This application relates to radio frequency identification devices and, in particular, radio frequency identification devices for communicating temperature data.
Radio frequency identification (“RFID”) uses electromagnetic fields and radio frequency (“RF”) signals to wirelessly communicate between an RFID reader (e.g., a local interrogator) and RFID transponder (e.g., a tag). RFID systems can be used for a wide array of purposes, such as inventory management and tracking, access control, or wireless data communication.
A typical RFID transponder includes an integrated circuit (“IC”) for storing information and an antenna for sending and receiving signals from the RFID reader and is either active or passive. Active RFID systems include a power source such as a battery for powering the IC and antenna. However, in passive RFID systems, the RFID transponder does not include a power source; instead, the transponder harnesses energy from an interrogation signal sent by the RFID reader and received by the antenna and then utilizes that energy to identify itself or other information associated with the transponder.
SUMMARY
In some applications RFID tags have been implemented as wireless sensors for detecting and communicating various parameters about an object to which the RFID tag is connected. In some applications, a temperature sensor can be implemented in a wireless RFID tag. In other applications, however, a variety of alternative sensor types can be used.
However, when in close proximity to energy absorbing or conductive materials such as (e.g., conductive metals), RFID tags, especially passive RFID tags operating in ultra-high frequency (UHF) band, suffer from reduced transmission ranges.
Disclosed herein are various improved structures for supporting RFID tags which are attachable to surfaces to provide information about the surface (e.g., temperature information). This can be achieved by implementing an RFID tag having a flag section with an RFID transponder and temperature sensor and a tail section integrally-formed with the flag section. The tail section is configured to support the flag section such that the flag section protrudes away from the object to which the RFID tag is attached. The separation created by the tail section significantly reduces or eliminates any signal loss due to the presence of an adjacent signal-absorbing body, thereby increasing the transmission range. A slim form-factor of the tag can enable easy use of a wide range of RFID printers for printing and/or encoding on said RFID tag.
According to one aspect, a radio frequency identification (RFID) tag for sensing a temperature of a surface is disclosed. The RFID tag includes a flag section and a tail section. The flag section includes an integrated circuit including an RFID transponder and a temperature sensor in communication therewith. The tail section projects outwardly from the flag section to an outward end. A thermally-conductive material is coupled to the tail section and configured to transfer thermal energy from the outward end of the tail section to the temperature sensor in the integrated circuit in the flag section.
According to another aspect, a strip of radio frequency identification (RFID) temperature sensor system can include a plurality of RFID tags integrally formed in a continuous sheet that are detachable from one another to provide individual RFID tags.
These and still other advantages of the invention will be apparent from the detailed description and drawings. What follows is merely a description of some preferred embodiments of the present invention. To assess the full scope of the invention, the claims should be looked to as these preferred embodiments are not intended to be the only embodiments within the scope of the claims.
Embodiments of the disclosure may be further understood with reference to the figures. The drawings are not necessarily to scale, especially the stacked layer views in which thicknesses are exaggerated so they are more easily seen.
In the illustrated embodiment, the inlay section 108 includes an integrated circuit (IC)/temperature sensor 116 centrally positioned between the tail section 102 and the fold-over section 110. The IC includes the temperature sensor that is in communication with an RFID transponder configured to wirelessly communicate with an RFID reader (not shown). In the illustrated embodiment, the RFID transponder includes two antenna arms 120 which extend laterally outward.
It is contemplated that, in other embodiments, an IC with an alternative configuration could be used. For example, some embodiments can include additional electrical components integrated in, or connected to, the IC. Further, the IC can be peripherally positioned within the inlay section 108, or positioned in the tail section 102, the fold-over section 110, or in any other portion of the RFID tag 100.
The RFID tag 100 further includes a thermally-conductive material 130 that extends longitudinally from the outward end 106 of the tail section 102 to a side of the fold-over section 110 opposite the outward end 106. The thermally-conductive material 130 crosses the IC 116 so that a portion of the thermally-conductive material 130 is in vertical alignment with the temperature sensor. In the illustrated embodiment the thermally-conductive material 130 is in contact with the IC/temperature sensor 116. The thermally-conductive material 130 includes a notched portion 132 with a reduced lateral width so that the thermally-conductive material 130 only overlaps one of the two antenna arms 120.
Looking to
In some embodiments an additional layer of adhesive may be included between the IC 116 and the thermally-conductive material 130, or between the IC 116 and the top layer 140. Still yet, other modes of connection between the layers are contemplated, both adhesive and non-adhesive, as well as other structural arrangements.
With continued reference to
Further, in the illustrated embodiment, the bottom layer 144 is a removable liner which is selectively secured to the thermally-conductive material 130 and can be peeled off of the RFID tag 100 to expose the bottom layer of adhesive 150. Once exposed, the bottom layer of adhesive 150 can be used to couple the RFID tag 100 to other materials or surfaces, or to couple other objects to the RFID tag 100.
Referring now to
By removing the bottom layer 144 from the RFID tag 100 prior to folding, the bottom layer of adhesive 150 can secure the fold-over section 110 to the inlay section 108, as shown in
In other embodiments, it is contemplated that an RFID transponder could be coupled to the upper surface or the lower surface of the inlay section rather than inside the flag between layers. The RFID transponder could also be coupled directly to the flag or positioned within an inlay formed in the flag section. Accordingly, the tail section and/or the flag section can be formed from a single layer of material or more that two layers of material in alternative embodiment. Still further, it is contemplated that in multilayer structures, the layers might be joined in other non-adhesive ways (for example, by heating the layers to form a connection between the layers).
Looking now to
The tail section 102 is further configured so that the distance between the RFID transponder in the flag section 104 and the metal object 160 is at least great enough to reduce the signal loss in which the RFID transponder is subjected to due to the proximity of the metal object 160. The distance between the RFID transponder and the metal object 160 can be a function of at least one of (1) the angle at which the tail section 102 projects away from the metal object 160, (2) the length of the tail section 102, and/or (3) the orientation and position of the RFID transponder.
In some embodiments, the separation between the RFID transponder and the metal object 160 may be greater than a minimum distance needed to eliminate the signal loss the RFID transponder is subjected to due to the properties of said nearby metal object 160. The magnitude of the minimum distance can vary as a function of at least one of the properties of the signal loss-causing object, properties of the tail section 102, the flag section 104, the thermally-conductive material 130, and specifications the RFID transponder itself.
In the configuration illustrated in
The thermal path 162 illustrated in
In the illustrated embodiment, the thermally-conductive material 130 of the RFID tag 100 is formed from graphite and has a greater thermal conductivity in the lateral and longitudinal directions than in the vertical direction (i.e., the direction perpendicular to the direction of extension of the various layers). This elevated longitudinal thermal conductivity enables, in part, the rapid transfer of thermal energy along the length of the tail section 102 and flag section 104 and to the IC/temperature sensor 116, thereby increasing the responsiveness of the temperature sensor to temperature changes of the metal object 160 as well as the accuracy. Further, the elevated longitudinal thermal conductivity of the thermally-conductive layer 130 can enable increased tail section 102 lengths so that the signal loss the RFID transponder is subjected to due to the proximity of the metal object 160 being reduced (i.e., the flag portion can be positioned further from the object).
Looking forward to
As shown by the recorded data, the length of the tail section can be correlated to the temperature detected by the temperature sensor. Specifically, the difference between the temperature detected by the temperature sensor and the temperature recorded at the surface of the metal object was greater for the RFID tag having a long tail section than it was for the RFID tag having a short tail section. In some embodiments, this systematic error can be compensated for with analytical processes that adjust the detected temperatures based, at least in part, on the length of a particular tail section. It is further contemplated that the difference between the temperature detected by the temperature sensor and the true temperature of the metal object can be compensated for with other features or methods (e.g., software interpretation).
In other embodiments, it is contemplated that alternative materials, including aluminum, graphene, silicone, ceramic-filled polyimide, or other materials with thermally-conductive properties can be used as the thermally-conductive material 130. Similarly to the tests with the RFID tag 100 having a graphite thermally-conductive layer 130, temperature-sensing RFID tags having aluminum, silicone, and ceramic-filled polyimide thermally-conductive layers were tested. The results of each of these tests are illustrated in
Returning now to
Each detachable section 272 is configured to be separated from the continuous sheet 270 at separation lines 274, which can be perforated for easy separation of the tags from one another. Similarly, in some embodiments, each RFID tag 200 can be separated from the additional sheet material 276 at separation lines 278. In this way each RFID tag 200 can be used individually.
In another embodiment, it is contemplated that separation lines 274 may not be perforated and a different method can be used to ease separation of each detachable sheet, including alternative modifications to the continuous sheet 270 or use of cutting mechanisms or methods (such as die cutting). The separation lines 278 around each RFID tag 200 may similarly vary. Further, it is contemplated that the additional sheet material 276 can be remain attached to the RFID tag 200 without.
Looking now to
The RFID tag 300 is formed from layered materials, similar to the construction illustrated with respect embodiments illustrated in
Referring now to
The tail section 402 can be folded on fold line 412 from a planar unfolded position (
Looking now to
In the illustrated embodiment, the thermally-conductive material 530 is formed from silicone and has a greater thermal conductivity in the vertical direction than in the lateral and longitudinal directions. Looking specifically to
In some embodiments, it is contemplated that a thermally sensitive RFID tag can utilize a plurality of different thermally-conductive materials. Further, an RFID tag can utilize at least one thermally-conductive material with superior lateral and longitudinal thermal conductivity and at least one thermally-conductive material with superior vertical thermal conductivity in conjunction at least with any of the embodiments described herein.
While various representative embodiments of improved RFID tags have been illustrated, many general principles disclosed herein are contemplated as being independently employable as well as in all workable permutations and combinations. Further, it should be appreciated that various other modifications and variations to the preferred embodiments can be made within the spirit and scope of the invention. Therefore, the invention should not be limited to the described embodiments. To ascertain the full scope of the invention, the following claims should be referenced.
This application claims the benefit of the filing date of U.S. Provisional Application No. 62/724,160 entitled “Temperature-Sensing RFID Tag” filed on Aug. 29, 2018, which is hereby incorporated by reference for all purposes as if set forth in its entirety herein
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/047730 | 8/22/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62724160 | Aug 2018 | US |