(a) Field of the Invention
The present invention is disclosed by the systems or equipments utilizing the natural thermal matrix of stable temperature such as earth layers, earth surface, water pools, lakes and rivers of the nature for air conditioning application, wherein an innovative intermediate thermal storage is installed between the natural thermal matrix and the temperature equalizer being respectively provided with the flow duct at the two ends thereof, wherein the intermediate thermal storage has both or either one of good thermal conductivity coefficient and higher unit heat capacity ratio better than the one of peripheral surrounding of the natural thermal matrix of stable temperature, the intermediate thermal storage is constituted by solid, colloidal, liquid or gaseous state material having better thermal conductivity coefficient and higher unit heat capacity ratio to absorb the thermal energy of peripheral surrounding of natural thermal matrix of stable temperature, wherein it can store more thermal energy and has a better thermal conductivity coefficient due to its characteristics of higher unit heat capacity ratio, so that it is advantageous to release larger thermal energy through the temperature equalizer to the air passing through the temperature equalizer.
(b) Description of the Prior art
The conventional room temperature adjusting systems such as air conditioners are normally driven by power to drive active temperature lowering equipments constituted by coolant compressors, while the heat of warming air is obtained by electricity or material combustions, so that for long time, the temperature adjustment of the space not only consumes huge energy, but also produces large quantity of pollutions as well as waste heat and wastes. Regarding above said disadvantages, the air conditioning applications by utilizing thermal energy of shallow earth surface layers has been increased day by day; however, as the thermal conductivity of shallow earth surface layer is comparably lower, the heat transfer is slow and the unit heat capacity ratio is lower that is disadvantageous to release maximum thermal energy in a short time thereby limiting the applications.
The temperature equalization air supply system of natural thermal energy with intermediate thermal storage mainly comprises an intermediate thermal storage which is installed between the natural thermal matrix and the temperature equalizer, wherein it is characterized in that the two ends of the temperature equalizer are respectively provided with first flow duct and second flow duct for air flow transfer, wherein temperature of the air flow passing through the temperature equalizer is regulated and transferred to the temperature regulated space thereby making the temperature regulated space obtain the thermal energy close to the one of natural thermal matrix.
As is well-known, the shallow surface layer of earth at a proper depth has a large heat capacity unaffected by surface temperature no matter in winter or summer thereby forming a shallow layer thermal storage. Similarly, sea water, lakes and rivers at certain depths also have a stable temperature and huge heat capacity, wherein said natural thermal matrix (100) of stable temperature has a huge heat capacity which is therefore unified called natural thermal matrix (100) in this application. The natural thermal matrix (100) is at relatively lower temperature in comparison with the surrounding temperature on earth surface in summer times, such as that river bottom temperature seldom exceeds over 20□ and the earth layer temperature of depth 3˜5 meters is about 18□ in summer times. For high altitude area in winter times, when the earth surface temperature is dropped to more than 10 degrees below zero, the temperature of above said natural thermal matrix (100) is still above zero degree with around 1˜7□ at water bottom and 9□ at earth layer of 5 meters depth. Therefore, it is often seen that ducts are erected between above said natural thermal matrix (100) and buildings to transport fresh air, wherein the air transmission duct is made of heat conductive material to constitute a temperature equalizer (101) thereby producing temperature equalization effect with the natural thermal matrix to perform temperature regulation on the passing air flows (as shown in
The temperature equalization air supply system of natural thermal energy with intermediate thermal storage of the present invention is an innovative design aiming to improve the above said imperfections, wherein it mainly comprises that an intermediate thermal storage is installed between natural thermal matrix and temperature equalizer, both or either one of the thermal conductivity coefficient and unit heat capacity ratio is better than the one of surrounding natural thermal matrix, wherein the air flow inlet and outlet of the temperature equalizer of intermediate thermal storage are respectively provided with a first flow duct for incoming air and a second flow duct for discharge air for the air flow transmission ducts thereby allowing the incoming fresh air delivered by first flow duct to pass through the temperature equalizer for temperature regulation, then is transferred by the second flow duct to the temperature regulated space for mixing with the indoor air inside the temperature regulated space so as to adjust the temperature in the temperature regulated space, wherein the transferred air flow is delivered by the main pump or can be further selectively delivered by an optionally installed shunt pump, and the intermediate thermal storage is installed between the natural thermal matrix and the temperature equalizer to allow the intermediate thermal storage to absorb the thermal energy of natural thermal matrix and to release heat to the temperature equalizer. Furthermore, if above said first flow duct and second flow duct for air flow transmission ducts have enough lengths to be housed inside the intermediate thermal storage, then the temperature equalizer can be omitted while the above said ducts are made of material with good thermal conductivity coefficient to be erected inside the intermediate thermal storage so as to constitute the temperature equalization function, through the additionally installed intermediate thermal storage to expand the heat transmission area with the natural thermal matrix, and further through the good unit heat capacity ratio and the better thermal conductivity coefficient to store the thermal energy from natural thermal matrix in the intermediate thermal storage with a higher density thereby promoting the thermal energy transferring effect of the air flow ducts erected inside the intermediate thermal storage or the temperature equalizer.
The innovative system has better applications at places of intermittent use, such as the building temperature adjusting air supply systems for schools, offices, or public places, or households, wherein when the system is stopped, the thermal energy of natural thermal matrix is slowly and continuously transferred to the intermediate thermal storage with better unit heat capacity ratio and heat conductivity coefficient; when the system is operating, the accumulated thermal energy in the intermediate thermal storage is released in a shorter time to quickly adjust the temperature of air flow passing through the temperature equalizer for further delivery to the temperature regulated space while the intermediate thermal storage continuously receives thermal energy from the natural thermal matrix, so that the effect of system thermal energy supply can be further promoted.
The design embodiment of the invention is described in the following:
An temperature equalizer (101): it is constituted by heat conductors having internal single flow circuit or multiple flow circuits in parallel connections, wherein one or more than one temperature equalizer (101) in series connection, parallel connection or series and parallel connection can be optionally installed inside, or integrally combined with, or neighborly combined with the intermediate thermal storage (1000), wherein the intermediate thermal storage (1000) is installed between the temperature equalizer (101) and the natural thermal matrix (100). The temperature equalizer (101) is made of material with good thermal conductivity coefficient, wherein the inside and outside heat absorbing surface and heat releasing surface appear in smooth flat surfaces or in particular intercrossed shapes, or in particular bended curvilinear structures; or the temperature equalizer (101) can be made of material with good thermal conductivity coefficient and constituted by linear or bended curve shaped flow ducting structures; or the temperature equalizer (101) can be optionally made with outwardly extended fin or column shaped heat conducting structures at the exterior thereof as needed, or is made with inwardly extended fin or column shaped heat conducting structures in the interior thereof as needed, thereby promoting the temperature absorption and release effects, wherein the temperature equalizer (101) is made with at least one inlet and at least one outlet for respectively connecting the first flow duct (102) and the second flow duct (103), etc.
The first flow duct (102): It is constituted by at least one tubular flow duct for connection to the inlet of temperature equalizer (101) for transferring air into the temperature equalizer (101) thereby allowing the air to appear approaching to the temperature of natural thermal matrix (100); wherein said air is taken from the external surrounding area of the inlet of first flow duct (102);
An intermediate thermal storage (1000): It is constituted by the temperature equalizer (101) being made of material different from the natural thermal matrix at the peripheral outside thereof, wherein it has at least one intermediate thermal storage (1000) being integrally combined, assembled or neighborly installed with the temperature equalizer (101), or being filled in between the surroundings of one or several temperature equalizers (101) in series connection, parallel connection or series and parallel connection and the natural thermal matrix (100) at the peripheral outside thereof, wherein two or more than two integral combined bodies of the temperature equalizer (101) and the intermediate thermal storage (1000) are dispersedly installed within the natural thermal matrix (100) being constituted by solid or liquid state thermal storages such as earth layers, earth surfaces, pools, lakes, rivers, deserts, ice bergs, etc. of larger stable thermal storing capacities, while both or either one of the thermal conductivity coefficient and unit heat capacity ratio of the material of intermediate thermal storage (1000) are better than the one of the peripheral outside natural thermal matrix (100) of the intermediate thermal storage (1000), wherein the intermediate thermal storage being constituted by solid, colloidal, liquid or gaseous state material can be directly installed within natural thermal matrix (100), or it can be matchingly further installed with a container type shell structure of good thermal conductivity coefficient at the peripheral outside thereof according to selected material for thermal storage, or according to structural or environmental requirements; or the mesh, screen or porous type separation structure constituted by material of good thermal conductivity coefficient can be installed to limit or separate the related positions within the space between the intermediate thermal storage (1000) and the natural thermal matrix (100) to favor heat conduction; wherein heat conducting surfaces between the above said thermal storage material, natural thermal matrix (100), and temperature equalizer (101) may appear in smooth flat surfaces or in particular intercrossed shapes, or in particular outwardly extended fin or column type structures in order to promote the heat conductivity effect, while due to characteristics of the intermediate thermal storage having better thermal conductivity coefficient and better unit heat capacity ratio, larger heat capacity of thermal energy can be stored by the intermediate thermal storage (1000) of higher unit heat capacity ratio to transfer maximum thermal energy to the temperature equalizer (101) under the conditions of same unit time and same temperature difference.
The second flow duct (103): It is constituted by at least one tubular flow duct for connection to the outlet of the temperature equalizer (101) for transferring air from at least one outlet of the temperature equalizer (101) through the at least one outlet of the second flow duct (103) to enter at least one temperature regulated space including indoors of the building or a room, the structure itself, or the open space;
A pumping device (104): The pumping device (104) is installed to connect every first flow duct (102), every second flow duct (103), or on both of the first flow duct (102) and second flow duct (103) so as to pump air through the connected first flow duct (102), the temperature equalizer (101) and the connected second flow duct (103) to enter the temperature regulated space; wherein the pumping device is constituted by the power pump driven by rotational mechanical power, or driven by the rotational electromagnetic effect of electric motor, and relevant operative control interface for on/off or flow adjustment or is constituted by a pneumatic pump driven by natural wind power or air flow of temperature difference.
The major structure of the temperature equalization air supply system of natural thermal energy with intermediate thermal storage as described above can be further optionally installed with the following relevant auxiliary devices as needed including that the hazardous gas detecting device can be optionally installed as required at the fresh air inlet and outlet; or can be further optionally installed with the filtrating device with purification function, or the flow rate adjusting device, or the hazardous gas detecting device, or the temperature detecting device or the flow meter, etc. as needed; or can be further optionally installed with the gaseous matter adding device for adding useful gases or aromatic gaseous matters as needed; or can be optionally installed with the auxiliary adjusting device, or the moisture regulating device or the water discharge device, etc; wherein the relevant auxiliary devices include:
A filtrating device (106): the filtrating device is constituted by air flow filtrating structures being capable of dismantled for dirt-removal cleaning, such as activated carbon filters to avoid piping blockage after long time use and for easy cleaning, wherein it is installed at the air suction inlet or discharge outlet and is constituted by filtrating devices including dust filtering mesh and hazardous gas filtrating devices such as filtrating devices containing activated carbons, etc.; wherein this device can be optionally installed as needed;
A flow rate adjusting device (107): The fresh air release rate can be operatively controlled by manual or mechanical power as required, wherein pumping air flow discharged by the pump can be adjusted by the adjusting device, or it can be constituted by valves or gate device to adjust air flow at the discharge outlet; wherein the device can be optionally installed as needed;
A hazardous gas detecting device (1081): It is installed at the air suction inlet and discharge outlet for detecting harmful gases to living beings such as human bodies, animals and plants or to articles in the temperature regulated space so as to send out messages; wherein this device can be optionally installed or not installed as needed;
A temperature detecting device (1082): It is installed in the temperature regulated space for detecting temperature or is installed at the air flow inlet or outlet for detecting temperature so as to send out messages; wherein this device can be optionally installed or not installed as needed;
A flow meter (1083): It is used to accumulatively calculate metering record of fresh air flow so as to display and send out messages for flow control or collecting fees, or for statistic management reference; wherein this device can be optionally installed or not installed as needed;
A gaseous or micro-powder matter adding device (1084): It is constituted by an adding device being operatively controlled by manual or mechanical power, or electric signal to send in gaseous matters beneficial to human bodies, animals or plants to the temperature regulated space, or to send in micro-powdered matters or liquid mists carried by air flow, or to send in gaseous matters, micro-powdered matters or liquid mists beneficial to the conservation of articles, or to send in smell detectable gaseous matters, micro-powdered matters, or liquid mists, wherein this device is installed at the air flow inlet or first flow duct (102), or installed at the temperature equalizer (101), or installed at the second flow duct (103), or installed at the air flow outlet, or installed at the interior or external of the temperature regulated space; this device can be optionally installed or not installed as needed;
An auxiliary adjusting device (109): If the temperature of the temperature equalizer (101) does not reach desired value, an auxiliary adjusting device (109) can be additionally installed on the route from the temperature equalizer (101) outlet via the second flow duct (103) to the outlet for entering temperature regulated space, or the auxiliary adjusting device (109) can be further installed in the temperature regulated space thereby providing adjustment on the air flow entering temperature regulated space for temperature increase or decrease; the auxiliary adjusting device (109) is constituted by an auxiliary temperature increase device with heating function, or cooling device with temperature reducing function, or temperature adjusting device with both functions, wherein this device can be optionally installed or not installed as needed;
A moisture regulating device (1090): Beside the interior of air circuit constituted by the first flow duct (102) or the second flow duct (103) and the interior of temperature equalizer (101) can be optionally coated with desiccant material, the moisture regulating device (1090) can be further installed to eliminate, reduce or increase moistures, while the moisture can be manually operated or automatically modulated through moisture detection and setting; wherein this device can be optionally installed or not installed as needed;
A water discharge device (1091): It is constituted by the pump and water discharge piping to draw out accumulated water inside the air flow circuit constituted by the first flow duct (102) or the second flow duct (103), or accumulated water inside the temperature equalizer (101); wherein this device can be optionally installed or not installed as needed;
An operative control unit (108): It is constituted by the electromechanical device, electronic circuit device, microprocessor as well as relevant software and operating interface circuits, wherein besides of the operative function of temperature adjustment and air delivery performed by the operative control system on the temperature regulated space, one or more than one functions can be added as needed, including: 1) The safety protection operative control function is through connection to the hazardous gas detecting device (1081) installed at the inlet and every discharge outlet for sending out alarm and other emergency treatments such as cutting off gas flow, etc. when hazardous gas exists and exceeds over monitored values, wherein this hazardous gas detecting device is installed at input end and output end to detect hazardous gas inside the temperature regulated space; 2) It is for connection to the temperature detecting device (1082) and the flow meter (1083) for recording fresh air flow measurements and display functions to operatively control the pumping device (104), flow rate adjusting device (107) and auxiliary adjusting device (109) so as to modulate the temperature and inlet air flow on the temperature regulated space; 3) It is used to operatively control the gaseous matter adding device (1084) to add gaseous matters beneficial to human bodies, animals or plants, or to add health care products or medicines carried by air flow, or to add gaseous matters, micro-powdered matters beneficial to conservation of articles, or to add smell detectable gases; 4) It is used to operatively control the moisture regulating device (1090) for adjusting the moisture of the first flow duct (102) at air flow inlet or in the course of transferring fluid, the temperature equalizer (101), the second flow duct (103) at air flow outlet and the temperature regulated space; 5) It is used to operatively control the water discharge device (1091) to discharge the accumulated water inside the first flow duct (102), the temperature equalizer (101) and the second flow duct (103); wherein this device can be optionally installed or not installed.
The aforesaid gaseous matter adding device (1084) of the temperature equalization air supply system of natural thermal energy with intermediate thermal storage as shown in
The temperature equalization air supply system of natural thermal energy with intermediate thermal storage can also be installed in the temperature difference environment between the temperature regulated space being installed with the conventional temperature adjusting device and the outside surrounding to constitute a gradual temperature difference type separation, including:
The required temperature by temperature regulated space is higher than the one of air flow entering temperature regulated space after passing through the temperature equalizer (101) for temperature adjustment, while when the temperature of air flow after passing through the temperature equalizer (101) is higher than the one of inlet air flow, then this system constitutes a preheating function on the air flow; or
The required temperature by temperature regulated space is lower than the one of air flow entering temperature regulated space after passing through the temperature equalizer (101) for temperature adjustment, while when the fresh air temperature after passing through the temperature equalizer (101) is lower than the one of inlet air flow, then this system constitutes a pre-cooling function on the air flow.
As terminal output air flow of the temperature equalization air supply system of natural thermal energy with intermediate thermal storage forms a positive pressure on the temperature regulated space and the environment, besides of temperature adjustment and fresh air supply, it simultaneously also possesses the following one or more than one application functions, including:
When the temperature equalization air supply system of natural thermal energy with intermediate thermal storage is applied to temperature adjustment and air change of the space, it can be further made to the following embodiments, including:
The fresh air is pumped to pass through the temperature equalizer (101) enclosed by the intermediate thermal storage (1000) being buried in, or settled to, or hung by or floated on the sea, or lakes, or water pools, or rivers or man-made water basins for providing fresh air supply to and temperature adjustment on the ship cabins or other equipments;
The fresh air is pumped to pass through the temperature equalizer (101) enclosed by the intermediate thermal storage (1000) being buried in, or settled to, or hung by and or floated on the sea, or lakes, or water pools, or rivers or man-made water basins for providing fresh air supply to and temperature adjustment on the building space on land;
The fresh air is pumped to pass through the temperature equalizer (101) enclosed by the intermediate thermal storage (1000) buried under earth layers for providing fresh air supply to and temperature adjustment on the building space on land;
The following effectiveness can be obtained from the above system:
The thermal energy of the natural thermal matrix can be further employed by the temperature equalization air supply system of natural thermal energy with intermediate thermal storage to indirectly adjust temperature of the air flow delivered to the temperature regulated space thereby achieving temperature adjustment on the indoor and outdoor spaces.
An active temperature equalizer (201): It is constituted by heat conductors having internal single flow circuit or multiple flow circuits in parallel connections, wherein one or more than one active temperature equalizer (201) in series connection, parallel connection or series and parallel connection can be optionally installed inside, or integrally combined with, or neighborly combined with the intermediate thermal storage (1000), wherein the intermediate thermal storage (1000) is installed between the active temperature equalizer (201) and the natural thermal matrix (100); the active temperature equalizer can be made of material with good thermal conductivity coefficient, wherein the inside and outside heat absorbing surface and heat releasing surface appear in smooth flat surfaces or in particular intercrossed shapes, or in particular bended curvilinear structures, or the active temperature equalizer (201) can be made of material with good thermal conductivity coefficient and constituted by linear or bended curve shaped flow piping structures, or the active temperature equalizer (201) can be optionally made with outwardly extended fin or column shaped heat conducting structures at the exterior thereof, or is made with inwardly extended fin or column shaped heat conducting structures in the interior thereof thereby promoting the temperature absorption and release effects, wherein the active temperature equalizer (201) is made with at least one inlet and at least one outlet for respectively connecting the thermal fluid transmission piping (202) and is through driving the fluid pump (204) to pump the thermal transmission fluid (203), so that the thermal transmission fluid (203) is circulated between the active temperature equalizer (201) and the passive temperature equalized body (205) for thermal energy transfer.
An intermediate thermal storage (1000): It is made of material different from the active temperature equalizer (201) and the natural thermal matrix (100) at the peripheral outside thereof, wherein it has at least one intermediate thermal storage (1000) being integrally combined, assembled or neighborly installed with the active temperature equalizer (201), or being filled in between the surroundings of one or several active temperature equalizers (201) in series connection, parallel connection or series and parallel connection and the natural thermal matrix (100) at the peripheral outside thereof, wherein when the number of the integral combined body of the active temperature equalizer (201) and the intermediate thermal storage (1000) is two or more than two, said integral combined bodies are dispersedly installed within the natural thermal matrix (100) being constituted by solid or liquid state thermal storages such as earth layers, earth surfaces, pools, lakes, rivers, deserts, ice bergs, etc. of larger stable thermal storing capacities, while both or either one of the thermal conductivity coefficient and unit heat capacity ratio of the material of the intermediate thermal storage (1000) are better than the one the peripheral outside natural thermal matrix (100) of the intermediate thermal storage (1000), wherein the intermediate thermal storage being constituted by solid, colloidal, liquid or gaseous state thermal storage material can be directly installed within the natural thermal matrix (100), or it can be matchingly further installed with a container type shell structure of good thermal conductivity coefficient at the peripheral outside thereof according to selected material for thermal storage, or according to structural or environmental requirements; or the mesh, screen or porous type separation structure constituted by material of good thermal conductivity coefficient can be installed to limit or separate the related positions within the space between the intermediate thermal storage (1000) and the natural thermal matrix (100) to favor heat conduction; wherein heat conducting surfaces between the above said thermal storage material, natural thermal matrix (100), and active temperature equalizer (201) can be in smooth flat surfaces or in particular intercrossed shapes, or in particular outwardly extended fin or column type structures in order to promote the heat conductivity effect, while due to characteristics of the intermediate thermal storage having better thermal conductivity coefficient and better unit heat capacity ratio that facilitating the absorption of thermal energy from the natural thermal matrix of stable temperature, larger heat capacity of thermal energy can be stored by the intermediate thermal storage (1000) to transfer maximum thermal energy to the active temperature equalizer (201) under the conditions of same unit time and same temperature difference.
A thermal fluid transmission piping (202): The interior of thermal fluid transmission piping (202) appearing in a closed piping circuit is filled with thermal transmission fluid (203) to be driven by the fluid pump (204) to circulate between the active temperature equalizer (201) of the intermediate thermal storage (1000) and the passive temperature equalized body (205) for thermal energy transfer;
A thermal transmission fluid (203): It is pumped by the fluid pump (204) to circulate within the thermal fluid transmission piping (202) and is flowed through the active temperature equalizer (201) of the intermediate thermal storage (1000), so that thermal energy of the intermediate thermal storage (1000) is transferred through the thermal transmission fluid (203) to the passive temperature equalized body (205), wherein the thermal transmission fluid (203) normally adopts water, or oil, or other liquids or air, or other liquid or gas of larger thermal storage to constitute the thermal transmission fluid (203);
A fluid pump (204): It is belong to the various fluid pumps driven by electric or other mechanical power including constituted by one stage or more than one stage of the fluid pump (204) for pressure increase active pumping the thermal transmission fluid (203) to circulate within the thermal fluid transmission piping (202);
A passive temperature equalized body (205): At least one passive temperature equalized body (205) is arranged to receive the thermal energy transferred from the active temperature equalizer (201) installed in the intermediate thermal storage (1000) through the thermal transmission fluid (203) inside the thermal fluid transmission piping (202); wherein one or two or more than two passive temperature equalized bodies (205) can be optionally installed as needed, and the thermal fluid transmission piping (202) of the passive temperature equalized body (205) is in series connection, parallel connection, or series and parallel connection, wherein installation positions of the passive temperature equalized body (205) can be selected to include the following: 1) The passive temperature equalized body (205) is installed in the temperature regulated space constituted by indoor space or semi-closed space or open area for releasing thermal energy to temperature regulated space for cooling or heating, wherein the exterior of the passive temperature equalized body (205) can be a smooth flat surface or can be further optionally installed with fin type structure as needed, or can be further optionally installed with air flow blowing fans; or 2) The passive temperature equalized body (205) is installed inside the temperature regulated space constituted by interior of building structure such as walls, columns, beams, floors or shallow ground layers or roof interiors, etc. to receive the thermal energy transferred by the thermal transmission fluid (203) circulated in the closed circuit for cooling or heating; or 3) The passive temperature equalized body (205) and the heat dissipator of air conditioning unit can be integrally combined for heat conduction to execute cooling or heating for temperature equalization; or 4) The passive temperature equalized body (205) and gaseous or liquid flow heat exchanger can be integrally combined for heat conduction to execute cooling or heating for temperature equalization; or 5) The passive temperature equalized body (205) and gaseous or liquid flow heat reconverter are integrally combined for heat conduction to execute cooling or heating for temperature equalization; or 6) The passive temperature equalized body (205) is installed in the tooling equipment required for operation in setting temperature range such as the structures of machine or production equipment, internal combustion or external combustion engines, transformers or rotational electrical machines, or electricity storage device, etc. or the thermal transmission fluid (203) is introduced into the temperature adjusting piping of above said tooling equipment thereby allowing the passive temperature equalized body (205) to integrally combine with the tooling equipment so as to pass through the thermal transmission fluid (203) to execute cooling or heating for temperature equalization;
A filtrating device (206): the filtrating device is constituted by thermal transmission fluid (203) filtrating structures capable of being dismantled for cleaning to avoid piping blockage after long time use and for easy cleaning, wherein it is optionally installed at the random position on the closed circuited thermal fluid transmission piping (202) as needed, such as the suction inlet or discharge outlet or middle position or multiple positions; wherein this device can be optionally installed or not installed as needed;
A flow rate adjusting device (207): The flow rate of thermal transmission fluid (203) can be operatively controlled by manual or mechanical power as required, wherein if the system is a closed fluid circulating circuit, the adjustment can be made by series modulation or parallel distributing modulation methods to modulate the flow rate of the flow rate adjusting device (207) and to further adjust the flow rate of the thermal transmission fluid (203) passing through the passive temperature equalized body so as to change the flow rate of the thermal transmission fluid (203) being transported to the temperature regulated space or the passive temperature equalized body (205) in the structured body of temperature regulated space thereby modulating the thermal energy of the passive temperature equalized body (205), and if the passive temperature equalized body (205) itself is equipped with a fluid pump (204), the release thermal energy can be adjusted by adjusting pumping capacity of the fluid pump (204); wherein this device can be optionally installed or not installed as needed;
A temperature detecting device (1082): It is installed in the temperature regulated space for detecting temperature or is installed at the air flow inlet or outlet for detecting temperature so as to send out messages; wherein this device can be optionally installed or not installed as needed;
An auxiliary adjusting device (209): If the temperature of active temperature equalizer (201) does not reach desired value, an auxiliary adjusting device (209) can be additionally installed in the temperature regulated space as shown in
An operative control unit (208): It is constituted by electromechanical device, electronic circuit device, as well as microprocessor and relevant software and operating interface circuits, wherein signals of the temperature detecting device being installed in the temperature regulated space or temperature adjusting structure, or the temperature detecting device (1082) installed within the natural thermal matrix (100) is operated manually or operatively controlled by electric or mechanical power to operatively control the operation of the fluid pump (204) and the flow rate adjusting device (207); wherein this device can be optionally installed or not installed as needed.
The system constituting methods for the embodiments described in
The intermediate thermal storage (1000) is buried in, or settled to, or hung by or floated on the sea, or lakes, or water pools, or rivers or man-made water basins; the active temperature equalizer (201) is installed inside, or integrally combined with, or neighborly combined with the intermediate thermal storage (1000); the fluid inlet and outlet of the active temperature equalizer (201) is provided with the thermal fluid transmission piping (202) being extended to the main building structure on land or to indoor or outdoor spaces of the building, or the passive temperature equalized body (205) on the earth surface thereby constituting a closed circuit, and it is through thermal transmission fluid (203) being pumped by the fluid pump (204) for closed circuit temperature adjustment on the indoor or outdoor space of the building, or the passive temperature equalized body (205) on the earth surface;
The active temperature equalizer (201) is enclosed or integrally combined with, or neighborly combined with the intermediate thermal storage (1000) buried under earth layers; the fluid inlet and outlet ends of the active temperature equalizer (201) are provided with the thermal fluid transmission piping (202) being extended to the main building structure on land or to indoor or outdoor spaces of the building, or the passive temperature equalized body (205) on the earth surface thereby constituting a closed circuit, and it is through thermal transmission fluid (203) being pumped by the fluid pump (204) for closed circuit temperature adjustment on the main building structure on land, the indoor or outdoor space of the building, or the passive temperature equalized body (205) on the earth surface.
Regarding the temperature equalization air supply system of natural thermal energy with intermediate thermal storage as shown in
The intermediate thermal storage (1000) constituted by solid state or colloidal type material as shown in
The intermediate thermal storage (1000) is constituted by a closeable shell (1001) filled with liquid or gaseous state, colloidal type or solid state material as shown in
Said closeable shell (1001) can be further disposed with at least one fluid inflow passage (111) and at least one fluid outflow passage (112) for fluids flowing in and out, so as the fluids inside the closeable shell (1001) are continuously replaced by currents such as from piped water or other water supply system, or from water sources in nature, thus to keep the temperature difference; the fluid inflow passage (111), or the fluid outflow passage (112) of the closeable shell (1001) can be disposed as required with one or more than one of the auxiliary device as follows for managing and manipulating in practical applications, including:
The closeable shell (1001) can be optionally constituted by material of good thermal conductivity coefficient, or constituted by the buildings or made of material of non-particularly selected thermal conductivity coefficient as needed; or
The intermediate thermal storage (1000) constituted by an upward open tank type shell body (1002) with liquid state colloidal type or solid state material inside as shown in
Said upward open tank type shell body (1002) can be further disposed with at least one fluid inflow ditch (113) or fluid inflow passage (111) and at least one fluid outflow ditch (114) or fluid outflow passage (112) for fluids flowing in and out, so as the fluids inside the upward open tank type shell body (1002) are continuously replaced by currents such as from piped water or other water supply system, or from water sources in nature, thus to keep the temperature difference; the fluid inflow passage (111), or the fluid outflow passage (112), or the fluid inflow ditch (113), or the fluid outflow ditch (114) of the upward open tank type shell body (1002) can be disposed as required with one or more than one of the auxiliary device as follows for managing and manipulating in practical applications, including:
The upward open tank type shell body (1002) can be optionally constituted by material of good thermal conductivity coefficient, or constituted by the buildings or made of material of non-particularly selected thermal conductivity coefficient as needed; or
The intermediate thermal storage (1000) constituted by multiple powders like or multiple blocks like solids as shown in
The intermediate thermal storage (1000) constituted by multiple powders like or multiple blocks like solids being enclosed by a mesh type structure (1003) as shown in
The intermediate thermal storage (1000) constituted by multiple powders like or multiple blocks like solids being enclosed by a porous type structure (1004) as shown in
The intermediate thermal storage (1000) constituted by multiple powders like or multiple blocks like solids being enclosed by a screen type structure (1005) as shown in
In considering the manufacturing and designing costs for promoting heat conduction effect between the intermediate thermal storage (1000) and the natural thermal matrix (100), an auxiliary radial type heat conduction device (2000) can be installed in plane direction (2D) or 3D direction (3D) or perpendicular direction between the intermediate thermal storage (1000) and the natural thermal matrix (100) to promote thermal energy transfer effect, wherein the methods of installation include:
An auxiliary radial type heat conduction device (2000): It is made of material with good thermal conductivity coefficient having at least one column, flake or fin type heat conducting structures outwardly extended in plane direction (2D) or 3D direction (3D) or perpendicular direction, wherein the auxiliary radial type heat conduction device (2000) can be a solid structure or a hollow structure containing internal heat conducting fillers or heat pipe structures to be installed between the intermediate thermal storage (1000) and the natural thermal matrix (100);
Said auxiliary radial type heat conduction device (2000) can be further replaced by a hollow structure containing internal heat conducting fillers or heat pipe structures, wherein as shown in
The installation methods for the auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures shown in the embodiment of
If the intermediate thermal storage (1000) is directly installed between the natural thermal matrix (100) and the temperature equalizer (101), then the auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures is extendedly installed between the intermediate thermal storage (1000) and the natural thermal matrix (100) in plane direction (2D) or 3D direction (3D) or perpendicular direction, as well as extendedly to the inside of the intermediate thermal storage (1000) and the natural thermal matrix (100) in plane direction (2D) or 3D direction (3D) or perpendicular direction, to promote the thermal energy transfer effect;
If the intermediate thermal storage (1000) is installed with a container type shell structure of good thermal conductivity coefficient, or a mesh, screen or porous type separation structure of good thermal conductivity coefficient, then an auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures can be combined with a container type shell structure of good thermal conductivity coefficient or combined with a mesh, screen or porous type separation structure of good thermal conductivity coefficient, wherein the auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures is installed in plane direction (2D) or 3D direction (3D) or perpendicular direction facing to both or either of the intermediate thermal storage (1000) and the natural thermal matrix (100) to promote the heat transfer effect;
The temperature equalization air supply system of natural thermal energy with intermediate thermal storage as shown in the embodiments of
As shown in
As shown in
Said closeable shell (1001) can be further disposed with at least one fluid inflow passage (111) and at least one fluid outflow passage (112) for fluids flowing in and out, so as the fluids inside the closeable shell (1001) are continuously replaced by currents such as from piped water or other water supply system, or from water sources in nature, thus to keep the temperature difference; The fluid inflow passage (111), or the fluid outflow passage (112) of the closeable shell (1001) can be disposed as required with one or more than one of the auxiliary device as follows for managing and manipulating in practical applications, including:
The closeable shell (1001) can be optionally constituted by material of good thermal conductivity coefficient, or constituted by the buildings or made of material of non-particularly selected thermal conductivity coefficient as needed; or
As shown in
Said upward open tank type shell body (1002) can be further disposed with at least one fluid inflow ditch (113) or fluid inflow passage (111) and at least one fluid outflow ditch (114) or fluid outflow passage (112) for fluids flowing in and out, so as the fluids inside the upward open tank type shell body (1002) are continuously replaced by currents such as from piped water or other water supply system, or from water sources in nature, thus to keep the temperature difference; The fluid inflow passage (111), or the fluid outflow passage (112), or the fluid inflow ditch (113), or the fluid outflow ditch (114) of the upward open thank type shell body (1002) can be disposed as required with one or more than one of the auxiliary device as follows for managing and manipulating in practical applications, including:
The upward open tank type shell body (1002) can be optionally constituted by material of good thermal conductivity coefficient, or constituted by the buildings or made of material of non-particularly selected thermal conductivity coefficient as needed; or
As shown in
As shown in
As shown in
As shown in
The aforesaid temperature equalization air supply system of natural thermal energy with intermediate thermal storage as shown in the embodiments of
In considering the manufacturing and designing costs for promoting heat conduction effect between the intermediate thermal storage (1000) and the natural thermal matrix (100), an auxiliary radial type heat conduction device (2000) can be installed in plane direction (2D) or 3D direction (3D) or perpendicular direction between the intermediate thermal storage (1000) and the natural thermal matrix (100) to promote thermal energy transfer effect, wherein the methods of installation include:
An auxiliary radial type heat conduction device (2000): It is made of material with good thermal conductivity coefficient having at least one column, flake or fin type heat conducting structures outwardly extended in planetary direction (2D) or 3D direction (3D) or perpendicular direction, wherein the auxiliary radial type heat conduction device (2000) can be a solid structure or a hollow structure containing internal heat conducting fillers or heat pipe structures to be installed between the intermediate thermal storage (1000) and the natural thermal matrix (100);
Said auxiliary radial type heat conduction device (2000) can be further replaced by a hollow structure containing internal heat conducting fillers or heat pipe structures, wherein as shown in
The installation methods for the auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures shown in the embodiment of
If the intermediate thermal storage (1000) is directly installed between the natural thermal matrix (100) and the active temperature equalizer (201), then the auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures is extendedly installed between the intermediate thermal storage (1000) and the natural thermal matrix (100) in plane direction (2D) or 3D direction (3D) or perpendicular direction, as well as extendedly to the inside of the intermediate thermal storage (1000) and the natural thermal matrix (100) in plane direction (2D) or 3D direction (3D) or perpendicular direction, to promote the thermal energy transfer effect;
If the intermediate thermal storage (1000) is installed with a container type shell structure of good thermal conductivity coefficient, or a mesh, screen or porous type separation structure of good thermal conductivity coefficient, then an auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures can be combined with a container type shell structure of good thermal conductivity coefficient or combined with a mesh, screen or porous type separation structure of good thermal conductivity coefficient, wherein the auxiliary radial type heat conduction device (2001) of a hollow structure containing internal heat conducting fillers or heat pipe structures (100) is installed in plane direction (2D) or 3D direction (3D) or perpendicular direction facing to both or either of the intermediate thermal storage (1000) and natural thermal matrix to promote the heat transfer effect.
The various constitutions and installing methods for the intermediate thermal storage as disclosed in the embodiments of above
Through above described system, only the fixed equipment cost of installation and energy for succeeding pumping power are needed to obtain the temperature adjustment function on the particular space, so that a huge amount of energy can be saved.
The intermediate thermal storage (1000) and the temperature equalizer (101) of the temperature equalization air supply system of natural thermal energy with intermediate thermal storage can be integrally combined, assembled or neighborly installed, or filled in the surroundings of one or several temperature equalizers (101) in series connection, parallel connection or series and parallel connection thereby forming a integral combined device; wherein the temperature equalizer (101) is constituted by heat conductors with internal single flow circuit or multiple flow circuits in parallel connections, and one or more than one temperature equalizers (101) in series connection, parallel connection or series and parallel connection can be installed inside, or integrally combined with, or neighborly combined with the intermediate thermal storage (1000) for installation within the natural thermal matrix (100), wherein
An temperature equalizer (101): It is made of material with good thermal conductivity coefficient, wherein the inside and outside heat absorbing surface and heat release surface appear in smooth flat surfaces or in particular intercrossed shapes, or in particular bended curvilinear structures; or the temperature equalizer (101) can be made of material with good thermal conductivity coefficient and constituted by linear or bended curve shaped flow ducting structures; or the temperature equalizer (101) can be optionally made with outwardly extended fin or column shaped heat conducting structures at the exterior thereof as needed, or is made with inwardly extended fin or column shaped heat conducting structures in the interior thereof as needed, thereby promoting the temperature absorption and release effects, wherein the temperature equalizer is made with at least one inlet and at least one outlet for respectively connecting the first flow duct (102) and the second flow duct (103), etc.;
At least one intermediate thermal storage (1000) being constituted by solid, colloidal, liquid or gaseous state thermal storage material is integrally combined, assembled or neighborly installed with the temperature equalizer (101), or filled in the surroundings of one or several temperature equalizers (101) in series connection, parallel connection or series and parallel connection, wherein the thermal conductivity coefficient and the unit heat capacity ratio of the material of the intermediate thermal storage (1000) are better than the ones of the natural thermal matrix (100) being constituted by solid or liquid state thermal storages such as earth layers, earth surfaces, pools, lakes, rivers, deserts, ice bergs, etc.;
The intermediate thermal storage (1000) can be directly installed with the temperature equalizer (101) or it can be matchingly further installed with a container type shell structure of good thermal conductivity coefficient at the peripheral outside thereof according to selected material for intermediate thermal storage (1000), or according to structural or environmental requirements; or the mesh, screen or porous type separation structure constituted by material of good thermal conductivity coefficient can be installed to limit or separate the related positions within the space between the intermediate thermal storage (1000) and the natural thermal matrix (100);
The heat conducting surfaces between the intermediate thermal storage (1000), the natural thermal matrix (100), and the temperature equalizer appear in smooth flat surfaces or in particular intercrossed shapes, or in particular outwardly extended fin or column type structures in order to promote the heat conductivity effect, wherein the intermediate thermal storage having both or either one of the better thermal conductivity coefficient and better unit heat capacity ratio than the ones of the outside surrounding natural thermal matrix (100) of stable temperature, larger heat capacity of thermal energy can be stored by the intermediate thermal storage (1000) of higher unit heat capacity ratio to transfer maximum thermal energy to the temperature equalizer (101) under the conditions of same unit time and same temperature difference.
The intermediate thermal storage (1000) and the active temperature equalizer (201) of the temperature equalization air supply system of natural thermal energy with intermediate thermal storage can be integrally combined, assembled or neighborly installed, or can be filled in the surroundings of one or several active temperature equalizers (201) in series connection, parallel connection or series and parallel connection at the peripheral outside thereby constituting the integral combined body, and the active temperature equalizer (201) is constituted by heat conductors with internal single flow circuit or multiple flow circuits in parallel connections, and one or more than one active temperature equalizer (201) in series connection, parallel connection or series and parallel connection can be installed inside, or integrally combined with, or neighborly combined with the intermediate thermal storage (1000) for installation within the natural thermal matrix (100), wherein;
The active temperature equalizer (201) can be made of material with good thermal conductivity coefficient, wherein its inside and outside heat absorbing surface and heat release surfaces appear in smooth flat surfaces or in particular intercrossed shapes, or in particular bended curvilinear structures; or it can be made of material with good thermal conductivity coefficient and constituted by linear or bended curve shaped flow piping structures, and the active temperature equalizer (201) can be optionally made with outwardly extended fin or column shaped heat conducting structures at the exterior thereof, or is made with inwardly extended fin or column shaped heat conducting structures in the interior thereof thereby promoting the temperature absorption and release effects, wherein the active temperature equalizer (201) is made with at least one inlet and at least one outlet for respectively connecting with the first flow duct (102) and second flow duct (103);
At least one intermediate thermal storage (1000) being constituted by solid, colloidal, liquid or gaseous state thermal storage material is integrally combined, assembled or neighborly installed with the active temperature equalizer (201), or filled in the surroundings of one or several active temperature equalizers (201) in series connection, parallel connection or series and parallel connection, wherein thermal conductivity coefficient and unit heat capacity ratio of the material of intermediate thermal storage (1000) are better than the ones of the natural thermal matrix (100) being constituted by solid or liquid state thermal storages such as earth layers, earth surfaces, pools, lakes, rivers, deserts, ice bergs, etc.;
The intermediate thermal storage (1000) can be directly installed with the active temperature equalizer (201) or it can be matchingly further installed with a container type shell structure of good thermal conductivity coefficient at the peripheral outside thereof according to selected material for intermediate thermal storage (1000), or according to structural or environmental requirements; or the mesh, screen or porous type separation structure constituted by material of good thermal conductivity coefficient can be installed to limit or separate the related positions within the space between the intermediate thermal storage (1000) and the natural thermal matrix (100);
The heat conducting surfaces between the intermediate thermal storage (1000), the natural thermal matrix (100), and the temperature equalizer appear in smooth flat surfaces or in particular intercrossed shapes, or in particular outwardly extended fin or column type structures in order to promote the heat conductivity effect, wherein the intermediate thermal storage having both or either one of the better thermal conductivity coefficient and better unit heat capacity ratio than the ones of the outside surrounding natural thermal matrix (100) of stable temperature, larger heat capacity of thermal energy can be stored by the intermediate thermal storage (1000) of higher unit heat capacity ratio to transfer maximum thermal energy to the active temperature equalizer (201) under the conditions of same unit time and same temperature difference.
Regarding this temperature equalization air supply system of natural thermal energy with intermediate thermal storage, said gaseous material adding device (1084) not only can be used in the applications for temperature equalization air supply system of natural thermal energy of intermediate thermal storage, but can also be used in the applications for conventional temperature equalization air supply system of natural thermal energy without intermediate thermal storage, or used as the air supply system for indoor space air supplies such as general breeding warm rooms or warehouses, so as to send in gaseous matters beneficial to human bodies, animals or plants, or to send in micro-powdered matters or liquid mists carried by air flow, or to send in gaseous matters, micro-powdered matters or liquid mists beneficial to conservation of articles, or to send in smell detectable gaseous matters, micro-powdered matters, or liquid mists.
If the natural thermal matrix (100) or the intermediate thermal storage (1000) in the temperature equalization air supply system of natural thermal energy with intermediate thermal storage are constituted by liquid or gaseous state material, then a fluid mixing pump (214) can be further installed to enhance the thermal energy transfer effect, wherein gas or liquid from the natural thermal matrix (100) is pumped to pass through the intermediate thermal storage (1000) thereby enhancing the thermal energy transfer effect between the natural thermal matrix (100) and the intermediate thermal storage (1000); or the gaseous or liquid material of the intermediate thermal storage (1000) is pumped by the fluid mixing pump (214) to pass through the temperature equalizer (101) or to pass through the active temperature equalizer (201) thereby enhancing the thermal energy transfer effect of the intermediate thermal storage (1000) on the temperature equalizer (101) or on the active temperature equalizer (201);
Naturally, the method for the natural thermal matrix (100) constituted by gaseous or liquid state material being pumped by the fluid mixing pump (214) can also be applied to the conventional system that the temperature equalizer (101) or the active temperature equalizer (201) being directly installed within the natural thermal matrix (100), wherein when the natural thermal matrix (100) is constituted by gaseous or liquid state material, the gaseous or liquid material flow of the natural thermal matrix (100) is pumped by the fluid mixing pump (214) to circulate through the temperature equalizer (101), or through the active temperature equalizer (201) so as to enhance the thermal energy transfer effect by the natural thermal matrix (100) on the temperature equalizer (101), or on the active temperature equalizer (201), etc.
As summarized from above descriptions, the system is through the utilization of thermal energy of the natural thermal matrix being combined with the intermediate thermal storage to constitute the temperature adjusting system, wherein the thermal energy for temperature adjustment from the nature is returned to the nature, so that in comparing with conventional air conditioning systems such as air conditioners, the latter one not only consumes huge energy but its produced waste heat also forms secondary pollutions; further, its usage of CFC also causes damages to the ozone layer and its supplied air quality and quantity are both limited. Contrarily, the present invention is perfectly natural comprising relevant devices utilizing only the matured components, therefore its usefulness and innovativeness are quite obvious, and your approval on this patent application according to law is greatly expected and appreciated.
This application is a Continuation-In-Part of U.S. patent application, Ser. No. 12/149,967, filed May 12, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 12149967 | May 2008 | US |
Child | 12222816 | US |