This invention pertains to temperature sensing apparatus.
Temperature sensing is frequently used to control the operation of apparatus. Typically a single temperature sensor is utilized. It is desirable to provide an improved arrangement for sensing temperatures of an apparatus.
In accordance with the principles of the invention, a system is provided that automatically samples the temperature measured by a plurality of temperature sensors and automatically compares the temperature at each sensor to predetermined temperature level trip points and has a interface to pass the status of all the devices to a controller.
In accordance with the invention, apparatus is provided that includes a plurality of temperature sensors. Each temperature sensor is operable to generate a signal representative of the temperature of the temperature sensor. The apparatus includes a comparator circuit operable to compare temperature sensor temperature signals to at least one predetermined level representative of a predetermined temperature. The selector circuit is coupled to each temperature sensor and to the comparator circuit. The selector circuit is adapted to selectively activate the temperature sensors, and further adapted to couple outputs from each selectively activated temperature sensor to the comparator circuit. A control circuit is coupled to the selector circuit. The control circuit is adapted to energize the selector circuit at predetermined intervals and is adapted to cause the selector to selectively activate each temperature sensor one at a time during the predetermined intervals and to cause the selector to couple each selected temperature sensor to the comparator circuit.
In accordance with one aspect of the invention the comparator circuit, the selector circuit and the control circuit are formed in a silicon substrate.
In accordance with another aspect of the invention a current source is coupled to the selector circuit and is adapted to energize each temperature sensor selected by said selector circuit for a predetermined time.
In accordance with another aspect of the invention, the comparator circuit, the selector circuit, the control circuit, and the current source are all formed on a single substrate.
In accordance with the illustrative embodiment of the invention, the comparator circuit is operable to compare a temperature sensor temperature signal to a plurality of predetermined levels, each representative of a corresponding one of a plurality of predetermined temperatures.
Still further in accordance with the invention, an interface circuit is coupled to the comparator to interface the comparator circuit to a single wire output. In the illustrative embodiment of the invention the interface circuit generates pulse width modulated signals at the single wire output.
In accordance with another feature of the invention, the comparator circuit is operable to determine if a temperature sensor is inoperable.
In the illustrative embodiment of the invention, each of the temperature sensors is disposed in a different thermal zone. In one embodiment of the invention, the temperature sensors are disposed on a substrate which is a flexible substrate. The substrate is disposed in proximity to a plurality of batteries. Each battery of the plurality of batteries comprises a lithium ion type battery.
In another embodiment of the invention, the temperature sensor substrate comprises a circuit board. The said circuit board comprises a mother board which in turn comprises a microprocessor.
Still further in accordance with the principles of the invention each temperature sensor of the plurality of sensors comprises a silicon substrate, each silicon substrate having formed thereon a bandgap, an offset circuit for providing calibration offsets; and a gain block.
The offset block comprises a plurality of resistors formed in a sensor silicon substrate, and a programmable link structure configurable to provide a predetermined offset such that the temperature sensor is permanently calibrated.
A method for monitoring temperature for apparatus having a plurality of thermal zones, in accordance with the invention, comprises the steps of: providing a plurality of temperature sensors, each temperature sensor being operable to generate a signal representative of the temperature of said temperature sensor; disposing each temperature sensor in a corresponding one thermal zone of a plurality of thermal zones; providing temperature monitoring apparatus; operating the temperature monitoring apparatus at periodic intervals and turning the temperature monitoring apparatus off intermediate the periodic intervals; energizing the temperature sensors during the periodic intervals and de-energizing the temperature sensors intermediate the periodic intervals; selectively coupling each temperature sensor during the periodic intervals to a comparator; comparing temperature sensor temperature signals to at least one predetermined level representative of a predetermined temperature.
In accordance with an aspect of the invention, the method may include the step of selectively activating each temperature sensor of the plurality of temperature sensors one at a time during the predetermined intervals; and coupling each activated temperature sensor to the comparator during each of the predetermined intervals.
Still further in accordance with another aspect of the invention, the method comprises the steps of providing a single current source for energizing each of the temperature sensors; and coupling the single current source to each of the temperature sensors one at a time during the periodic intervals.
In accordance with another aspect of the invention the method comprises comparing the temperature sensor temperature signals to a plurality of predetermined levels each representative of a corresponding predetermined temperature of a plurality of temperatures.
In accordance with an aspect of the invention, the method comprises providing an output indicative of the temperatures of the temperature sensors relative to the corresponding plurality of temperatures.
In accordance with yet a further aspect of the invention, the method comprises providing the output via a single output line. In the illustrative embodiment of the invention the output is provided as a pulse width modulated signal.
The invention will be better understood from a reading of the following detailed description of preferred embodiments of the invention in conjunction with the drawing figures in which the sizes of and distances between various elements is not representative of actual physical sizes or distances between various elements and in which like designators are used to identify like or similar elements, and in which:
Temperature sensors s1-s8 each has at least one common connection, shown as a ground, and a dedicated connection 105 for each sensor s1-s8. In the illustrative embodiment of the invention, the connections 105 to sensors s1-s8 are brought off substrate 103 to a temperature manager 110.
Turning now to
Each of the predetermined temperature levels corresponding to T1, T2, T3 is provided by a bandgap and reference level circuit 113. In the circuit shown, the temperature sensors s1-s8 operate so as to provide output voltage levels such that for temperatures T1 selected to be 60° C., T2 selected to be 70° C., and T3 selected to be 80° C. the corresponding voltages are 2.6, 2.7, and 2.8 Volts.
The outputs of comparator 111 are coupled to a single line interface circuit 115. Interface circuit 115 interfaces the comparator to a single signal line by converting the output indications C1, C2, C3, C4 of comparator 113 into a pulse width modulated signal PWM. In doing the conversion, interface 115 may be operated such that if any one of the sensors s1-s8 is above T1, a combined output indication is provided indicating that at least one thermal zone is above temperature T1. Similarly if at least one temperature sensor s1-s8 is above temperature level T2, a combined indication is provided with outputs C1 and C2. Yet further if at least one temperature sensor s1-s8 is above temperature level T3, a combined indication is provided with outputs C1, C2, and C3.
One particularly advantageous aspect of the present invention is that by providing a single line output PWM, temperature manager 110, provides an output that provides an output indication that at least one thermal zone, or in this embodiment one battery cell b1-b8 is at a predetermined temperature that exceeds one or more of a plurality of predetermined temperature limits.
The output PWM of temperature manager 110 is coupled to a utilization circuit which in the illustrative embodiment of
An additional advantageous aspect of the invention is that a timer and wake up circuit 117 is provided that operates such that the temperature sensors s1-s8 and temperature manager 110 are powered down except for periodically occurring intervals during which each of the temperature sensors s1-s8 is energized one at a time and the temperature manager 110 is operated to determine whether the temperature of each temperature sensor s1-s8 exceeds one or more of the predetermined temperature levels. After each periodic interval in which temperatures are sampled and compared to predetermined temperatures, the sensors s1-s8 and temperature manager 110 are powered down until the next periodic interval.
Turning now to
In the illustrative embodiment shown in
Although not shown in
Turning now to
The outputs from each of the sensors s1-s8 are coupled to a temperature manager 1110. Operation of temperature manager 1110 is the same as described above with respect to temperature manager 110.
The temperature sensors s1-s8 may be configured as either a two terminal device 300 as represented in
Each of the temperature sensors 300, 400 utilize a bandgap circuit 500. A bandgap circuit of a type that is advantageously utilized in sensors 300, 400 is shown in
Amplifier 505 provides a reference voltage Vref that is coupled to diode connected transistor 501 through serially resistors 507, 509. Vref is also coupled to diode transistor 503 through resistor 511. Resistors 507 and 511 can be matched or have different values. Resistor 509 provides an offset between the voltages applied to the inputs of amplifier 501 and this offset remains relatively constant. The emitter of either transistor 501 or 503 can be used as the output terminal for the circuit. In bandgap circuit 500, output PTAT is coupled to the emitter of transistor 503. Changes in temperature of the PN junctions of transistors 501, 503 produce changes in the in the voltage drops across transistors 501, 503.
Bandgap circuit 500 generates two voltages Vref and PTAT. These voltages are linear to within 10 mvolts over a 150° C. temperature range in the illustrative embodiments of the invention. PTAT is a reference that is inversely proportional to temperature.
The three terminal sensor circuit of
Turning now to
The PTAT output of bandgap 500 is coupled to buffer 409. Buffer 409 provides a high impedance load for bandgap circuit 500. The output of buffer 409 is proportional to, and preferably equal to, the PTAT output signal from bandgap
The gain block 411 has one input coupled to the output of buffer 409 and a second input coupled to the offset circuit 413.
Offset circuit 413 is the functional equivalent of two series connected resistors 811, 813. Resistors 811, 813 are serially coupled to the Vref output. Although resistor 813 is shown schematically as a variable resistor, the resistance value of resistor 813 is, in the illustrative embodiment, selectable during manufacture of the temperature sensor 300, 400. The value of resistor 813 is selected during calibration of the temperature sensor. The value of resistor 813 determines the offset voltage to amplifier 801 of gain block 411.
The offset resistance value varies from part to part due to wafer processing. In accordance with one aspect of the present invention, wafer level calibration is performed on temperature sensors 300, 400. Resistor structure 813 is shown in detail in
The invention has been described in terms of various embodiments. It is not intended that the invention be limited to the illustrative embodiments. It will be apparent to those skilled in the art that various modifications and changes may be made to the embodiments without departing from the spirit or scope of the invention. Accordingly, it is intended that the invention be limited only by the claims appended hereto.
Number | Date | Country | |
---|---|---|---|
Parent | 10704368 | Nov 2003 | US |
Child | 10897217 | Jul 2004 | US |