | Levine | Aug 1987 | A |
4751961 | Levine et al. | Jun 1988 | A |
4768706 | Parfitt | Sep 1988 | A |
4897798 | Cler | Jan 1990 | A |
5005365 | Lynch | Apr 1991 | A |
D321903 | Chepaitis | Nov 1991 | S |
5088645 | Bell | Feb 1992 | A |
5211332 | Adams | May 1993 | A |
5240178 | Dewolf et al. | Aug 1993 | A |
D341848 | Bigelow et al. | Nov 1993 | S |
5294047 | Schwer et al. | Mar 1994 | A |
5395042 | Riley et al. | Mar 1995 | A |
5415346 | Bishop | May 1995 | A |
5428964 | Lobdell | Jul 1995 | A |
5476221 | Seymour | Dec 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5485954 | Guy et al. | Jan 1996 | A |
5499196 | Pacheco | Mar 1996 | A |
5555927 | Shah | Sep 1996 | A |
5603451 | Helander et al. | Feb 1997 | A |
5611484 | Uhrich | Mar 1997 | A |
5627531 | Posso et al. | May 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
D396488 | Kunkler | Jul 1998 | S |
5808602 | Sellers | Sep 1998 | A |
5902183 | D'Souza | May 1999 | A |
5909378 | De Milleville | Jun 1999 | A |
5931378 | Schramm | Aug 1999 | A |
5959621 | Nawaz et al. | Sep 1999 | A |
5973662 | Singers et al. | Oct 1999 | A |
5977964 | Williams et al. | Nov 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6062482 | Gauthier et al. | May 2000 | A |
D428399 | Kahn et al. | Jul 2000 | S |
6098893 | Berglund et al. | Aug 2000 | A |
6164374 | Rhodes et al. | Dec 2000 | A |
6206295 | LaCoste | Mar 2001 | B1 |
6209794 | Webster et al. | Apr 2001 | B1 |
6211921 | Cherian et al. | Apr 2001 | B1 |
6213404 | Dushane et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
6298285 | Addink et al. | Oct 2001 | B1 |
D450059 | Itou | Nov 2001 | S |
6349883 | Simmons et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6356204 | Guindi et al. | Mar 2002 | B1 |
6431457 | Dirkes, II | Aug 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464660 | Weng et al. | Oct 2002 | S |
6478233 | Shah | Nov 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
D471825 | Peabody | Mar 2003 | S |
6595430 | Shah | Jul 2003 | B1 |
6619055 | Addy | Sep 2003 | B1 |
D480401 | Kahn et al. | Oct 2003 | S |
6641054 | Morey | Nov 2003 | B2 |
6641055 | Tiernan | Nov 2003 | B1 |
6644557 | Jacobs | Nov 2003 | B1 |
6645066 | Gutta et al. | Nov 2003 | B2 |
D485279 | DeCombe | Jan 2004 | S |
6726112 | Ho | Apr 2004 | B1 |
D491956 | Ombao et al. | Jun 2004 | S |
6769482 | Wagner et al. | Aug 2004 | B2 |
D497617 | Decombe et al. | Oct 2004 | S |
6824069 | Rosen | Nov 2004 | B2 |
D503631 | Peabody | Apr 2005 | S |
6951306 | Deluca | Oct 2005 | B2 |
D511527 | Hernandez et al. | Nov 2005 | S |
7000849 | Ashworth et al. | Feb 2006 | B2 |
7024336 | Salsbury et al. | Apr 2006 | B2 |
7028912 | Rosen | Apr 2006 | B1 |
7040104 | Bogner et al. | May 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7099748 | Rayburn | Aug 2006 | B2 |
7111788 | Reponen | Sep 2006 | B2 |
7114554 | Bergman et al. | Oct 2006 | B2 |
7117129 | Bash et al. | Oct 2006 | B1 |
7141748 | Tanaka et al. | Nov 2006 | B2 |
7142948 | Metz | Nov 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7159790 | Schwendinger et al. | Jan 2007 | B2 |
7181317 | Amundson et al. | Feb 2007 | B2 |
7222494 | Peterson et al. | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
D544877 | Sasser | Jun 2007 | S |
7258280 | Wolfson | Aug 2007 | B2 |
D550691 | Hally et al. | Sep 2007 | S |
7264175 | Schwendinger et al. | Sep 2007 | B2 |
7274972 | Amundson et al. | Sep 2007 | B2 |
7287709 | Proffitt et al. | Oct 2007 | B2 |
7299996 | Garrett et al. | Nov 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7333880 | Brewster et al. | Feb 2008 | B2 |
D566587 | Rosen | Apr 2008 | S |
RE40437 | Rosen | Jul 2008 | E |
7392661 | Alles | Jul 2008 | B2 |
7418663 | Pettinati et al. | Aug 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7451937 | Flood et al. | Nov 2008 | B2 |
7455240 | Chapman, Jr. et al. | Nov 2008 | B2 |
7469550 | Chapman, Jr. et al. | Dec 2008 | B2 |
D588152 | Okada | Mar 2009 | S |
7509753 | Nicosia et al. | Mar 2009 | B2 |
D589792 | Clabough et al. | Apr 2009 | S |
D590412 | Saft et al. | Apr 2009 | S |
D593120 | Bouchard et al. | May 2009 | S |
D594015 | Singh et al. | Jun 2009 | S |
D595309 | Sasaki et al. | Jun 2009 | S |
7555364 | Poth et al. | Jun 2009 | B2 |
D596194 | Vu et al. | Jul 2009 | S |
D597101 | Chaudhri et al. | Jul 2009 | S |
7558648 | Hoglund et al. | Jul 2009 | B2 |
D598463 | Hirsch et al. | Aug 2009 | S |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7575179 | Morrow et al. | Aug 2009 | B2 |
D599810 | Scalisi et al. | Sep 2009 | S |
7584899 | de Pauw et al. | Sep 2009 | B2 |
7596431 | Forman et al. | Sep 2009 | B1 |
7600694 | Helt et al. | Oct 2009 | B2 |
D603277 | Clausen et al. | Nov 2009 | S |
D603421 | Ebeling et al. | Nov 2009 | S |
D604740 | Matheny et al. | Nov 2009 | S |
7620996 | Torres et al. | Nov 2009 | B2 |
D607001 | Ording | Dec 2009 | S |
7624931 | Chapman, Jr. et al. | Dec 2009 | B2 |
7634504 | Amundson | Dec 2009 | B2 |
7641126 | Schultz et al. | Jan 2010 | B2 |
7644869 | Hoglund et al. | Jan 2010 | B2 |
7667163 | Ashworth et al. | Feb 2010 | B2 |
D613301 | Lee et al. | Apr 2010 | S |
D614194 | Guntaur et al. | Apr 2010 | S |
D614196 | Guntaur et al. | Apr 2010 | S |
7693582 | Bergman et al. | Apr 2010 | B2 |
7702424 | Cannon et al. | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
D614976 | Skafdrup et al. | May 2010 | S |
D615546 | Lundy et al. | May 2010 | S |
D616460 | Pearson et al. | May 2010 | S |
7721209 | Tilton | May 2010 | B2 |
7726581 | Naujok et al. | Jun 2010 | B2 |
D619613 | Dunn | Jul 2010 | S |
7778734 | Oswald et al. | Aug 2010 | B2 |
7784704 | Harter | Aug 2010 | B2 |
7802618 | Simon et al. | Sep 2010 | B2 |
D625325 | Vu et al. | Oct 2010 | S |
D625734 | Kurozumi et al. | Oct 2010 | S |
D626133 | Murphy et al. | Oct 2010 | S |
7823076 | Borovsky et al. | Oct 2010 | B2 |
RE41922 | Gough et al. | Nov 2010 | E |
7845576 | Siddaramanna et al. | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7854389 | Ahmed | Dec 2010 | B2 |
D630649 | Tokunaga et al. | Jan 2011 | S |
7904209 | Podgorny et al. | Mar 2011 | B2 |
7904830 | Hoglund et al. | Mar 2011 | B2 |
D638835 | Akana et al. | May 2011 | S |
D640269 | Chen | Jun 2011 | S |
D640273 | Arnold et al. | Jun 2011 | S |
D640278 | Woo | Jun 2011 | S |
D641373 | Gardner et al. | Jul 2011 | S |
7984384 | Chaudhri et al. | Jul 2011 | B2 |
D643045 | Woo | Aug 2011 | S |
8010237 | Cheung et al. | Aug 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
D648735 | Arnold et al. | Nov 2011 | S |
D651529 | Mongell et al. | Jan 2012 | S |
8090477 | Steinberg | Jan 2012 | B1 |
8091794 | Siddaramanna et al. | Jan 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8136052 | Shin et al. | Mar 2012 | B2 |
D656950 | Shallcross et al. | Apr 2012 | S |
D656952 | Weir et al. | Apr 2012 | S |
8156060 | Borzestowski et al. | Apr 2012 | B2 |
8166395 | Omi et al. | Apr 2012 | B2 |
D658674 | Shallcross et al. | May 2012 | S |
8180492 | Steinberg | May 2012 | B2 |
8185164 | Kim | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
D663743 | Tanghe et al. | Jul 2012 | S |
D663744 | Tanghe et al. | Jul 2012 | S |
D664559 | Ismail et al. | Jul 2012 | S |
8223134 | Forstall et al. | Jul 2012 | B1 |
8234581 | Kake | Jul 2012 | B2 |
D664978 | Tanghe et al. | Aug 2012 | S |
D665397 | Naranjo et al. | Aug 2012 | S |
8243017 | Brodersen et al. | Aug 2012 | B2 |
8253704 | Jang | Aug 2012 | B2 |
8253747 | Niles et al. | Aug 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8281244 | Neuman et al. | Oct 2012 | B2 |
D671136 | Barnett et al. | Nov 2012 | S |
8316022 | Matsuda et al. | Nov 2012 | B2 |
D673171 | Peters et al. | Dec 2012 | S |
D673172 | Peters et al. | Dec 2012 | S |
8341557 | Pisula et al. | Dec 2012 | B2 |
8442695 | Imes et al. | May 2013 | B2 |
8606374 | Fadell et al. | Dec 2013 | B2 |
9104211 | Fadell et al. | Aug 2015 | B2 |
20020005435 | Cottrell | Jan 2002 | A1 |
20030112262 | Adatia et al. | Jun 2003 | A1 |
20040034484 | Solomita, Jr. et al. | Feb 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040249479 | Shorrock | Dec 2004 | A1 |
20040256472 | DeLuca | Dec 2004 | A1 |
20040260427 | Wimsatt | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050055432 | Rodgers | Mar 2005 | A1 |
20050071780 | Muller et al. | Mar 2005 | A1 |
20050119766 | Amundson et al. | Jun 2005 | A1 |
20050119793 | Amundson et al. | Jun 2005 | A1 |
20050128067 | Zakrewski | Jun 2005 | A1 |
20050159847 | Shah et al. | Jul 2005 | A1 |
20050159924 | Shah | Jul 2005 | A1 |
20050189429 | Breeden | Sep 2005 | A1 |
20050192915 | Ahmed et al. | Sep 2005 | A1 |
20050194455 | Alles | Sep 2005 | A1 |
20050204997 | Fournier | Sep 2005 | A1 |
20050280421 | Yomoda et al. | Dec 2005 | A1 |
20060079983 | Willis | Apr 2006 | A1 |
20060186214 | Simon et al. | Aug 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20070001830 | Dagci et al. | Jan 2007 | A1 |
20070045430 | Chapman et al. | Mar 2007 | A1 |
20070045433 | Chapman et al. | Mar 2007 | A1 |
20070045444 | Gray et al. | Mar 2007 | A1 |
20070050732 | Chapman et al. | Mar 2007 | A1 |
20070057079 | Stark et al. | Mar 2007 | A1 |
20070115902 | Shamoon et al. | May 2007 | A1 |
20070158442 | Chapman et al. | Jul 2007 | A1 |
20070173978 | Fein et al. | Jul 2007 | A1 |
20070225867 | Moorer et al. | Sep 2007 | A1 |
20070227721 | Springer et al. | Oct 2007 | A1 |
20070228183 | Kennedy et al. | Oct 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20070257120 | Chapman et al. | Nov 2007 | A1 |
20070278320 | Lunacek et al. | Dec 2007 | A1 |
20080006709 | Ashworth et al. | Jan 2008 | A1 |
20080015742 | Kulyk et al. | Jan 2008 | A1 |
20080054082 | Evans et al. | Mar 2008 | A1 |
20080191045 | Harter | Aug 2008 | A1 |
20080245480 | Knight et al. | Oct 2008 | A1 |
20080273754 | Hick et al. | Nov 2008 | A1 |
20080290183 | Laberge et al. | Nov 2008 | A1 |
20080317292 | Baker et al. | Dec 2008 | A1 |
20090001180 | Siddaramanna et al. | Jan 2009 | A1 |
20090005912 | Srivastava et al. | Jan 2009 | A1 |
20090062970 | Forbes, Jr. et al. | Mar 2009 | A1 |
20090112335 | Mehta et al. | Apr 2009 | A1 |
20090140056 | Leen | Jun 2009 | A1 |
20090140057 | Leen | Jun 2009 | A1 |
20090143916 | Boll et al. | Jun 2009 | A1 |
20090171862 | Harrod et al. | Jul 2009 | A1 |
20090195349 | Frader-Thompson et al. | Aug 2009 | A1 |
20090216380 | Kolk | Aug 2009 | A1 |
20090254225 | Boucher et al. | Oct 2009 | A1 |
20090259713 | Blumrich et al. | Oct 2009 | A1 |
20090263773 | Kotlyar et al. | Oct 2009 | A1 |
20090273610 | Busch et al. | Nov 2009 | A1 |
20090283603 | Peterson et al. | Nov 2009 | A1 |
20090297901 | Kilian et al. | Dec 2009 | A1 |
20090312999 | Kasztenny et al. | Dec 2009 | A1 |
20100019051 | Rosen | Jan 2010 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070085 | Harrod et al. | Mar 2010 | A1 |
20100070086 | Harrod et al. | Mar 2010 | A1 |
20100070089 | Harrod et al. | Mar 2010 | A1 |
20100070093 | Harrod et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070907 | Harrod et al. | Mar 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100106305 | Pavlak et al. | Apr 2010 | A1 |
20100107070 | Devineni et al. | Apr 2010 | A1 |
20100107076 | Grohman et al. | Apr 2010 | A1 |
20100163633 | Barrett et al. | Jul 2010 | A1 |
20100167783 | Alameh et al. | Jul 2010 | A1 |
20100198425 | Donovan | Aug 2010 | A1 |
20100211224 | Keeling et al. | Aug 2010 | A1 |
20100262298 | Johnson et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20110015798 | Golden et al. | Jan 2011 | A1 |
20110015802 | Imes | Jan 2011 | A1 |
20110035060 | Oswald | Feb 2011 | A1 |
20110046792 | Imes et al. | Feb 2011 | A1 |
20110046805 | Bedros et al. | Feb 2011 | A1 |
20110046806 | Nagel et al. | Feb 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110153089 | Tiemann et al. | Jun 2011 | A1 |
20110160913 | Parker et al. | Jun 2011 | A1 |
20110167369 | van Os | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110196539 | Nair et al. | Aug 2011 | A1 |
20110251933 | Egnor et al. | Oct 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120085831 | Kopp | Apr 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120158350 | Steinberg et al. | Jun 2012 | A1 |
20120221151 | Steinberg | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
2202008 | Feb 2000 | CA |
19609390 | Sep 1997 | DE |
434926 | Jul 1991 | EP |
196069 | Dec 1991 | EP |
720077 | Jul 1996 | EP |
802471 | Oct 1997 | EP |
1065079 | Jan 2001 | EP |
1731984 | Dec 2006 | EP |
2157492 | Feb 2010 | EP |
1703356 | Sep 2011 | EP |
2212317 | May 1992 | GB |
59106311 | Jun 1984 | JP |
01252850 | Oct 1989 | JP |
11020824 | Jan 1999 | JP |
2002087050 | Mar 2002 | JP |
2003054290 | Feb 2003 | JP |
1024986 | Jun 2005 | NL |
0235304 | May 2002 | WO |
0248851 | Jun 2002 | WO |
2009073496 | Jun 2009 | WO |
2011128416 | Oct 2011 | WO |
2012068453 | May 2012 | WO |
Entry |
---|
Braeburn Model 5200, Braeburn Systems, LLC, Jul. 20, 2011, 11 pages. |
Braeburn 5300 Installer Guide, Braeburn Systems, LLC, Dec. 9, 2009, 10 pages. |
VisionPRO TH8000 Series Installation Guide, Honeywell International, Inc., Jan. 2012, 12 pages. |
VisionPRO TH8000 Series Operating Manual, Honeywell International, Inc., Mar. 2011, 96 pages. |
Venstar T5800 Manual, Venstar, Inc., Sep. 7, 2011, 63 pages. |
International Patent Application PCT/US2011/061379, International Search Report and Written Opinion dated Mar. 30, 2012, 7 pages. |
Aprilaire Electronic Thermostats Model 8355 User's Manual, Research Products Corporation, Dec. 2000, 16 pages. |
Ecobee Smart Si Thermostat Installation Manual, Ecobee, Apr. 3, 2012, 40 pages. |
Ecobee Smart Si Thermostat User Manual, Ecobee, Apr. 3, 2012, 44 pages. |
Ecobee Smart Thermostat Installation Manual, Jun. 29, 2011, 20 pages. |
Ecobee Smart Thermostat User Manual, May 11, 2010, 20 pages. |
Electric Heat Lock Out on Heat Pumps Washington State University Extension Energy Program, Apr. 2010, pp. 1-3. |
Energy Joule Ambient Devices, 2011. Retrieved from: http://web.archive.org/web/20110723210421/http://www.ambientdevices.com/products/energyjoule.html on Aug. 1, 2012, 3 pages. |
Honeywell CT2700, An Electronic Round Programmable Thermostat—User's Guide, Honeywell, Inc., 1997, 8 pages. |
Honeywell CT8775A,C, The digital Round Non-Programmable Thermostats—Owner's Guide, Honeywell International Inc., 2003, 20 pages. |
Honeywell Installation Guide FocusPRO TH6000 Series, Honeywell International, Inc., Jan. 5, 2012, 24 pages. |
Honeywell Operating Manual FocusPRO TH6000 Series, Honeywell International, Inc., Mar. 25, 2011, 80 pages. |
Honeywell Prestige IAQ Product Data 2, Honeywell International, Inc., Jan. 12, 2012, 126 pages. |
Honeywell Prestige THX9321 and TXH9421 Product Data, Honeywell International, Inc., 68-0311, Jan. 2012, 126 pages. |
Honeywell Prestige THX9321-9421 Operating Manual, Honeywell International, Inc., Jul. 6, 2011, 120 pages. |
Honeywell T8700C, An Electronic Round Programmable Thermostat—Owner's Guide, Honeywell, Inc., 1997, 12 pages. |
Honeywell T8775 The Digital Round Thermostat, Honeywell, 2003, 2 pages. |
Honeywell T8775AC Digital Round Thermostat Manual No. 69-1679EF-1, www.honeywell.com/yourhome, Jun. 2004, pp. 1-16. |
Hunter Internet Thermostat Installation Guide, Hunter Fan Co., Aug. 14, 2012, 8 pages. |
ICY 3815TT-001 Timer-Thermostat Package Box, ICY BV Product Bar Code No. 8717953007902, 2009, 2 pages. |
Introducing the New Smart Si Thermostat, Datasheet [online]. Ecobee, Mar. 2012 [retrieved on Feb. 25, 2013]. Retrieved from the Internet: <URL: https://www.ecobee.com/solutions/home/smart-si/>, Mar. 12, 2012, 4 pages. |
Lennox ComfortSense 5000 Owners Guide, Lennox Industries, Inc., Feb. 2008, 32 pages. |
Lennox ComfortSense 7000 Owners Guide, Lennox Industries, Inc., May, 2009, 15 pages. |
Lennox iComfort Manual, Lennox Industries, Inc., Dec. 2010, 20 pages. |
Lux PSPU732T Manual, LUX Products Corporation, Jan. 6, 2009, 48 pages. |
NetX RP32-WIFI Network Thermostat Consumer Brochure, Network Thermostat, May 2011, 2 pages. |
NetX RP32-WIFI Network Thermostat Specification Sheet, Network Thermostat, Feb. 28, 2012, 2 pages. |
RobertShaw Product Manual 9620, Maple Chase Company, Jun. 12, 2001, 14 pages. |
RobertShaw Product Manual 9825i2, Maple Chase Company, Jul. 17, 2006, 36 pages. |
SYSTXCCUIZ01-V Infinity Control Installation Instructions, Carrier Corp, May 31, 2012, 20 pages. |
T8611G Chronotherm IV Deluxe Programmable Heat Pump Thermostat Product Data, Honeywell International Inc., Oct. 1997, 24 pages. |
TB-PAC, TB-PHP, Base Series Programmable Thermostats, Carrier Corp, May 14, 2012, 8 pages. |
The Clever Thermostat, ICY BV Web Page, http://www.icy.nl/en/consumer/products/clever-thermostat, ICY BV, 2012, 1 page. |
The Clever Thermostat User Manual and Installation Guide, ICY BV ICY3815 Timer-Thermostat, 2009, pp. 1-36. |
The Perfect Climate Comfort Center PC8900A W8900A-C Product Data Sheet, Honeywell International Inc., Apr. 2001, 44 pages. |
Trane Communicating Thermostats for Fan Coil, Trane, May 2011, 32 pages. |
Trane Communicating Thermostats for Heat Pump Control, Trane, May 2011, 32 pages. |
Trane Install XL600 Installation Manual, Trane, Mar. 2006, 16 pages. |
Trane XL950 Installation Guide, Trane, Mar. 2011, 20 pages. |
Venstar T2900 Manual, Venstar, Inc., Apr. 2008, 113 pages. |
VisionPRO Wi-Fi Programmable Thermostat, Honeywell International, Inc., Operating Manual, Aug. 2012, 48 pages. |
White Rodgers (Emerson) Model 1F81-261 Installation and Operating Instructions, White Rodgers, Apr. 15, 2010, 8 pages. |
White Rodgers (Emerson) Model IF98EZ-1621 Homeowner's User Guide, White Rodgers, Jan. 25, 2012, 28 pages. |
U.S. Appl. No. 60/512,886 Volkswagen Rotary Knob for Motor Vehicle—English Translation of German Application filed Oct. 20, 2003. |
Allen et al., “Real-Time Earthquake Detection and Hazard Assessment by ElarmS Across California”, Geophysical Research Letters, vol. 36, L00B08, 2009, pp. 1-6. |
Arens et al., “Demand Response Electrical Appliance Manager—User Interface Design, Development and Testing”, Poster, Demand Response Enabling Technology Development, University of California Berkeley, Retrieved from dr.berkeley.edu/dream/posters/2005_6GUIposter.pdf, 2005, 1 page. |
Arens et al., “Demand Response Enabled Thermostat—Control Strategies and Interface”, Demand Response Enabling Technology Development Poster, University of California Berkeley, Retrieved from dr.berkeley.edu/dream/posters/2004_11CEC_TstatPoster.pdf, 2004, 1 page. |
Arens et al., “Demand Response Enabling Technology Development”, Phase I Report: Jun. 2003-Nov. 2005, Jul. 27, P:DemandRes/UC Papers/DR-Phase1Report-Final DraftApril24-26.doc, University of California Berkeley, pp. 1-108. |
Arens et al., “New Thermostat Demand Response Enabling Technology”, Poster, University of California Berkeley, Jun. 10, 2004. |
Auslander et al., “UC Berkeley DR Research Energy Management Group”, Power Point Presentation, DR ETD Workshop, State of California Energy Commission, Jun. 11, 2007, pp. 1-35. |
Chen et al., “Demand Response-Enabled Residential Thermostat Controls”, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Mechanical Engineering Dept. and Architecture Dept., University of California Berkeley, 2008, pp. 1-24 through 1-36. |
Deleeuw, “Ecobee WiFi Enabled Smart Thermostat Part 2: The Features Review”, Retrieved from <URL: http://www.homenetworkenabled.com/content.php?136-ecobee-WiFi-enabled-Smart-Thermostat-Part-2-The-Features-review>, Dec. 2, 2011, 5 pages. |
Gao et al., “The Self-Programming Thermostat: Optimizing Setback Schedules Based on Home Occupancy Patterns”, In Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Nov. 3, 2009, 6 pages. |
Green, “Thermo Heat Tech Cool”, Popular Mechanics Electronic Thermostat Guide, Oct. 1985, pp. 155-158. |
Loisos et al., “Buildings End-Use Energy Efficiency: Alternatives to Compressor Cooling”, California Energy Commission, Public Interest Energy Research, Jan. 2000, 80 pages. |
Lu et al., “The Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes”, In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Nov. 3-5, 2010, pp. 211-224. |
Meier et al., “Thermostat Interface Usability: A Survey”, Ernest Orlando Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Berkeley California, Sep. 2010, pp. 1-73. |
Mozer, “The Neural Network House: An Environmental that Adapts to its Inhabitants”, AAAI Technical Report SS-98-02, 1998, pp. 110-114. |
Peffer et al., “A Tale of Two Houses: The Human Dimension of Demand Response Enabling Technology from a Case Study of Adaptive Wireless Thermostat”, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Architecture Dept. and Mechanical Engineering Dept., University of California Berkeley., 2008, pp. 7-242 through 7-253. |
Peffer et al., “Smart Comfort At Home: Design of a Residential Thermostat to Achieve Thermal Comfort, and Save Money and Peak Energy”, University of California Berkeley, Mar. 2007, 1 page. |
Salus, “S-Series Digital Thermostat Instruction Manual-ST620 Model No. Instruction Manual”, www.salus-tech.com, Version 005, Apr. 29, 2010, 24 pages. |
Sanford, “iPod (Click Wheel) (2004)”, www.apple-history.com [retrieved on Apr. 9, 2012]. Retrieved from: http://apple-history.com/ipod, Apr. 9, 2012, 2 pages. |
Wright et al., “DR ETD—Summary of New Thermostate, TempNode, & New Meter (UC Berkeley Project)”, Power Point Presentation, Public Interest Energy Research, University of California Berkeley. Retrieved from: http://dr.berkeley.edu/dream/presentations/2005_6CEC.pdf, 2005, pp. 1-49. |
International Patent Application No. PCT/US2011/051579, International Search Report and Written Opinion dated Jan. 6, 2012, 13 pages. |
International Search Report and Written Opinion dated Mar. 30, 2012, for International Patent Application No. PCT/US2011/061379 filed Nov. 18, 2011, 7 pages. |
International Preliminary Report on Patentability dated May 21, 2013, for International Patent Application No. PCT/US2011/061379 filed Nov. 18, 2011, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150300672 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61429093 | Dec 2010 | US | |
61415771 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12984602 | Jan 2011 | US |
Child | 14789786 | US |