Temperature dependent electrically resistive yarn

Abstract
A positive variable resistive yarn having a core, a sheath, and an insulator. The sheath includes distinct electrical conductors intermixed within a thermal expansive low conductive matrix. As the temperature of the yarn increases, the resistance of the sheath increases.
Description




BACKGROUND




The present invention relates generally to electrically conductive yarns, and in particular, to electrically conductive yarns providing a resistance that is variable with temperature.




Electrically conductive elements have been used as heating elements in textiles such as knit or woven fabrics. The electrically conductive elements are incorporated into the textile, and electricity is passed though the electrically conductive elements. Therefore, there is a need for electrically conductive elements, such as yarns for use in items such as textiles.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows an enlarged cross-sectional view of an embodiment of the present invention, illustrated as a temperature variable resistive yarn;





FIG. 2

shows a graph of current as a function of voltage through one inch of one embodiment of the yarn in the present invention; and





FIG. 3

shows a graph illustrating the different temperature dependence of the electrical resistance of one embodiment of a yarn made according to the present invention, and “conventional” conducting materials that might be put into a fabric.











DETAILED DESCRIPTION




Referring to

FIG. 1

, there is shown a temperature dependent electrically resistive yarn


10


illustrating one embodiment of the present invention. The yarn


10


generally comprises a core yarn


100


and a positive temperature coefficient of resistance (PTCR) sheath


200


. The yarn


10


can also include an insulator


300


over the PTCR sheath


200


. As illustrated, the temperature variable resistive yarn


10


is a circular cross section; however, it is anticipated that the yarn


10


can have other cross sections which are suitable for formation into textiles, such as oval, flat, or the like.




The core yarn


100


is generally any material providing suitable flexibility and strength for a textile yarn. The core yarn


100


can be formed of synthetic yarns such as polyester, nylon, acrylic, rayon, Kevlar, Nomex, glass, or the like, or can be formed of natural fibers such as cotton, wool, silk, flax, or the like. The core yarn


100


can be formed of monofilaments, multifilaments, or staple fibers. Additionally, the core yarn


100


can be flat, spun, or other type yarns that are used in textiles. In one embodiment, the core yarn


100


is a non-conductive material.




The PTCR sheath


200


is a material that provides increased electrical resistance with increased temperature. In the embodiment of the present invention, illustrated in

FIG. 1

, the sheath


200


generally comprises distinct electrical conductors


210


intermixed within a thermal expansive low conductive (TELC) matrix


220


.




The distinct electrical conductors


210


provide the electrically conductive pathway through the PTCR sheath


200


. The distinct electrical conductors


210


are preferably particles such as particles of conductive materials, conductive-coated spheres, conductive flakes, conductive fibers, or the like. The conductive particles, fibers, or flakes can be formed of materials such as carbon, graphite, gold, silver, copper, or any other similar conductive material. The coated spheres can be spheres of materials such as glass, ceramic, copper, which are coated with conductive materials such as carbon, graphite, gold, silver, copper or other similar conductive material. The spheres are microspheres, and in one embodiment, the spheres are between about 10 and about 100 microns in diameter.




The TELC matrix


220


has a higher coefficient of expansion than the conductive particles


210


. The material of the TELC matrix


220


is selected to expand with temperature, thereby separating various conductive particles


210


within the TELC matrix


220


. The separation of the conductive particles


210


increases the electrical resistance of the PTCR sheath


200


. The TELC matrix


220


is also flexible to the extent necessary to be incorporated into a yarn. In one embodiment, the TELC matrix


220


is an ethylene ethylacrylate (EEA) or a combination of EEA with polyethylene. Other materials that might meet the requirements for a material used as the TELC matrix


220


include, but are not limited to, polyethylene, polyolefins, halo-derivitaves of polyethylene, thermoplastic, or thermoset materials.




The PTCR sheath


200


can be applied to the core


100


by extruding, coating, or any other method of applying a layer of material to the core yarn


100


. Selection of the particular type of distinct electrical conductors


210


(e.g. flakes, fibers, spheres, etc.) can impart different resistance-to-temperature properties, as well as influence the mechanical properties of the PTCR sheath


200


. The TELC matrix


220


can be formed to resist or prevent softening or melting at the operating temperatures. It has been determined that useful resistance values for the yarn


10


could vary anywhere within the range of from about 0.1 Ohms/Inch to about 2500 Ohms/Inch, depending on the desired application.




A description of attributes of a material that could be suitable as the PTCR sheath


200


can also be found in U.S. Pat. No. 3,243,753, issued on Mar. 29, 1966 to Fred Kohler, which is hereby incorporated herein in its entirety by specific reference thereto. A description of attributes of another material that could be suitable as the PTCR sheath


200


can also be found in U.S. Pat. No. 4,818,439, issued on Apr. 4, 1984 to Blackledge et al., which is also hereby incorporated herein in its entirety by specific reference thereto.




One embodiment of the present invention, the TELC matrix


220


can be set by cross-linking the material, for example through radiation, after application to the core yarn


100


. In another embodiment, the TELC matrix


220


can be set by using a thermosetting polymer as the TELC matrix


220


. In another embodiment, TELC matrix


220


can be left to soften at a specific temperature to provide a built-in “fuse” that will cut off the conductivity of the TELC matrix


220


at the location of the selected temperature.




The insulator


300


is a non-conductive material which is appropriate for the flexibility of a yarn. In one embodiment, the coefficient of expansion is close to the TELC matrix


220


. The insulator


300


can be a thermoplastic, thermoset plastic, or a thermoplastic that will change to thermoset upon treatment, such as polyethylene. Materials suitable for the insulator


300


include polyethylene, polyvinylchloride, or the like. The insulator


300


can be applied to the PTCR sheath


200


by extrusion, coating, wrapping, or wrapping and heating the material of the insulator


300


.




A voltage applied across the yarn


10


causes a current to flow through the PTCR sheath


220


. As the temperature of the yarn


10


increases, the resistance of the PTCR sheath


200


increases. The increase in the resistance of the yarn


10


is obtained by the expansion of the TELC matrix


220


separating conductive particles


210


within the TELC matrix


220


, thereby removing the micropaths along the length of the yarn


10


and increasing the total resistance of the PTCR sheath


220


. The particular conductivity-to-temperature relationship is tailored to the particular application. For example, the conductivity may increase slowly to a given point, the rise quickly at a cutoff temperature.




The present invention can be further understood by reference to the following examples:




EXAMPLE 1




A temperature dependent electrically resistance yarn was formed from a core yarn of 500 denier multi-filament polyester with a PTCR sheath of fifty percent (50%) carbon conducting particles and fifty percent (50%) EEA. The average yarn size was about 40 mils. with a denier of 8100. Prior to extruding the PTCR sheath onto the core yarn, the material for the PTCR sheath was predried at 165 F for at least twenty four (24) hours. The yarn was formed by extrusion coating the TELC material onto the core yarn at a temperature of about 430 F. through an orifice of about 47 mils. at a pressure of about 6600 psi. The coated core yarn was quenched in water at a temperature of about 85 F. The resistance of the yarn was about 350 Ohms/Inch at about 72 F. The final yarn had a tenacity of about 9.3 lbs and an elongation at breaking of about 12%, giving a stiffness of 4.3 grams/denier %




EXAMPLE 2




The yarn of Example 1 was coated with an insulation layer of polyethylene. The polyethylene was Tenite 812A from Eastman Chemicals. The polyethylene was extruded onto the yarn at a temperature of about 230 F. at a pressure of about 800 psi, and was water quenched at a temperature of about 75 F. The final diameter of the insulated yarn was about 53 mils. and had a denier of about 13,250. The resistance of the insulated yarn was about 400 Ohms/Inch at about 75 F.




EXAMPLE 3




The yarn of Example 1 was coated with an insulation layer of polyethylene, the polyethylene being Dow 955I from Dow Plastics. The polyethylene was extruded onto the yarn at a temperature of about 230 F. at a pressure of about 800 psi, and was water quenched at a temperature of about 75 F. The final diameter of the insulated yarn was about 53 mils. and had a denier of about 13,250. The resistance of the insulated yarn was about 400 Ohms/Inch at about 75 F.




EXAMPLE 4




A temperature dependent electrically resistance yarn was formed from a core yarn of 500 denier multi-filament polyester with a PTCR sheath of fifty percent (50%) carbon conducting particles and fifty percent (50%) EEA. The average yarn size was about 46 mils. Prior to extruding the PTCR sheath onto the core yarn, the material for the PTCR sheath was predried at 165 F for at least twenty four (24) hours. The yarn was formed by extrusion coating the TELC material onto the core yarn at a temperature of about 430 F. through an orifice of about 59 mils. at a pressure of about 5600 psi. The coated core yarn was quenched in water at a temperature of about 70 F. The resistance of the yarn was about 250 Ohms/Inch at about 72 F.




EXAMPLE 5




A temperature dependent electrically resistance yarn was formed from a core yarn of 1000 denier multi-filament Kevlar with a PTCR sheath of fifty percent (50%) carbon conducting particles and fifty percent (50%) EEA. The average yarn size was about 44 mils. Prior to extruding the PTCR sheath onto the core yarn, the material for the PTCR sheath was predried at 165 F for at least twenty four (24) hours. The yarn was formed by extrusion coating the TELC material onto the core yarn at a temperature of about 415 F. through an orifice of about 47 mils. at a pressure of about 3900 psi. The coated core yarn was quenched in water at a temperature of about 70 F. The resistance of the yarn was about 390 Ohms/Inch at about 72 F.




EXAMPLE 6




A temperature dependent electrically resistance yarn was formed from a core yarn of 1000 denier multi-filament Kevlar with a PTCR sheath of fifty percent (50%) carbon conducting particles and fifty percent (50%) EEA. The average yarn size was about 32 mils. Prior to extruding the PTCR sheath onto the core yarn, the material for the PTCR sheath was predried at 165 F for at least twenty four (24) hours. The yarn was formed by extrusion coating the TELC material onto the core yarn at a temperature of about 415 F. through an orifice of about 36 mils. at a pressure of about 3700 psi. The coated core yarn was quenched in water at a temperature of about 70 F. The resistance of the yarn was about 1000 Ohms/Inch at about 72 F.




Referring now to

FIG. 2

, there is show a graph of current as a function of voltage through one inch of the yarn from Example 1. A 4-probe resistance setup was used to apply a steadily increasing DC voltage to the yarn in ambient air. The voltage across and current through a 1-inch length of yarn was monitored and plotted in FIG.


2


.

FIG. 2

shows that the yarn of this invention can be used to limit the total current draw. The limitation on current draw both controls heat generation and helps prevent thermal stress to the yarn, reducing the possibility of broken heating elements. As shown the current draw for a yarn from Example 1 was limited to about 15 mA per yarn. A larger yarn would pass more current, as would a more conductive yarn. Conversely, a smaller or less conductive yarn would pass less current.




Referring now to

FIG. 3

, there is show a graph illustrating the different temperature dependence of the electrical resistance of a yarn made according to the present invention, and “conventional” conducting materials that might be put into a fabric. “TDER yarn” is the yarn from Example 1. “Copper wire” is a commercially available 14 gage single-strand wire. “Silver-coated nylon” is a 30 denier nylon yarn coated with silver, available from Instrument Specialties—Sauquoit of Scranton, Pa. “Stainless steel yarn” is a polyester yarn with 4 filaments of stainless steel twisted around the outside, available from Bekaert Fibre Technologies of Marietta, Ga. In

FIG. 3

, the Relative Resistance is the resistance of the material relative to its value at 100 F. The three conventional materials all show very small temperature coefficients, whereas the resistance of the TDER yarn changes by more than a factor of 6 at 250 F. As is typically the case for polymer-based PTCR materials, further heating will reduce the resistance. In actual use, products can be designed so they do not reach this temperature range during operation.




Table 1 below lists the temperature coefficients for each material in the range of 150 F.-200 F. From the last column we see that the TDER yarn has 50 or more times the temperature coefficient of other typically available conductive materials suitable for construction of a textile.














TABLE 1










Temperature coefficient




Coefficient relative






Material




(ohm/ohm/C.)




to TDER yarn

























Copper wire:




0.00067




0.0092






Silver-coated nylon yarn:




−0.0012




−0.016






Stainless steel yarn:




0.0015




0.021






TDER yarn:




0.073


















Claims
  • 1. An electrically conductive yarn having a temperature dependent resistance, said yarn comprising:a flexible non-conducting core; a sheath disposed on the flexible non-conducting core and having a positive temperature coefficient of resistance, said sheath including: a low conductive matrix material which expands with increased temperature; a plurality of distinct electrical conductors intermixed throughout the matrix material; wherein the plurality of distinct electrical conductors provide an electrical conductive pathway through the sheath; wherein the low conductive matrix material has a higher coefficient of expansion than the conductive particles; and wherein expansion of the matrix material separates various conductive particles within the sheath thereby increasing the electrical resistance of the sheath; wherein the sheath provides the positive coefficient of resistance along the length of said yarn; and further including an insulator of non-conducting material disposed over the sheath.
  • 2. The electrically conductive yarn according to claim 1, wherein the insulator comprises a thermoplastic.
  • 3. The electrically conductive yarn according to claim 1, wherein the insulator comprises a thermoset plastic.
  • 4. The electrically conductive yarn according to claim 1, wherein the insulator comprises a thermoplastic changed to a thermoset plastic.
  • 5. The electrically conductive yarn according to claim 1, wherein the insulator comprises polyethylene.
  • 6. The electrically conductive yarn according to claim 1 wherein the insulator comprises polyvinylchloride.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of pending application Ser. No. 10/299,154, filed on Nov. 19, 2002, which is a continuation of prior application Ser. No. 09/667,065, filed on Sep. 21, 2000, now issued as U.S. Pat. No. 6,497,951.

US Referenced Citations (35)
Number Name Date Kind
3243753 Kohler Mar 1966 A
3412358 Hummel et al. Nov 1968 A
3591526 Kawashima et al. Jul 1971 A
3958066 Imamura et al. May 1976 A
4055526 Kiyokawa et al. Oct 1977 A
4058704 Shimizu Nov 1977 A
4061827 Gould Dec 1977 A
4198562 Mills et al. Apr 1980 A
4200973 Farkas May 1980 A
4309596 Crowley Jan 1982 A
4474825 Schmidt Oct 1984 A
4554439 Cross et al. Nov 1985 A
4575620 Ishii et al. Mar 1986 A
4742212 Ishii et al. May 1988 A
4818439 Blackledge et al. Apr 1989 A
4966729 Carmona et al. Oct 1990 A
4983814 Ohgushi et al. Jan 1991 A
5138133 Sakurada et al. Aug 1992 A
5170036 Altmann et al. Dec 1992 A
5416462 Demarmels et al. May 1995 A
5451747 Sullivan et al. Sep 1995 A
5460883 Barber, Jr. et al. Oct 1995 A
5484983 Roell Jan 1996 A
5556576 Kim et al. Sep 1996 A
5597649 Sander et al. Jan 1997 A
5776608 Asher et al. Jul 1998 A
5776609 McCullough Jul 1998 A
5804291 Fraser, Jr. Sep 1998 A
5824996 Kochman et al. Oct 1998 A
5861610 Weiss Jan 1999 A
5916506 Breznak et al. Jun 1999 A
5952099 Asher et al. Sep 1999 A
6172344 Gordon et al. Jan 2001 B1
6242094 Breznak et al. Jun 2001 B1
6287690 Land Sep 2001 B1
Foreign Referenced Citations (9)
Number Date Country
0 243 504 Nov 1987 EP
1417394 Dec 1975 GB
11-214123 Aug 1999 JP
11-214132 Aug 1999 JP
2001-52902 Feb 2001 JP
2001076848 Mar 2001 JP
2001076852 Mar 2001 JP
2001085142 Mar 2001 JP
2001-110552 Apr 2001 JP
Non-Patent Literature Citations (3)
Entry
Shakespere Conductive Fiber, LLC; Brochure: “Resistat Conductive Fiber-Engineered for Static Control Solutions”; Believe to be published on Sep. 9, 2001.
Patent Abstracts of Japan vol. 2000, No. 03, Mar. 30, 2000 & JP 11 354261 A (Sakurai Hiroshi), Dec. 24, 1999 Abstract.
European Patent Office; International Search Report for International Application No. PCT/US01/29379; Jul. 8, 2002.
Continuations (2)
Number Date Country
Parent 10/299154 Nov 2002 US
Child 10/431125 US
Parent 09/667065 Sep 2000 US
Child 10/299154 US