The invention relates to a dishwashing machine with a washing compartment and a drying unit, comprising an absorption column with a drying agent which can be reversibly dehydrated, with an air circulation loop through the washing compartment and the drying unit and with temperature detection of the circulating air. The invention further relates to a drying method for dishwashing machines with a drying unit and an air circulation loop between said drying unit and the washing compartment, in which a temperature profile of the circulating air is recorded and the drying is terminated upon a predefined value being reached.
Dishwashing machines with a drying unit can have a drying agent which can be reversibly dehydrated as water-absorbing material. They make use of the characteristic of the zeolite whereby heat is emitted upon the absorption of water as a consequence of the absorption reaction. The more water the zeolite absorbs, the higher its temperature rises. This fact can be used to detect the moisture content in the air circulation loop of the dishwashing machine and thus the degree of drying of the crockery. Control of the drying process, which is based on the detection of the temperature and thus indirectly on the humidity of the air, is considerably more precise than time-based control, as it is oriented toward the actual drying conditions in the dishwashing machine. These can, for example, fluctuate sharply as a result of loads of different weight or density in the dishwashing machine. Sequential control of this kind is, for example, described in DE 10 2005 004 097 A1. It is further known from DE 10 2005 004 097 A1 for the temperature to be detected as close as possible to the heat source, that is downstream of the absorption column or in the water-absorbing material itself. The high temperatures prevailing there do, however, call for specially designed, more expensive temperature sensors.
It is the object of the present invention to further simplify control in particular for drying in a dishwashing machine of this kind.
In an exemplary embodiment of the invention a temperature sensor is arranged upstream of the drying unit and downstream of the washing compartment in the direction of flow of the air circulating in the air circulation loop. The invention differs from other devices in that it diverges from detection of the temperature in the zeolite or downstream of the absorption column, and instead detects it previously. To this end it makes use of a closed air circulation loop that exists in the dishwashing machine, which is not subject to significant temperature loss. In addition it is not necessary for control of the drying unit to detect an absolute temperature that is actually obtained. It is sufficient only to detect a significant temperature change in the air circulation loop, according to an exemplary embodiment of the invention. The temperature change can also be recorded upstream of the absorption column, where lower temperatures prevail. This enables the use of simpler, cost-effective standard components as temperature sensors.
Different temperature sensors can in principle be used for the temperature level obtaining upstream of the absorption column. According to an advantageous embodiment of the invention, a temperature sensor in the air circulation loop can be used for detecting the temperature of the circulating air. The temperature sensor can take the form of an ultra-low-cost standard component, e.g. a PTC or an NTC resistor with a non-linear characteristic curve, whose assembly and integration into the controller do not give rise to difficulties. Alternatively, any other suitable temperature sensor can be employed, such as for example linear temperature-dependent resistors or peltier elements.
Dishwashing machines with zeolite drying generally have a fan for maintaining the airflow from the washing compartment into the absorption column and back. They can additionally have an auxiliary heater, to the extent that, for example, the heat output from the absorption column is insufficient. According to a further advantageous embodiment of the invention a temperature sensor—for simplicity's sake hereinafter referred to as an “NTC resistor”—is arranged downstream of the fan and if applicable upstream of a heater. Here too a relatively low temperature level prevails, so that a cost-effective NTC resistor can be employed as a standard component, and the air temperature in the washing compartment can thus be indirectly measured.
According to a further advantageous embodiment of the invention an additional NTC resistor can also be arranged in the dishwasher interior, in order to detect the temperature there immediately. As a standard component, neither does an NTC resistor here represent a significant cost factor, so that its use does not markedly increase the cost of manufacturing the dishwashing machine.
According to a further advantageous embodiment of the invention at least one temperature sensor can interact with a control unit for fault location purposes, and the temperature sensor preferably interact with a control unit to control the drying. If the fan should fail, a significant temperature rise thus occurs due to a lack of cooling airflow at the NTC resistor. Conversely, the NTC resistor can detect a fall in temperature, if the heater should stop functioning. The corresponding signal of the NTC resistor can then be processed in a control unit as a fault signal.
According to a further advantageous embodiment of the invention, an NTC resistor can serve both for control of the drying and for fault detection. The NTC resistor can here be arranged both in the dishwasher interior and upstream or downstream of the fan as well as upstream of a heater if appropriate, but in any case upstream of the absorption column. Thanks to the multiple function of the same NTC resistor, savings on assembly and costs can be achieved.
The stated object is further achieved in the drying method according to the invention mentioned in the introduction in that the temperature of the air circulating in the air circulation loop is detected upstream of the drying unit and downstream of the washing compartment. As already explained, more reasonably priced standard components can be used with otherwise unchanged control methods as a result of the lower temperature levels obtaining there.
According to an advantageous embodiment of the method, different degrees of drying can be assigned to discrete sections of the temperature profile. They can be used for the definition of a possible premature end of the drying process. Different drying results can thereby be achieved and the user offered additional selection options.
The temperature profiles of different drying processes all have a characteristic profile. This differs only minimally from those belonging to others. According to a further advantageous embodiment of the inventive method, variances in the temperature profile can be analyzed for fault control purposes. Thus if significant variances from the characteristic temperature profile arise, malfunctioning of the fan, for example, can be assumed. It can be processed into a fault message by a controller of the dishwashing machine.
The temperature profiles of the remaining washing procedures can also be detected and monitored according to the same principle. A fall in temperature during rinsing with rinse-aid can, for example, indicate the failure of an auxiliary heater, with which the air and with it the washing liquor can be additionally heated. An increase in temperature during the rinsing with rinse-aid on the other hand can likewise stem from the failure of a fan.
According to a further advantageous embodiment of the method, analysis of the recorded temperature data can be used both for control of the drying and for fault detection purposes. The effort, involved both in the device and in controlling the dishwashing machine, can thereby be reduced, in order to save costs. This is because the temperature profile detected for control of the drying procedure can at the same time be used for fault location, so that separate temperature detection as functional monitoring for the fan or the heater can be dispensed with.
The principle of the invention is further explained below on the basis of a drawing used by way of example. Wherein:
A temperature sensor according to the prior art has previously been arranged either in the absorption column 7 itself or downstream, that is between the absorption column 7 and the air-injection port 13 in section D of the air line 9. Because of the high temperatures occurring upon water absorption in the absorption column 7 the temperature sensor too had to be embodied accordingly thereupon.
An exemplary temperature profile, recorded there by a temperature sensor of this kind, is reproduced in
According to the invention an NTC resistor 15 is now arranged as a temperature sensor in section A of the air line 9 immediately downstream of intake 11. The temperature of the air measured there is already considerably cooler than upon entry into the washing compartment 1, because on the one hand it has given off energy to the items being washed and on the other hand has absorbed moisture from the dishwasher interior during the drying process. In
An exemplary temperature profile of the NTC resistor 15 is shown in
If the auxiliary heater 5 malfunctions, the temperature level falls and thus diverges increasingly from the characteristic temperature profile. This primarily affects the rinsing with rinse-aid phase, which is not shown in
The NTC resistor 17 can nevertheless also be used for functional monitoring of the fan 3, as it detects the temperature directly downstream of the fan and upstream of the two heat sources, the auxiliary heater 5 or the absorption column 7 respectively. When the fan is operating, the cooled air thus flows from the washing compartment 1 past the NTC resistor 17, and reaches the auxiliary heater 5 or absorption column 7 respectively, in which it is heated once again. If, however, the fan 3 fails, so the circulation in the air line 9 and through the washing compartment 1 comes to a halt. The absorption column 7 continues to radiate heat however. Due to lack of air flow at the NTC resistor 17 and as a result of the progressive heating of the now stationary air, the temperature at the NTC resistor 17 also rises. An exemplary profile for this is shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2007 017 284.4 | Apr 2007 | DE | national |
This application is a Divisional, under 35 U.S.C. §121, of U.S. application Ser. No. 12/531,506, filed Sep. 16, 2009, which is a U.S. national stage application of PCT/EP2008/054041 filed Apr. 3, 2008, which designated the United States; this application also claims the priority, under 35 U.S.C. §119, of German patent application No. 10 2007 017 284.4 filed Apr. 12, 2007.
Number | Date | Country | |
---|---|---|---|
Parent | 12531506 | Sep 2009 | US |
Child | 13657893 | US |