The present invention relates, in general, to automotive fuel leak detection methods and systems and, in particular, to a temperature correction approach to automotive evaporative fuel leak detection.
Automotive leak detection systems can use either positive or negative pressure differentials, relative to atmosphere, to check for a leak. Pressure change over a given period of time is monitored and correction is made for pressure changes resulting from gasoline fuel vapor.
It has been established that the ability of a leak detection system to successfully indicate a small leak in a large volume is directly dependent on the stability or conditioning of the tank and its contents. Reliable leak detection can be achieved only when the system is stable. The following conditions are required:
a) Uniform pressure throughout the system being leak-checked;
b) No fuel movement in the gas tank (which may results in pressure fluctuations); and
c) No change in volume resulting from flexure of the gas tank or other factors.
Conditions a), b), and c) can be stabilized by holding the system being leak-checked at a fixed pressure level for a sufficient period of time and measuring the decay in pressure from this level in order to detect a leak and establish its size.
The method and sensor or subsystem according to the present invention provided a solution to the problems outlined below. In particular, an embodiment of one aspect of the present invention provides a method for making temperature-compensated pressure readings in an automotive evaporative leak detection system having a tank with a vapor pressure having a value that is known at a first point in time. According to this method, a first temperature of the vapor is measured at substantially the first point in time and is again measured at a second point in time. Then a temperature-compensated pressure is computed based on the pressure at the first point in time and the two temperature measurements.
According to another aspect of the present invention, the resulting temperature-compensated pressure can be compared with a pressure measured at the second point in time to provide a basis for inferring the existence of a leak.
An embodiment of another aspect of the present invention is a sensor subsystem for use in an automotive evaporative leak detection system in order to compensate for the effects on pressure measurement of changes in the temperature of the fuel tank vapor. The sensor subsystem includes a pressure sensor in fluid communication with the fuel tank vapor, a temperature sensor in thermal contact with the fuel tank vapor, a processor in electrical communication with the pressure sensor and with the temperature sensor and logic implemented by the processor for computing a temperature-compensated pressure based on pressure and temperature measurements made by the pressure and temperature sensors.
We have discovered that, in addition to items a), b), and c) set forth in the Background section above, another condition that affects the stability of fuel tank contents and the accuracy of a leak detection system is thermal upset of the vapor in the tank. If the temperature of the vapor in the gas tank above the fuel is stabilized (i.e., does not undergo a change), a more reliable leak detection test can be conducted.
Changes in gas tank vapor temperature prove less easy to stabilize than pressure. A vehicle can, for example, be refueled with warmer than ambient fuel. A vacuum leak test performed after refueling under this condition would falsely indicate the existence of a leak. The cool air in the gas tank would be heated by incoming fuel and cause the vacuum level to decay, making it appear as though there were a diminution of mass in the tank. A leak is likely to be falsely detected any time heat is added to the fuel tank. If system pressure were elevated in order to check for a leak under a positive pressure leak test, and a pressure decay were then measured as an indicia of leakage, the measured leakage would be reduced because the vapor pressure would be higher than it otherwise would. Moreover, measured pressure would also decline as the vapor eventually cools back down to ambient pressure. A long stabilization period would be necessary to reach the stable conditions required for an accurate leak detection test.
The need for a long stabilization period as a precondition to an accurate leak detection test result would be commercially disadvantageous. A disadvantageously long stabilization period can be compensated for and eliminated, according to the present invention, by conducting the leak detection test with appropriate temperature compensation even before the temperature of the vapor in the gas tank has stabilized. More particularly, a detection approach according to the present invention uses a sensor or sensor subsystem that is able to either:
1) Provide information on the rate of change of temperature as well as tank vapor pressure level, and correct or compensate for the change in temperature relative to an earlier-measured temperature reference; or
2) Provide tank pressure level information corrected (e.g., within the sensor to a constant temperature reference), the result being available for comparison with other measured pressure to conduct a leak-detection test.
In order to obtain the data required for option 1), two separate values-must be determined (tank temperature rate of change and tank pressure) to carry out the leak detection test. These values can be obtained by two separate sensors in the tank, or a single sensor configured to provide both values.
Alternatively, if tank pressure is to be corrected in accordance with option 2), then a single value is required. This single value can be obtained by a new “Cp” sensor (compensated or corrected pressure sensor or sensor subsystem) configured to provide a corrected pressure.
To obtain this corrected pressure, Pc, the reasonable assumption is made that the vapor in the tank obeys the ideal gas law, or:
PV=nRT
where:
P=pressure;
V=volume;
n=mass;
R=gas constant; and
T=temperature.
This expression demonstrates that the pressure of the vapor trapped in the tank will increase as the vapor warms, and decrease as it cools. This decay can be misinterpreted as leakage. The Cp sensor or sensor subsystem, according to the present invention, cancels the effect of a temperature change in the constant volume gas tank. To effectuate such cancellation, the pressure and temperature are measured at two points in time. Assuming zero or very small changes in n, given that the system is sealed, the ideal gas law can be expressed as:
P1V1/RT1=P2V2/RT2
Since volume, V, and gas constant, R, are reasonably assumed to be constant, this expression can be rewritten as:
P2=P1(T2/T1).
This relation implies that pressure will increase from P1 to P2 if the temperature increases from T1 to T2 in the sealed system.
To express this temperature-compensated or -corrected pressure, the final output, Pc, of the Cp sensor or sensor subsystem will be:
Pc=P1−(P2−P1)
where Pc is the corrected pressure output. Substituting for P2, we obtain:
Pc=P1−(P1(T2/T1)−P1).
More simply, Pc can be rewritten as follows:
Pc=P1(2−T2/T1).
As an example using a positive pressure test using the Cp sensor or sensor subsystem to generate a temperature-compensated or -corrected pressure output, the measured pressure decay determined by a comparison between Pc and P2 (the pressure measured at the second point in time) will be a function only of system leakage. If the temperature-compensated or -corrected pressure, Pc, is greater than the actual, nominal pressure measured at the second point in time (i.e., when T2 was measured), then there must have been detectable leakage from the system. If Pc is not greater than the nominal pressure measured at T2, no leak is detected. The leak detection system employing a sensor or subsystem according to the present invention will reach an accurate result more quickly than a conventional system, since time will not be wasted waiting for the system to stabilize. The Cp sensor or subsystem allows for leakage measurement to take place in what was previously considered an unstable system.
Gas tank 110, as depicted in
In an alternative embodiment of the present invention, the sensor or subsystem 120 includes pressure and temperature sensing devices electronically coupled to a separate processor 122 to which is also coupled (or which itself includes) memory and a clock. Both this and the previously described embodiments are functionally equivalent in terms of providing a temperature-compensated pressure reading and a nominal pressure reading, which can be compared, and which comparison can support an inference as to whether or not a leak condition exists.
After initiation, at step 202 (during which any required initialization may occur), the processor directs pump 119 at step 204, to run until the pressure sensed by the pressure sensor equals a preselected target pressure P1. (Alternatively, to conduct a vacuum leak detection test, the processor would direct the system to evacuate to a negative pressure via actuation of normally closed canister purge valve 115). The processor therefore should sample the pressure reading with sufficient frequency such that it can turn off the pump 119 (or close valve 115) before the target pressure P1 has been significantly exceeded.
At step 206, which should occur very close in time to step 204, the processor samples, and in the memory records, the fuel vapor temperature signal, T1, generated by the temperature sensor. The processor, at step 208, then waits a preselected period of time (e.g., between 10 and 30 seconds). When the desired amount of time has elapsed, the processor, at step 210, samples and records in memory the fuel vapor temperature signal, T2, as well as fuel vapor pressure, P2.
The processor, at step 212, then computes an estimated temperature-compensated or corrected pressure, Pc, compensating for the contribution to the pressure change from P1 to P2 attributable to any temperature change (T2−T1).
In an embodiment of the present invention, the temperature-compensated or corrected pressure, Pc, is computed according to the relation:
Pc=P1(2−T2/T1)
and the result is stored in memory. Finally, at step 214, the temperature-compensated pressure, Pc, is compared by the processor with the nominal pressure P2. If P2 is less than Pc, then fuel must have escaped-from the tank, indicating a leak, 216. If, on the other hand, P2 is not less than Pc, then there is no basis for concluding that a leak has been detected, 218.
The foregoing description has set forth how the objects of the present invention can be fully and effectively accomplished. The embodiments shown and described for purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments, are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the spirit of the following claims.
This application is a Divisional patent application under 37 C.F.R. § 1.53(b), of pending prior application Ser. No. 09/165,772, filed on Oct. 2, 1998, which claims benefit of the earlier filing date of U.S. provisional application No. 60/060,858, filed on Oct. 2, 1997.
Number | Name | Date | Kind |
---|---|---|---|
3110502 | Pagano | Nov 1963 | A |
3190322 | Brown | Jun 1965 | A |
3413840 | Basile et al. | Dec 1968 | A |
3516279 | Maziarka | Jun 1970 | A |
3586016 | Meyn | Jun 1971 | A |
3640501 | Walton | Feb 1972 | A |
3720090 | Halpert et al. | Mar 1973 | A |
3802267 | Lofink | Apr 1974 | A |
3841344 | Slack | Oct 1974 | A |
3861646 | Douglas | Jan 1975 | A |
3927553 | Frantz | Dec 1975 | A |
4009985 | Hirt | Mar 1977 | A |
4136854 | Ehmig et al. | Jan 1979 | A |
4164168 | Tateoka | Aug 1979 | A |
4166485 | Wokas | Sep 1979 | A |
4215846 | Ishizuka et al. | Aug 1980 | A |
4240467 | Blatt et al. | Dec 1980 | A |
4244554 | DiMauro et al. | Jan 1981 | A |
4354383 | Härtel | Oct 1982 | A |
4368366 | Kitamura et al. | Jan 1983 | A |
4474208 | Looney | Oct 1984 | A |
4494571 | Seegers et al. | Jan 1985 | A |
4518329 | Weaver | May 1985 | A |
4561297 | Holland | Dec 1985 | A |
4616114 | Strasser | Oct 1986 | A |
4717117 | Cook | Jan 1988 | A |
4766557 | Twerdochlib | Aug 1988 | A |
4766927 | Conatser | Aug 1988 | A |
4852054 | Mastandrea | Jul 1989 | A |
4901559 | Grabner | Feb 1990 | A |
4905505 | Reed | Mar 1990 | A |
5036823 | MacKinnon | Aug 1991 | A |
5069188 | Cook | Dec 1991 | A |
5090234 | Maresca, Jr. et al. | Feb 1992 | A |
5096029 | Bauer et al. | Mar 1992 | A |
5101710 | Baucom | Apr 1992 | A |
5253629 | Fornuto et al. | Oct 1993 | A |
5259424 | Miller et al. | Nov 1993 | A |
5263462 | Reddy | Nov 1993 | A |
5273071 | Oberrecht | Dec 1993 | A |
5327934 | Thompson | Jul 1994 | A |
5337262 | Luthi et al. | Aug 1994 | A |
5372032 | Filippi et al. | Dec 1994 | A |
5375455 | Maresca, Jr. et al. | Dec 1994 | A |
5388613 | Krüger | Feb 1995 | A |
5390643 | Sekine | Feb 1995 | A |
5390645 | Cook et al. | Feb 1995 | A |
5415033 | Maresca, Jr. et al. | May 1995 | A |
5419299 | Fukasawa et al. | May 1995 | A |
5425344 | Otsuka et al. | Jun 1995 | A |
5448980 | Kawamura et al. | Sep 1995 | A |
5507176 | Kammeraad et al. | Apr 1996 | A |
5509296 | Kolb | Apr 1996 | A |
5524662 | Benjey et al. | Jun 1996 | A |
5564306 | Miller | Oct 1996 | A |
5579742 | Yamazaki et al. | Dec 1996 | A |
5584271 | Sakata | Dec 1996 | A |
5603349 | Harris | Feb 1997 | A |
5614665 | Curran et al. | Mar 1997 | A |
5635630 | Dawson et al. | Jun 1997 | A |
5644072 | Chirco et al. | Jul 1997 | A |
5671718 | Curran et al. | Sep 1997 | A |
5681151 | Wood | Oct 1997 | A |
5687633 | Eady | Nov 1997 | A |
5743169 | Yamada | Apr 1998 | A |
5893389 | Cunningham | Apr 1999 | A |
5894784 | Bobbitt, III et al. | Apr 1999 | A |
5979869 | Hiddessen | Nov 1999 | A |
6003499 | Devall et al. | Dec 1999 | A |
6073487 | Dawson | Jun 2000 | A |
6089081 | Cook et al. | Jul 2000 | A |
6142062 | Streitman | Nov 2000 | A |
6145430 | Able et al. | Nov 2000 | A |
6168168 | Brown | Jan 2001 | B1 |
6202688 | Khadim | Mar 2001 | B1 |
6203022 | Struschka et al. | Mar 2001 | B1 |
6328021 | Perry et al. | Dec 2001 | B1 |
6343505 | Cook et al. | Feb 2002 | B1 |
6450153 | Perry et al. | Sep 2002 | B1 |
6453942 | Perry | Sep 2002 | B1 |
6460566 | Perry et al. | Oct 2002 | B1 |
6470861 | Perry | Oct 2002 | B1 |
6470908 | Perry | Oct 2002 | B1 |
6474313 | Perry et al. | Nov 2002 | B1 |
6474314 | Perry | Nov 2002 | B1 |
6478045 | Perry | Nov 2002 | B1 |
6484555 | Perry et al. | Nov 2002 | B1 |
6502560 | Perry | Jan 2003 | B1 |
6505514 | Perry | Jan 2003 | B1 |
6623012 | Perry et al. | Sep 2003 | B1 |
6640620 | Cook et al. | Nov 2003 | B1 |
6708552 | Weldon | Mar 2004 | B1 |
6983641 | Perry et al. | Jan 2006 | B1 |
20030000289 | Weldon | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
9950551 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040237630 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60060858 | Oct 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09165772 | Oct 1998 | US |
Child | 10876683 | US |