The present invention relates to sensors for continuous monitoring of temperature gradients being developed over an object's surface and specifically to medical sensors for monitoring development of cutaneous or subcutaneous thermogenic inflammations. It is based on U.S. Provisional Patent Application No. 60/615,388 filed on Oct. 4, 2004.
Detection of temperature gradients in industrial applications may help to uncovers troublesome conditions that are manifested in increased heat production or heat conduction at a specific surface of a machinery or equipment. Examples include measuring hot spots in engines where excessive friction results in heat production. This condition should be detected before it may cause a damage.
In medical applications, subcutaneous and even cutaneous injuries or inflammations may lead to pyrogenic processes. In other words, surface temperature increases with infection or injury. In veterinary medicine, detection of a horse leg temperature has been used for many years to identify internal injuries without a need to employ X-ray or other imaging devices. A common method in both industry and medicine has been use of infrared imaging equipment or just infrared thermometers. An example is a temperature scanner of U.S. Pat. No. 4,797,840 issued to Fraden. That and similar scanners are moved over the object of interest and remotely detect changes in intensity of infrared (IR) emission from the surface. The IR emission is stronger from a warmer surface and thus is an indicator of the surface temperature increase and subsequently of an increased heat production or conduction.
When employed with stationary objects, the IR thermometers or imagers can be optically aimed at the area of interest and provide continuous monitoring. However, when the equipment is moving, or ambient conditions are not suitable for the IR monitoring, or, in medicine, when a continuous monitoring is required from a patient's body surface, this method is impractical. It would be highly desirable to provide a simple detector that could be attached to a surface of interest and on a continuous basis to provide a signal indicative of an increased heat production. Particularly in medicine, this may be used during thermal treatments of subcutaneous tissues, in wound dressings to detect onsets of inflammation and other applications where thermal gradient may develop between different areas on the skin.
It is therefore an object of this invention to provide a contact sensor for detecting thermal gradient over a surface.
It is another object of the invention to provide a thermal gradient sensor that substantially is not responsive to absolute temperature of the surface and responsive to a spatial thermal gradient.
Another object of the invention is to provide a temperature gradient detector that is simple, inexpensive to produce, doesn't require calibration, has long shelf life and can be sterilized without degrading its' performance.
An another object of this invention is to provide a medical skin cover that detects heat production and transmits a signal to a remote monitor.
The present invention employs a grid of thermoelectric wires imbedded into a carrier or body patch. The thermoelectric wires form a thermopile with “hot” junctions distributed over the central section of the body patch, while the “cold” junctions” are positioned at the periphery of the patch. The thermopile is connected to an amplifier and subsequently to a threshold detector. Crossing a threshold activates a radio transmitter that sends a signal to a remote receiver.
Several methods of a contact detection of thermal gradients are known in art. Some are based on use of absolute temperature sensors such as thermistors or RTDs, some use the IR emission detectors. However, temperature detectors belonging to a class of relative sensors appear to be more suitable for the task. A relative sensor by definition responds to a temperature difference between different parts of the sensor. The most popular is a sensor based on a thermoelectric effect, better known as a thermocouple. The variance of a thermocouple is a thermopile which is a serially connected multiple thermocouple junctions. Thermopiles are better known by their designs used for the mid and far infrared detection (See J. Fraden, Handbook of Modern Sensors. Springer Verlag. 3rd ed., 2004). A thermopile was originally invented by Joule for the purpose of increasing the output signal of a thermocouple. Each thermocouple consists of two dissimilar conductors which are joined together at two junctions—one is often called “hot” and the other is called “cold”. In a thermopile, all hot and all cold junctions are electrically connected. Separating spatially the hot and cold junctions may be used for detection of warm or cold spots within the respective areas. This works even if not all but as little as just one junction of a thermopile is exposed to a thermal anomaly.
When at least one active junction in a chain is subjected to an elevated or reduced temperature with respect to other junctions, thermally induced voltage will appear between terminals 5 and will be amplified by electronic amplifier 20. Unlike in a traditional thermopile where respectively all hot junctions and all cold junctions are thermally coupled with one another, the hot and cold junctions of this invention need to be separated from one another and spread over wider monitored areas 17 and 18 respectively. Within each such area, the combined thermoelectric voltage represents the average temperature of many junctions, thus the output signal from amplifier 20 represents an average thermal gradient between areas 18 plus 18′ and 17. The hot or cold junctions do not need to be subjected to the same respective temperatures as in traditional thermopiles. In fact, just one of the “hot” junctions need to be over the warm spot to produce a useful signal.
The application of the device is illustrated in a medical wound dressing patch 40 shown in
The thermocouple wires are imbedded into the body of patch 40 in such a manner as to form most or all “cold” junctions 80 (white spots) over peripheral area 16 and to form all “hot” junctions 70 (black spots) over active area 15. For the illustration, only five pairs of junctions are shown. However, there is no limitation on the number of pairs. For the monitoring, terminal 51 is electrically attached to a reference potential, for example, to chassis 19, while terminal 52 is connected to an input of amplifier 20. The thermopile sensor generates a rather small signal. It can be as little as 50 microvolts per degree C. of a gradient. Amplifier 20 should have a low offset voltage and a substantial voltage gain, typically over 100, so its output voltage can be applied to a threshold circuit 21. When the amplified voltage exceeds a predetermined level due to a thermal gradient, threshold circuit 21 will generate indicating signal applied to transmitter 22. The entire electronic circuit in the patch is designated by number 26. The transmitter may be of any kind ranging from a simple wire connection to a radio transmitter. If it is a radio transmitter, it will generate an RF signal in its transmitting antenna 23. The signal will be received by a remote receiving antenna 25 and processed by receiving unit 24.
A side view of patch 40 is shown in
In some applications, a remote transmission of the signal may not be required. Then, patch 32 (
Still, the same function to detect a thermal gradient inside a wound dressing patch may be achieved by use of the absolute temperature sensors, like thermistors as illustrated in
While the above description contains several specifics, these specifics should not be construed as limitations on the scope of the invention, but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations that are within the scope and spirit of the invention.
Number | Date | Country | |
---|---|---|---|
60615388 | Oct 2004 | US |