Temperature management system with assist mode for use with heart-lung machine

Information

  • Patent Grant
  • 7867266
  • Patent Number
    7,867,266
  • Date Filed
    Monday, November 13, 2006
    18 years ago
  • Date Issued
    Tuesday, January 11, 2011
    13 years ago
Abstract
A system and method uses both a heart-lung machine (HLM) and a catheter and/or pad to reach a target temperature for, e.g., cardiac bypass surgery. At or about the target temperature, temperature control of the catheter/pad is suspended and patient temperature controlled using only the HLM.
Description
FIELD OF THE INVENTION

The present invention relates generally to patient temperature control systems.


BACKGROUND OF THE INVENTION

It has been discovered that the medical outcome for a patient suffering from severe brain trauma or from ischemia caused by stroke or heart attack or cardiac arrest is improved if the patient is cooled below normal body temperature (37° C.). Furthermore, it is also accepted that for such patients, it is important to prevent hyperthermia (fever) even if it is decided not to induce hypothermia. Moreover, in certain applications such as post-CABG surgery, it might be desirable to rewarm a hypothermic patient.


As recognized by the present invention, the above-mentioned advantages in regulating temperature can be realized by cooling or heating the patient's entire body. Moreover, the present invention understands that since many patients already are intubated with central venous catheters for other clinically approved purposes anyway such as drug delivery and blood monitoring, providing a central venous catheter that can also cool or heat the blood requires no additional surgical procedures for those patients. The following U.S. patents, all of which are incorporated herein by reference, disclose various intravascular catheters/systems/methods: U.S. Pat. Nos. 6,749,625, 6,786,916, 6,581,403, 6,454,792, 6,436,130, 6,146,411, 6,109,783, 6,419,643, 6,416,533, 6,409,747, 6,405,080, 6,393,320, 6,368,304, 6,338,727, 6,299,599, 6,290,717, 6,287,326, 6,165,207, 6,149,670, 6,146,411, 6,126,684, 6,306,161, 6,264,679, 6,231,594, 6,149,676, 6,149,673, 6,110,168, 5,989,238, 5,879,329, 5,837,003, 6,383,210, 6,379,378, 6,364,899, 6,325,818, 6,312,452, 6,261,312, 6,254,626, 6,251,130, 6,251,129, 6,245,095, 6,238,428, 6,235,048, 6,231,595, 6,224,624, 6,149,677, 6,096,068, 6,042,559, and U.S. patent application Ser. No. 10/355,776. Less optimally, surface cooling can be used. U.S. Pat. Nos. 6,827,728, 6,818,012, 6,802,855, 6,799,063, 6,764,391, 6,692,518, 6,669,715, 6,660,027, 6,648,905, 6,645,232, 6,620,187, 6,461,379, 6,375,674, 6,197,045, and 6,188,930 (collectively, “the external pad patents”), all of which are incorporated herein by reference, disclose such surface cooling systems. In both intravascular catheters and external pad systems, coolant such as a gas or saline is circulated through the heat exchange element.


Regardless of the particular heat exchange element that is engaged with the patient, as understood herein it may be advantageous to use such a system during surgical procedures to control patient temperature. As further understood herein, some procedures may employ another component such as a heart-lung machine (HLM) that can also function to control patient temperature. The present invention understands that during such procedures, a primary temperature control system such as those disclosed in the above patents can be used to assist the other component, e.g., the HLM, in reducing patient temperature to a very low level. However, as further recognized herein it is important to avoid the control processor of one system from “fighting” the control processor of the other system during such assist procedures.


SUMMARY OF THE INVENTION

A method includes engaging a heat exchange element with a patient. The heat exchange element is coupled to a primary control system for controlling patient temperature. The method also includes engaging a component such as a heart lung machine (HLM) with the patient for, e.g., cardiac bypass surgery, with the component also controlling patient temperature. The primary control system is used to assist the component in establishing a target patient temperature. Then, at or about target temperature being reached, temperature control functions of the primary control system are suspended so that only the component controls patient temperature.


The heat exchange element can include an intravascular catheter and/or a pad applied externally to a patient's skin.


In another aspect, a system for exchanging heat with primary coolant flowing through a patient-engageable heat exchange element includes a processor executing logic including receiving a target temperature signal, and resetting a low temperature alarm setpoint based on the target temperature signal.


In still another aspect, a method includes engaging a heart-lung machine (HLM) with a patient and engaging a heat exchange element that is not part of the HLM with the patient. The method further includes using both the HLM and heat exchange element to approach a target patient temperature. The method also includes at or about the target temperature, suspending temperature control of the heat exchange element and controlling patient temperature using only the HLM.


The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram showing two heat exchange modalities for use of one or both as “primary” temperature control systems that may be used to assist another component, such as a HLM, in controlling patient temperature; and



FIG. 2 is a flow chart of the present logic.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to FIG. 1, a system is shown, generally designated 10, that may include a heat exchange catheter 12 that is in fluid communication with a catheter temperature control system 14 that includes a processor 15 executing logic described in one or more of the patents referenced herein and also described further below in reference to FIG. 2.


In accordance with present principles, the system 10 can be used to induce therapeutic hypothermia in a patient 16 using a catheter in which coolant such as but not limited to saline circulates in a closed loop, such that no coolant enters the body. While certain preferred catheters are disclosed below, it is to be understood that other catheters can be used in accordance with present principles, including, without limitation, any of the catheters disclosed in the following U.S. patents, all incorporated herein by reference: U.S. Pat. Nos. 5,486,208, 5,837,003, 6,110,168, 6,149,673, 6,149,676, 6,231,594, 6,264,679, 6,306,161, 6,235,048, 6,238,428, 6,245,095, 6,251,129, 6,251,130, 6,254,626, 6,261,312, 6,312,452, 6,325,818, 6,409,747, 6,368,304, 6,338,727, 6,299,599, 6,287,326, 6,126,684. The catheter 12 may be placed in the venous system, e.g., in the superior or inferior vena cava. Examples of non-limiting control systems 14 are shown in U.S. Pat. Nos. 6,786,916, 6,581,403, 6,454,792, 6,436,130, 6,146,411, and 6,109,783, incorporated herein by reference.


Instead of or in addition to the catheter 12, the system 10 may include one or more pads 18 that are positioned against the external skin of the patient 16 (only one pad 18 shown for clarity). The pad 18 may be, without limitation, any one of the pads disclosed in the external pad patents. The temperature of the pad 18 can be controlled by a pad controller 20 with processor 22 in accordance with principles set forth in the external pad patents to exchange heat with the patient 16, including to induce therapeutic mild (32° C.-35° C.) or moderate hypothermia in the patient in response to the patient presenting with, e.g., cardiac arrest, myocardial infarction, stroke, high intracranial pressure, traumatic brain injury, or other malady the effects of which can be ameliorated by hypothermia. The control systems 14, 20 may be implemented by a single system having one or more processors for executing temperature control algorithms in accordance with the referenced patents.


One or both of the primary control systems 14, 20 may be used during, e.g., a surgical procedure such as cardiac bypass surgery that might employ a component such as but not limited to a heart-lung machine (HLM) 24 with component processor 26 that happens to control blood temperature extracorporeally, in addition to other functions it might perform such as blood oxygenation. During some of these procedures it might happen to be desirable to cool the patient to temperatures (e.g., fifteen degrees Centigrade) far lower than those normally used for therapeutic hypothermia (e.g., mild hypothermia temperatures). As recognized herein, one or both of the primary control systems 14, 20 can be used to assist the HLM 24 in lowering patient temperature. It should be understood that while for simplicity the discussion below relates to using only the primary control system 14 with catheter 12 to assist the HLM 24, one or both of the primary control systems 14, 20 can be used to assist the HLM 24.


Now referring to FIG. 2, at block 28 a user manipulates controls on the primary system 14 to cause the system 14 to enter the assist mode, in which target temperature is set at block 30. Because target temperature in procedures that might require very low patient temperatures, the low temperature alarm of the system 14, normally set around thirty two degrees C. or so, is reset at block 32 to be “C” degrees (e.g., two) below the target temperature set at block 30. Consistent with the reset of the low temperature alarm setpoint, a warning can be displayed on the system 14 at block 34 to the effect that patient health can be compromised at such low temperatures. Once target temperature is substantially reached, to avoid the primary control system processor 22 counteracting the temperature control efforts of the HLM processor 26, at block 36 the temperature control functions of the primary system processor 22 are suspended, so that only the HLM 24 controls patient temperature once target temperature is reached.


While the particular TEMPERATURE MANAGEMENT SYSTEM WITH ASSIST MODE FOR USE WITH HEART-LUNG MACHINE is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims.

Claims
  • 1. A system for exchanging heat with primary coolant flowing through a patient-engageable heat exchange element, the system having a nominal low temperature alarm setpoint that is substantially at a low end of a temperature range of mild hypothermia, the system comprising: a processor executing logic comprising:determining that the system is in an assist mode for assisting another component in reducing patient temperature;receiving a target temperature signal representing a temperature below the nominal low temperature alarm setpoint; andresetting the low temperature alarm setpoint to be below the target temperature signal responsive to a determination that the system is in the assist mode.
  • 2. The system of claim 1, wherein the logic executed by the processor further comprises: establishing primary coolant temperature to approach a target temperature indicated by the target temperature signal; andat or about target temperature, suspending control of primary coolant temperature.
  • 3. The system of claim 1, wherein the heat exchange element is an intravascular catheter.
  • 4. A Method comprising: engaging an intravascular heat exchange catheter with the vasculature of a patient receiving treatment from a heart-lung machine;controlling temperature of working fluid through the heat exchange catheter by using a heat exchange system having a low temperature alarm setpoint of around thirty two degrees C.;selecting an assist mode of the heat exchange system wherein the heat exchange system assists the heart-lung machine to reduce patient temperature;receiving a target temperature below the low temperature alarm setpoint;responsive to receiving the target temperature and to a determination that the system is in the “assist” mode, resetting the low temperature alarm setpoint to a value below the target temperature.
US Referenced Citations (202)
Number Name Date Kind
5011469 Buckberg et al. Apr 1991 A
5207640 Hattler May 1993 A
5230862 Berry et al. Jul 1993 A
5271743 Hattler Dec 1993 A
5450516 Pasquali et al. Sep 1995 A
5470659 Baumgart et al. Nov 1995 A
5725949 Pasquail et al. Mar 1998 A
5735809 Gorsuch Apr 1998 A
5755690 Saab May 1998 A
5837003 Ginsburg Nov 1998 A
5876667 Gremel et al. Mar 1999 A
5879329 Ginsburg Mar 1999 A
5989238 Ginsburg Nov 1999 A
6004289 Saab Dec 1999 A
6019783 Philips Feb 2000 A
6042559 Dobak Mar 2000 A
6096068 Dobak Aug 2000 A
6110168 Ginsburg Aug 2000 A
6126684 Gobin Oct 2000 A
6146411 Noda Nov 2000 A
6149670 Worthen Nov 2000 A
6149673 Ginsburg Nov 2000 A
6149676 Ginsburg Nov 2000 A
6149677 Dobak Nov 2000 A
6165207 Balding Dec 2000 A
6224624 Lasheras May 2001 B1
6231594 Dae May 2001 B1
6231595 Dobak May 2001 B1
6235048 Dobak May 2001 B1
6238428 Werneth May 2001 B1
6245095 Dobak Jun 2001 B1
6251129 Dobak Jun 2001 B1
6251130 Dobak Jun 2001 B1
6254626 Dobak Jul 2001 B1
6264679 Keller Jul 2001 B1
6287326 Pecor Sep 2001 B1
6290717 Philips Sep 2001 B1
6299599 Pham et al. Oct 2001 B1
6306161 Ginsburg Oct 2001 B1
6312452 Dobak Nov 2001 B1
6325818 Werneth Dec 2001 B1
6338727 Noda Jan 2002 B1
6364899 Dobak Apr 2002 B1
6368304 Aliberto Apr 2002 B1
6379378 Werneth Apr 2002 B1
6383210 Magers May 2002 B1
6393320 Lasersohn May 2002 B2
6405080 Lasersohn Jun 2002 B1
6409747 Gobin Jun 2002 B1
6416533 Gobin Jul 2002 B1
6419643 Shimada Jul 2002 B1
6428563 Keller Aug 2002 B1
6432124 Worthen Aug 2002 B1
6436130 Philips Aug 2002 B1
6436131 Ginsburg Aug 2002 B1
6440158 Saab Aug 2002 B1
6447474 Balding Sep 2002 B1
6450987 Kramer Sep 2002 B1
6450990 Walker Sep 2002 B1
6451045 Walker Sep 2002 B1
6454792 Noda Sep 2002 B1
6454793 Evans Sep 2002 B1
6458150 Evans Oct 2002 B1
6460544 Worthen Oct 2002 B1
6464716 Dobak Oct 2002 B1
6468296 Dobak Oct 2002 B1
6471717 Dobak Oct 2002 B1
6475231 Dobak Nov 2002 B2
6478811 Dobak Nov 2002 B1
6478812 Dobak Nov 2002 B2
6482226 Dobak Nov 2002 B1
6491039 Dobak Dec 2002 B1
6491716 Dobak Dec 2002 B2
6494903 Pecor Dec 2002 B2
6497721 Ginsburg Dec 2002 B2
6516224 Lasersohn Feb 2003 B2
6517533 Swaminathan Feb 2003 B1
6520933 Evans Feb 2003 B1
6527798 Ginsburg Mar 2003 B2
6529775 Whitebook Mar 2003 B2
6530946 Noda Mar 2003 B1
6533804 Dobak Mar 2003 B2
6540771 Dobak Apr 2003 B2
6544282 Dae Apr 2003 B1
6551349 Lasheras Apr 2003 B2
6554797 Worthen Apr 2003 B1
6558412 Dobak May 2003 B2
6572538 Takase Jun 2003 B2
6572638 Dae et al. Jun 2003 B1
6572640 Balding et al. Jun 2003 B1
6576001 Werneth Jun 2003 B2
6576002 Dobak Jun 2003 B2
6581403 Whitebook Jun 2003 B2
6582398 Worthen Jun 2003 B1
6582455 Dobak Jun 2003 B1
6582457 Dae Jun 2003 B2
6585692 Worthen Jul 2003 B1
6585752 Dobak Jul 2003 B2
6589271 Tzeng Jul 2003 B1
6595967 Kramer Jul 2003 B2
6599312 Dobak Jul 2003 B2
6602243 Noda Aug 2003 B2
6602276 Dobak Aug 2003 B2
6607517 Dae Aug 2003 B1
6610083 Keller Aug 2003 B2
6620130 Ginsburg Sep 2003 B1
6620131 Pham Sep 2003 B2
6620188 Ginsburg Sep 2003 B1
6620189 MacHold Sep 2003 B1
6623516 Saab Sep 2003 B2
6635076 Ginsburg Oct 2003 B1
6641602 Balding Nov 2003 B2
6641603 Walker Nov 2003 B2
6645234 Evans Nov 2003 B2
6648906 Lasheras Nov 2003 B2
6648908 Dobak Nov 2003 B2
6652565 Shimada Nov 2003 B1
6656209 Ginsburg Dec 2003 B1
6660028 Magers Dec 2003 B2
6673098 MacHold Jan 2004 B1
6676688 Dobak Jan 2004 B2
6676689 Dobak Jan 2004 B2
6676690 Werneth Jan 2004 B2
6679906 Hammack et al. Jan 2004 B2
6679907 Dobak Jan 2004 B2
6682551 Worthen Jan 2004 B1
6685732 Kramer Feb 2004 B2
6685733 Dae Feb 2004 B1
6692488 Dobak Feb 2004 B2
6692519 Hayes Feb 2004 B1
6695873 Dobak Feb 2004 B2
6695874 MacHold Feb 2004 B2
6699268 Kordis Mar 2004 B2
6702783 Dae Mar 2004 B1
6702839 Dae Mar 2004 B1
6702840 Keller Mar 2004 B2
6702841 Nest Mar 2004 B2
6702842 Dobak Mar 2004 B2
6706060 Tzeng Mar 2004 B2
6709448 Walker Mar 2004 B2
6716188 Noda Apr 2004 B2
6716236 Tzeng Apr 2004 B1
6719723 Werneth Apr 2004 B2
6719724 Walker Apr 2004 B1
6719779 Daoud Apr 2004 B2
6726653 Noda Apr 2004 B2
6726708 Lasheras Apr 2004 B2
6726710 Worthen Apr 2004 B2
6733517 Collins May 2004 B1
6740109 Dobak May 2004 B2
6749585 Aliberto Jun 2004 B2
6749625 Pompa Jun 2004 B2
6752786 Callister Jun 2004 B2
6755850 Dobak Jun 2004 B2
6755851 Noda Jun 2004 B2
6924467 Ellis et al. Aug 2005 B2
7077825 Stull Jul 2006 B1
20010007951 Dobak Jul 2001 A1
20010016764 Dobak, III Aug 2001 A1
20010041923 Dobak Nov 2001 A1
20020007203 Gilmartin Jan 2002 A1
20020016621 Werneth Feb 2002 A1
20020026227 Philips Feb 2002 A1
20020068964 Dobak Jun 2002 A1
20020077680 Noda Jun 2002 A1
20020091429 Dobak Jul 2002 A1
20020111616 Dea Aug 2002 A1
20020151946 Dobak, III Oct 2002 A1
20020177804 Saab Nov 2002 A1
20020183692 Callister Dec 2002 A1
20020193738 Adzich Dec 2002 A1
20020193853 Worthen Dec 2002 A1
20020193854 Dobak Dec 2002 A1
20030074038 Gruszecki et al. Apr 2003 A1
20030078640 Carson et al. Apr 2003 A1
20030078641 Dobak Apr 2003 A1
20030114835 Noda Jun 2003 A1
20030114903 Ellingboe Jun 2003 A1
20030135252 MacHold et al. Jul 2003 A1
20030144714 Dobak Jul 2003 A1
20030187489 Dobak Oct 2003 A1
20030195465 Worthen Oct 2003 A1
20030195466 Pham Oct 2003 A1
20030195597 Keller Oct 2003 A1
20030216799 Worthen Nov 2003 A1
20030225336 Callister Dec 2003 A1
20040034399 Ginsburg Feb 2004 A1
20040039431 Machold Feb 2004 A1
20040044388 Pham Mar 2004 A1
20040050154 Machold Mar 2004 A1
20040054325 Ginsburg Mar 2004 A1
20040073280 Dae Apr 2004 A1
20040087934 Dobak May 2004 A1
20040102825 Daoud May 2004 A1
20040102826 Lasheras May 2004 A1
20040102827 Werneth May 2004 A1
20040106969 Dobak Jun 2004 A1
20040111138 Bleam Jun 2004 A1
20040116987 Magers Jun 2004 A1
20040116988 Hammack Jun 2004 A1
20040127851 Noda Jul 2004 A1
20040195178 Carpenter et al. Oct 2004 A1
Related Publications (1)
Number Date Country
20080114430 A1 May 2008 US