Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
Referring to
The temperature monitoring apparatus of this embodiment is applicable for monitoring a body temperature of a patient (not shown), in a manner that will be described hereinafter.
The casing 10 includes a first base wall 14 that is formed with a first hole 140 therethrough, a second base wall 15 that is opposite to the first base wall 14 and that is formed with a second hole 150 therethrough, a first surrounding wall 11 that extends from and that surrounds the first base wall 14, and a second surrounding wall 12 that extends from and that surrounds the second base wall 15.
The detector 33 is disposed in the casing 10, and detects extension of a skin of the patient into the first hole 140 in the first base wall 14 of the casing 10. In this embodiment, the detector 33 is a light detector that detects ambient light condition in the casing 10. Thus, when the detector 33 detects a dark ambient light condition, it concludes that the skin of the patient is extended into the first hole 140 in the first base wall 14 of the casing 10. On the other hand, when the detector 33 detects a bright ambient light condition, it concludes the absence of the skin of the patient in the first hole 140 in the first base wall 14 of the casing 10.
In an alternative embodiment, the detector 33 is an electrostatic detector that detects static electricity produced by the skin of the patient. That is, when the detector 33 detects the static electricity, it concludes that the skin of the patient is extended into the first hole 140 in the first base wall 1417 of the casing 10. On the other hand, when the detector 33 does not detect any static electricity, it concludes the absence of the skin of the patient in the first hole 140 in the first base wall 14 of the casing 10.
The casing 10 further includes a pair of strap loop connectors 13, each of which is provided on a respective one of opposite sides of the first surrounding wall 11 of the casing 10, for connecting with a strap (not shown) that is tied around the wrist of the patient. As such, the temperature monitoring apparatus of this invention can be attached securely to the patient to thereby squeeze the skin of the patient into the first hole 140 in the first base wall 14 of the casing 10.
The first sensor 31 is disposed in the casing 10, and measures a temperature of the skin of the patient extended into the first hole 140 in the first base wall 14 of the casing 10.
The second sensor 32 is disposed in the casing 10, and measures an ambient temperature through the second hole 150 in the casing 10, as best shown in
In this embodiment, each of the first and second sensors 31, 32 is a temperature sensor, model no. ADT7301, implemented in an integrated circuit.
The controller unit 20 includes a microcontroller 26 and a memory unit 25. The microcontroller 26 of the controller unit 20 is connected electrically to the detector 33 and the first and second sensors 31, 32. In this embodiment, the microcontroller 26 of the controller unit 20 is under the model no. MSP430F2131. The memory unit 25 of the controller unit 20 is connected electrically to the microcontroller 26 of the controller unit 20 for storing object data and temperature correcting factors therein. In this embodiment, the memory unit 25 includes a SPI serial EEPROMS under the model no. AT25320.
It is noted that the object data is pertinent to the patient whose temperature is to be monitored, such as name, age, telephone number, address, etc. Furthermore, each temperature correcting factor corresponds to an age group of a specific patient. That is, for patients in the age group of 1 to 19 years, the temperature correcting factor is −0.2° C. For patients in the age group of 20 to 50 years, the temperature correcting factor is 0° C. For patients in the age group of above 50 years, the temperature correcting factor is +0.2° C.
The microcontroller 26 of the controller unit 20 is operable so as to generate an actual temperature value with reference to the temperature measured by the first sensor 31, the ambient temperature measured by the second sensor 32, and the temperature correcting factors in the memory unit 25 of the controller unit 20. In particular, the microcontroller 26 of the controller unit 20 first compares the temperature measured by the first sensor 31 with the ambient temperature measured by the second sensor 32, and generates a comparison result. Then, the microcontroller 26 of the controller unit 20 adds the temperature correcting factor, which corresponds to the age group of the patient, to the comparison result to result in the actual temperature value. As such, the actual temperature value generated by the microcontroller 26 of the controller unit 20 is an accurate indication of a body temperature of the patient.
The indicator unit 40 is coupled to and controlled by the microcontroller 26 of the controller unit 20 to provide a first indication when the detector 33 detects the absence of the skin of the patient in the first hole 140 in the first base wall 14 in the casing 10, and a second indication when the actual temperature value generated by the microcontroller 26 of the controller unit 20 is within a predetermined temperature range. In this embodiment, the indicator unit 40 includes a light-emitting device 41, preferably a light-emitting diode, that provides the first indication by emitting a continuous light and the second indication by generating a flashing light, and a sound-generating device 42, preferably a buzzer, that provides the first indication by generating a continuous sound and the second indication by generating an intermittent sound.
It is noted that when the temperature monitoring apparatus of this invention is properly attached to the patient, the skin of the patient extends into the first hole 140 in the first base wall 14 of the casing 10. As such, it can be ensured that the first temperature measured by the first sensor 31 indeed belongs to the patient. However, when the temperature monitoring apparatus is accidentally detached from the patient, the detector 33 detects the absence of the skin of the patient in the first hole 140 in the first base wall 14 in the casing 10, which causes the indicator unit 40 to provide the first indication. This, in turn, alerts the patient (or a caregiver) that the temperature monitoring apparatus needs to be properly reattached to the patient.
In addition, in this embodiment, the predetermined temperature range is above a normal temperature range of a person. As such, when the actual temperature value generated by the microcontroller 26 of the controller unit 20 is within the predetermined temperature range, it suggests that the patient has a fever.
In an alternative embodiment, the indicator unit 40 includes a vibration-producing device (not shown), such as a vibrating motor, that is coupled to and that is controlled by the microcontroller 26 of the controller unit 20 to provide the first indication by producing a continuous vibration and the second indication by producing an intermittent vibration.
The temperature monitoring apparatus further includes a first thin film 17 that is disposed in the casing 10, and that is formed with a projection 171 extending into the first hole 140 in the first base wall 14 of the casing 10. The construction as such prevents water and dust from entering the casing 10.
The controller unit 20 further includes a circuit 21, and a switch 22 that is actuatable to control operation of the circuit 21. In particular, the second base wall 15 of the casing 10 is further formed with an access hole 151 therethrough. The temperature monitoring apparatus further includes a second thin film 18 that is disposed in the casing 10, that is formed with a projection 181 extending into the access hole 151 in the second base wall 15 of the casing 10, that is accessible from the outside of the casing 10, as best shown in
It is noted that the first and second thin films 17, 18 are so thin and are almost transparent so as not to affect adversely operations of the detector 33 and the first and second sensors 31, 32.
The temperature monitoring apparatus further includes a transmitting unit 50 that is connected electrically to and that is controlled by the microcontroller 26 of the controller unit 20 to wirelessly transmit the actual temperature value generated by the microcontroller 26 of the controller unit 20 to a server (not shown). As such, status of the patient can be monitored from afar. In this embodiment, the transmitting unit 50 includes a radio frequency integrated circuit (RF IC) under the model no. CC2500.
The temperature monitoring apparatus further includes a display 60 that is coupled to and that is controlled by the microcontroller 26 of the controller unit 20 to show the actual temperature value generated by the microcontroller 26 of the controller unit 20. In this embodiment, the display 60 is a liquid crystal display (LCD).
The temperature monitoring apparatus further includes a timer 70 that is coupled to and that is controlled by the microcontroller 26 of the controller unit 20 to generate the current time of day. The display 20 is further controlled by the microcontroller 26 of the controller unit 20 to show the current time of day generated by the timer 70. In this embodiment, the timer 70 is software that is executed by the microcontroller 26 of the controller unit 20.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.