A broad object of a particular embodiment of the invention can be to provide a temperature-regulating containment system for actively heating or cooling a liquid to a desired liquid temperature, and methods of making and using such a temperature-regulating containment system, whereby the temperature-regulating containment system comprises: a container having an internal cavity defined by a sidewall upwardly extending from a bottom wall, the internal cavity configured to contain the liquid which has a liquid temperature; a heating element disposed beneath the bottom wall, the heating element configured to provide heat to the bottom wall; a chamber disposed beneath the bottom wall, the chamber adjustable between an unfilled condition and a filled condition in which the chamber is filled with a heat transfer medium; and a cooling element disposed beneath the chamber, the cooling element configured to remove heat from the bottom wall; wherein when the liquid temperature is below the desired liquid temperature: the chamber adjusts to the unfilled condition, and the heating element provides heat to the bottom wall to heat the liquid to the desired liquid temperature; and wherein when the liquid temperature is above the desired liquid temperature: the chamber adjusts to the filled condition, and the cooling element removes heat from the bottom wall to cool the liquid to the desired liquid temperature.
Naturally, further objects of the invention are disclosed throughout other areas of the specification, drawings, and claims.
Now referring primarily to
Now referring primarily to
Now referring primarily to
As used herein, the term “heat” means energy, such as thermal energy, which when transferred to matter, can cause the matter to become warmer or hotter. Correspondingly, upon providing heat (9) to matter, the matter can increase in temperature. Conversely, upon removing heat (9) from matter, the matter can decrease in temperature, thereby becoming cooler or colder.
As used herein, a “desired liquid temperature” is typically a predetermined temperature, whereby “predetermined” means decided in advance. Of note, when the desired liquid temperature (15) is reached with use of the instant containment system (1), the applicable heating or cooling element (8)(14) can also function to maintain the desired liquid temperature (15) for a period of time, such as minutes or hours.
As shown in the example of the Figures, the instant containment system (1) or one or more components thereof can be portable, meaning physically configured to be easily carried by an individual during use.
Now referring primarily to
Regarding configuration, as to particular embodiments, the container (3) can be formed from a generally cylindrical sidewall (5), thus having a generally circular cross section through a horizontal plane. The diameter of the generally cylindrical sidewall (5) can be the same or different along the height of the generally cylindrical sidewall (5), depending upon the embodiment. As but one illustrative example shown in the Figures, the diameter of the generally cylindrical sidewall (5) can inwardly taper toward the bottom wall (6).
Regarding material, at least the bottom wall (6) of the container (3) can be formed from a thermally-conductive material, such as metal. As but one non-limiting example, the bottom wall (6) can be formed from copper or copper plated with tin. As to particular embodiments, the sidewall (5), which can be (i) coupled, directly coupled, connected, or adjacent to the bottom wall (6) at a liquid-tight junction or (ii) integrated with the bottom wall (6), can also be formed from a thermally-conductive material as described above.
Now referring primarily to
As but one non-limiting example, the insulating element (21) can comprise a vacuum (22). For example, a vacuum (22) can exist in an annular gap (23) between the container (3) and the outer shell (20), the vacuum (22) functioning to thermally insulate the container (3), consequently permitting the liquid (2) to remain at the desired liquid temperature (15) for an increased period of time relative to an embodiment of the containment system (1) without the vacuum (22).
Now referring primarily to
It is herein to be understood that when a component of the containment system (1) is in thermal communication with the bottom wall (6) of the container (3), the component is also in thermal communication with the liquid (2) contained within the internal cavity (4). Thus, when heat (9) is provided to the bottom wall (6), for example by the heating element (8), heat (9) is provided to the liquid (2) contained within the internal cavity (4). And, when heat (9) is removed from the bottom wall (6), for example by the cooling element (14), heat (9) is removed from the liquid (2) contained within the internal cavity (4).
As to particular embodiments, the heating element (8) can include an electrically-conductive path having a sufficient amount of resistance to generate heat (9) upon travel of electricity, whereby the electrically-conductive path can take the form of a wire, ribbon, strip, etched path, or the like, depending upon the embodiment.
As to particular embodiments, the heating element (8) and/or the electrically-conductive path can be generally planar or flat, as shown in the examples of the Figures.
As to particular embodiments, the heating element (8) can be configured as a flexible heating element (8).
Now referring primarily to
As to particular embodiments, the heating element (8) can be connected to the bottom wall outer surface (24) by adhesion, for example via a thermally conductive adhesive, disposing the heating element (8) adjacent to the bottom wall outer surface (24) (not shown).
Now referring primarily to
Now referring primarily to
Now referring primarily to
As to particular embodiments, the cooling element (14) can be a thermoelectric cooler, such as a Peltier device (30) which operates according to the Peltier effect. Typically, a Peltier device (30) includes a warmable face (31) opposite a coolable face (32). When an electric current flows through the Peltier device (30), heat transfers from the coolable face (32) to the warmable face (31), thus decreasing the temperature of (or cooling) the coolable face (32) and increasing the temperature of (or warming) the warmable face (31).
Now referring primarily to
Now referring primarily to
Now referring primarily to
Again referring primarily to
Additionally, a liquid fluid medium (36), such as water, can flow through the fluid flow paths (34) and the interior fluid flow channel (38), either upwardly or downwardly, which may be useful for cleaning and/or washing the heat sink (33).
Now referring primarily to
As to particular embodiments, the fan (41) can be disposed proximate the interior fluid flow channel bottom portion (39). As but one non-limiting example, the fan (41) can be disposed, either partially or entirely, within the interior fluid flow channel bottom portion (39) such that a heat sink body internal wall (42) which defines the interior fluid flow channel (38) surrounds the fan (41). As but a second non-limiting example, the fan (41) can be disposed beneath the interior fluid flow channel bottom portion (39), as shown in the examples of the Figures.
Now referring primarily to
Again referring primarily to
Now referring primarily to
As to particular embodiments, the chamber (10) can be disposed within or formed by a component which itself disposes adjacent to the bottom wall outer surface (24), thereby positioning the chamber (10) proximate the bottom wall outer surface (24). As but one illustrative example, the chamber (10) can be disposed within or integrated with the overlaying layer (25) which overlays or is directly adjacent to the bottom wall outer surface (24). Specifically, the chamber (10) can have a chamber upper portion (46) which is defined by the overlaying layer outer surface (26). Further, the overlaying layer outer surface (26) can define chamber sidewalls (47) which extend between the chamber upper portion (46) and a chamber lower portion (48), which can be closed by a removable chamber lid (49).
As to particular embodiments having an overlaying layer (25) configured as an open-ended vessel (29) which contains the container (3), the chamber (10) can be disposed within or formed by the open-ended vessel (29).
The chamber (10) is adjustable between an unfilled condition (11) and a filled condition (12) in which the chamber (10) is filled with a heat transfer medium (13) which can thermally communicate with the bottom wall (6) and the cooling element (14). Thus, when the chamber (10) is in the filled condition (12), the heat transfer medium (13) functions to thermally couple the bottom wall (6) and the cooling element (14), meaning that heat (9) can transfer between the bottom wall (6) and the cooling element (14). Conversely, when the chamber (10) is in the unfilled condition (11) and void of the heat transfer medium (13), the bottom wall (6) is thermally uncoupled from the cooling element (14), meaning that heat (9) is precluded from transferring between the bottom wall (6) and the cooling element (14).
As to particular embodiments, a vacuum (22) can be generated within the chamber (10) when the chamber (10) is adjusted to the unfilled condition (11). The vacuum (22) which exists within the chamber (10) can function to thermally uncouple the bottom wall (6) and the cooling element (14); thus, the vacuum (22) precludes heat (9) from transferring between the bottom wall (6) and the cooling element (14).
Now referring primarily to
Following, to achieve the unfilled condition (11) of the chamber (10), the heat transfer medium (13) can be transferred from the chamber (10) to the reservoir (50) for storage within the reservoir (50). In contrast, to achieve the filled condition (12) of the chamber (10), the heat transfer medium (13) can be transferred from the reservoir (50) to the chamber (10), whereby the heat transfer medium (13) can displace air in the chamber (10), the air egressing from the chamber (10) via a port (52) (as shown in the examples of
It is herein to be understood that the heat transfer medium (13) is a flowable medium capable of flowing between the chamber (10) and the reservoir (50). As but one non-limiting example, the heat transfer medium (13) can comprise or consist of a liquid, such as mineral oil or the like.
Again referring primarily to
Regarding spatial relationships, the cooling element (14) disposes beneath the chamber (10) and, in this way, the chamber (10) can function to thermally uncouple or thermally couple the bottom wall (6) and the cooling element (14) when in the unfilled and filled conditions (11)(12), respectively. However, the heating element (8) can dispose either above the chamber (10) or beneath the chamber (10), depending upon the embodiment.
Now referring primarily to
Now referring primarily to
Now referring primarily to
As to particular embodiments, the power source (56) can be removable or configured to removably couple to the container (3), which may be useful when cleaning and/or washing the containment system (1).
As to particular embodiments, the power source (56) can be rechargeable and for example, can be charged by a charger (57).
As to particular embodiments, the power source (56) can be removable and rechargeable.
As to particular embodiments, the power source (56) can be configured as a battery, such as a rechargeable battery.
As to particular embodiments, the power source (56) can be disposed beneath the container (3). Further, as to particular embodiments, the power source (56) can be disposed beneath the heat sink (33).
As to particular embodiments, the power source (56) can be housed in a housing (58).
As to particular embodiments, the housing (58) can be removable or configured to removably couple to the container (3), which may be useful when cleaning and/or washing the containment system (1).
As to particular embodiments, the housing (58) can be disposed beneath the container (3). Further, as to particular embodiments, the housing (58) can be disposed beneath the heat sink (33).
As to particular embodiments, the housing (58) can include one or more vents (59), which may be useful for channeling air from the ambient environment (40) to the fan (41) for directed upward and outward flow through the interior fluid flow channel (38) and the fluid flow paths (34) toward the ambient environment (40) to transfer heat (9) from the heat sink body (35) to the ambient environment (40).
Now referring primarily to
Now referring primarily to
Now referring primarily to
As to particular embodiments, the sensor (62) can be a temperature sensor (62) configured to sense the liquid temperature (7), whether directly or indirectly. Regarding the latter, the temperature sensor (62) can be connected to an outer surface of a container wall (5)(6), such as sidewall outer surface (28), whereby the temperature sensor (62) senses the temperature of the sidewall outer surface (28) which can serve as a surrogate for the liquid temperature (7). Of note, in this embodiment, the temperature sensor (62) does not contact the liquid (2) within the internal cavity (4).
Following, the sensed temperature information can be communicated to the control circuitry, which may result in operation of the heating element (8) if the liquid temperature (7) is determined to be below a desired liquid temperature (15) or operation of the cooling element (14) if the liquid temperature (7) is determined to be above a desired liquid temperature (15).
As to particular embodiments, the containment system (1) can include a plurality of temperature sensors (62) disposed in spaced apart relation along a height of the container (3). By determining the difference between the sensed temperature information provided by at least two sensors (62) in generally vertical spaced apart relation, the level of the liquid (2) can be determined, such as via use of a liquid volume algorithm.
For example, when liquid (2) is present in the internal cavity (4), if there is substantially no difference between the sensed temperature information provided by upper and lower temperature sensors (63)(64), the level of the liquid (2) may likely be above the upper temperature sensor (63). However, if the sensed temperature information provided by the upper temperature sensor (63) indicates a lesser temperature than that provided by the lower temperature sensor (64), the level of the liquid (2) may likely be below the upper temperature sensor (63) and above the lower temperature sensor (64) or between the upper and lower temperature sensors (63)(64).
Additionally, when no liquid (2) is detected via the plurality of temperature sensors (62), the containment system (1) can be configured to power off.
Now referring primarily to
Now referring primarily to
Again referring primarily to
Again referring primarily to
Again referring primarily to
Now referring primarily to
As to particular embodiments, the transceiver (69) can be configured to transmit information, for example the liquid temperature (7) or information related to the liquid temperature (7), to the remote device (70), whereby the liquid temperature (7) or information related to the liquid temperature (7) can subsequently be displayed on the remote device (70). Thus, as to this particular embodiment, the display surface (66) can be located on the remote device (70).
As to particular embodiments, the transceiver (69) can also be configured to receive operating instructions from the remote device (70), for example instructions to operate one or more controllable components of the containment system (1) to achieve the desired liquid temperature (15). Accordingly, as to this particular embodiments, the user interface (67) and correspondingly, the one or more user-actuatable controls (68), can be located on the remote device (70). Thus, the one or more user-actuatable controls (68) can be actuated remotely to control one or more controllable components of the containment system (1).
As to particular embodiments, the remote device (70) can comprise a program or application (71) associated with the containment system (1), whereby the application (71) can include information related to the liquid temperature (7), such as recommended temperatures for specific liquid types. Additionally, the application (71) can function to store temperature preferences of a user, for example the user's temperature preferences for specific liquid types.
Now referring primarily to
Now regarding production, a method of making the instant temperature-regulating containment system (1) can include providing a container (3) having an internal cavity (4) defined by a sidewall (5) upwardly extending from a bottom wall (6), the internal cavity (4) configured to contain liquid (2) which has a liquid temperature (7); disposing a heating element (8) beneath the bottom wall (6), the heating element (8) configured to provide heat (9) to the bottom wall (6); disposing a chamber (10) beneath the bottom wall (6), the chamber (10) adjustable between an unfilled condition (11) and a filled condition (12) in which the chamber (10) is filled with a heat transfer medium (13); and disposing a cooling element (14) beneath the chamber (10), the cooling element (14) configured to remove heat (9) from the bottom wall (6). When the liquid temperature (7) is below a desired liquid temperature (15), the chamber (10) can be adjusted to the unfilled condition (11), and the heating element (8) can provide heat (9) to the bottom wall (6) to heat the liquid (2) to the desired liquid temperature (15). Further, when the liquid temperature (7) is above a desired liquid temperature (15), the chamber (10) can be adjusted to the filled condition (12), and the cooling element (14) can remove heat (9) from the bottom wall (6) to cool the liquid (2) to the desired liquid temperature (15).
The method of making the containment system (1) can further include providing additional components of the containment system (1) as described above and in the claims.
Now regarding utilization, a method of using the instant temperature-regulating containment system (1) to achieve a desired liquid temperature (15) of a liquid (2) can include obtaining the containment system (1) described above; containing liquid (2) within the internal cavity (4); adjusting the chamber (10) to one of (i) the unfilled condition (11) or (ii) the filled condition (12); and operating one of (i) the heating element (8) to provide heat (9) to the bottom wall (6) to heat the liquid (2) to the desired liquid temperature (15) or (ii) the cooling element (14) to remove heat (9) from the bottom wall (6) to cool the liquid (2) to the desired liquid temperature (15).
The method of using the containment system (1) can further include utilizing additional components of the containment system (1) as described above and in the claims.
As to particular embodiments, the method of using the containment system (1) to cool the liquid (2) contained within the internal cavity (4) to the desired liquid temperature (15) can include a first step of adjusting the chamber (10) to the filled condition (12) and operating the cooling element (14) to remove heat (9) from the bottom wall (6) to decrease the liquid temperature (7). If the desired liquid temperature (15) is not achieved because operation of the cooling element (14) cannot provide further cooling of the liquid (2), a second step can ensue, whereby the cooling element (14) can be powered off and the chamber (10) can be adjusted to the unfilled condition (11) while the heat sink (33) continues to dissipate heat (9). Following dissipation of a desired amount if heat (9), for example when the heat sink (33) equilibrates with ambient temperature, the first step can be repeated, namely the chamber (10) can again be adjusted to the filled condition (12) and the cooling element (14) can again be operated to remove heat (9) from the bottom wall (6) to decrease the liquid temperature (7). If the desired liquid temperature (15) is still not achieved, the second step can be repeated, particularly the cooling element (14) can again be powered off and the chamber (10) can again be adjusted to the unfilled condition (11) while the heat sink (33) continues to dissipate heat (9). The first and second steps can continually repeat until the desired liquid temperature (15) is achieved.
As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. The invention involves numerous and varied embodiments of a temperature-regulating containment system and methods for making and using such a temperature-regulating containment system.
As such, the particular embodiments or elements of the invention disclosed by the description or shown in the figures or tables accompanying this application are not intended to be limiting, but rather exemplary of the numerous and varied embodiments generically encompassed by the invention or equivalents encompassed with respect to any particular element thereof. In addition, the specific description of a single embodiment or element of the invention may not explicitly describe all embodiments or elements possible; many alternatives are implicitly disclosed by the description and figures.
It should be understood that each element of an apparatus or each step of a method may be described by an apparatus term or method term. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all steps of a method may be disclosed as an action, a means for taking that action, or as an element which causes that action. Similarly, each element of an apparatus may be disclosed as the physical element or the action which that physical element facilitates. As but one example, the disclosure of “heat” should be understood to encompass disclosure of the act of “heating”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “heating”, such a disclosure should be understood to encompass disclosure of “heat” and even a “means for heating”. Such alternative terms for each element or step are to be understood to be explicitly included in the description.
In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood to be included in the description for each term as contained in the Random House Webster's Unabridged Dictionary, second edition, each definition hereby incorporated by reference.
All numeric values herein are assumed to be modified by the term “about”, whether or not explicitly indicated. For the purposes of the present invention, ranges may be expressed as from “about” one particular value to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value to the other particular value. The recitation of numerical ranges by endpoints includes all the numeric values subsumed within that range. A numerical range of one to five includes for example the numeric values 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, and so forth. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. When a value is expressed as an approximation by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. The term “about” generally refers to a range of numeric values that one of skill in the art would consider equivalent to the recited numeric value or having the same function or result. Similarly, the antecedent “substantially” means largely, but not wholly, the same form, manner or degree and the particular element will have a range of configurations as a person of ordinary skill in the art would consider as having the same function or result. When a particular element is expressed as an approximation by use of the antecedent “substantially,” it will be understood that the particular element forms another embodiment.
Moreover, for the purposes of the present invention, the term “a” or “an” entity refers to one or more of that entity unless otherwise limited. As such, the terms “a” or “an”, “one or more” and “at least one” can be used interchangeably herein.
Thus, the applicant(s) should be understood to claim at least: i) each of the temperature-regulating containment systems herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative embodiments which accomplish each of the functions shown, disclosed, or described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, x) the various combinations and permutations of each of the previous elements disclosed.
The background section of this patent application, if any, provides a statement of the field of endeavor to which the invention pertains. This section may also incorporate or contain paraphrasing of certain United States patents, patent applications, publications, or subject matter of the claimed invention useful in relating information, problems, or concerns about the state of technology to which the invention is drawn toward. It is not intended that any United States patent, patent application, publication, statement or other information cited or incorporated herein be interpreted, construed or deemed to be admitted as prior art with respect to the invention.
The claims set forth in this specification, if any, are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent application or continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.
Additionally, the claims set forth in this specification, if any, are further intended to describe the metes and bounds of a limited number of the preferred embodiments of the invention and are not to be construed as the broadest embodiment of the invention or a complete listing of embodiments of the invention that may be claimed. The applicant does not waive any right to develop further claims based upon the description set forth above as a part of any continuation, division, or continuation-in-part, or similar application.