This application is the U.S. national phase of International Patent Application No. PCT/JP2016/001893 filed on Apr. 4, 2016 and is based on and incorporates herein by reference Japanese Patent Application No. 2015-79397 filed on Apr. 8, 2015.
The present disclosure relates to a temperature sensor, which senses a temperature of measurement-subject medium, and a mounting structure of the temperature sensor.
Previously, for example, the patent literature 1 proposes a pressure sensor. In this pressure sensor, a sensor unit, which outputs a sensor signal corresponding to a pressure, is installed to a case, and a housing is securely swaged against the case to integrate the case and the housing together. Specifically, in this pressure sensor, an introducing hole for introducing the measurement-subject medium is formed in the housing. The sensor unit is installed to the case such that the sensor unit is directly exposed to the measurement-subject medium, which is introduced through the introducing hole. Furthermore, a threaded portion is formed at an outer peripheral surface of the housing.
Here, it is possible to construct a temperature sensor by forming a resistance thermometer element(s), a resistance value of which changes depending on the temperature, at the sensor unit described above to output a sensor signal, which corresponds to the temperature. In this case, as shown in
However, the installation structure of the temperature sensor described above may have the following disadvantage. Specifically, a flow direction of the measurement-subject medium in the passage J60 significantly differs (about 90 degrees in the case of
The present disclosure is made in view of the above point, and it is an objective of the present disclosure to provide a temperature sensor, which can improve responsiveness thereof, and a mounting structure for such a temperature sensor.
In order to achieve the above objective, according to one aspect of the present disclosure, there is provided a temperature sensor including: a casing that includes a first case and a second case, which are integrally assembled, wherein the second case has an introducing hole, into which measurement-subject medium is introduced, and a threaded portion, which is formed in an outer peripheral surface of the second case; and a sensor unit that is placed in an inside of the casing and senses a temperature of the measurement-subject medium, which is introduced through the introducing hole. The threaded portion of the second case is threadably coupled to a threaded portion of an installation-subject member, which has a passage that conducts the measurement-subject medium, so that the casing is installed to the installation-subject member, and the sensor unit senses the temperature of the measurement-subject medium in the passage of the installation-subject member.
The second case is made of a metal material and is kept to have an electric potential that is the same as an electric potential of the installation-subject member by installing the second case to the installation-subject member, while the second case includes a projection that projects on an opposite side of the threaded portion of the second case, which is opposite from the first case. The projection is placed in the passage when the second case is installed to the installation-subject member. When an outer peripheral surface of the projection is viewed in a flow direction of the measurement-subject medium upon installation of the second case to the installation-subject member, an opening is formed in a visible area of the outer peripheral surface of the projection, while the projection includes a flow direction changing portion that changes a flow direction of the measurement-subject medium, which is introduced from the passage into the introducing hole through the opening, from a direction along the passage to a direction toward the sensor unit.
Accordingly, in a state where the temperature sensor is installed to the installation-subject member, the measurement-subject medium, which flows in the passage, is introduced into the introducing hole through the opening, and thereafter a flow direction of the measurement-subject medium is changed by the flow direction changing portion to flow toward the sensor unit. Therefore, the measurement-subject medium can be easily introduced to the sensor unit, and thereby the responsiveness of the sensor unit can be improved.
Furthermore, according to another aspect of the present disclosure, the second case is made of a metal material and is kept to have an electric potential that is the same as an electric potential of the installation-subject member by installing the second case to the installation-subject member, while the second case includes a projection that projects on an opposite side of the threaded portion of the second case, which is opposite from the first case. The projection projects into the passage when the second case is installed to the installation-subject member. When an outer peripheral surface of the projection is viewed in a flow direction of the measurement-subject medium upon installation of the second case to the installation-subject member, an opening is formed in a visible area of the outer peripheral surface of the projection. The sensor unit is located in an inside of the projection and is placed in the passage when the second case is installed to the installation-subject member.
With this configuration, when the measurement-subject medium is introduced into the introducing hole through the opening, the sensor unit is directly exposed to the measurement-subject medium. Thereby, the responsiveness of the sensor unit can be improved.
According to another aspect of the present disclosure, there is provided a temperature sensor installation structure, in which the temperature sensor described above is installed to the installation-subject member. The second case is installed to the installation-subject member such that the projection is placed in the passage.
Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. In each of the following embodiments, the same portions or equivalent portions will be indicated by the same reference signs.
A first embodiment of the present disclosure will be described with reference to the drawings. A temperature sensor of the present embodiment is suitable for sensing a temperature of, for example, engine oil.
As shown in
First of all, a structure of the molded member 20 will be described. The molded member 20 includes a circuit device 21, a sensor unit 22, a lead frame 23 and a molding resin 24 while the molding resin 24 seals the circuit device 21, the sensor unit 22 and the lead frame 23.
The circuit device 21 is electrically connected to the sensor unit 22 and executes a drive control operation of the sensor unit 22 and a predetermined process on a sensor signal that is outputted from the sensor unit 22. An IC chip, which includes a semiconductor integrated circuit formed on a silicon substrate, is used as the circuit device 21.
The sensor unit 22 is formed by, for example, a silicon substrate and is in a form of a plate member, which is shaped into a planar rectangular form. A sensor chip, which includes a sensing device 25 formed at one end part (a lower side in
As shown in
The circuit device 21 is electrically connected to the pads, which are formed at the other end portion of the sensor unit 22, through bonding wires 26. Furthermore, the circuit device 21 is electrically connected to the one end parts of the lead portions 23b through bonding wires 27. The bonding wires 26, 27 are made of, for example, gold or aluminum.
The circuit device 21, the sensor unit 22, the lead frame 23 and the bonding wires 26, 27 are sealed and integrated together by the molding resin 24. Specifically, these components are integrated by the molding resin 24 such that the one end part of the sensor unit 22, at which the sensing device 25 is formed, is exposed from the molding resin 24, and the other end parts of the lead portions 23b, which are located at the opposite side that is opposite from the one end parts of the lead portions 23b (the side connected to the circuit device 21 through the bonding wires 27), are exposed from the molding resin 24. The molding resin 24 is, for example, ordinary epoxy resin and is molded by, for example, transfer molding method that uses dies.
Furthermore, as discussed above, the sensor unit 22 is the plate member, which is shaped into the planar rectangular form, and the sensor unit 22 is sealed by the molding resin 24 such that the one end part of the sensor unit 22 is exposed from the molding resin 24. However, as shown in
Here, it should be noted that the molding resin 24 is not placed at one surface of the distal end part of the sensor unit 22, which extends perpendicular to the side surfaces 22a-22c, and an opposite surface of the distal end part of the sensor unit 22, which is opposite from the one surface. Furthermore, the gap 28, which is located between the molding resin 24 and the side surfaces 22a-22c of the sensor unit 22, is formed by, for example, laser processing after the molding resin 24 is formed such that the side surfaces 22a-22c of the sensor unit 22 are sealed by the molding resin 24. The structure of the molded member 20 has been described above.
As shown in
A recess 31 (see
Furthermore, the main case 30 includes a plurality of terminals 34, each of which is made of metal and is shaped into a rod form, to electrically connect the sensor unit 22 to, for example, an external circuit. Each of the terminals 34 are integrally molded together with the main case 30 by insert molding, so that each of the terminals 34 is held in the inside of the main case 30.
Specifically, each of the terminals 34 is held by the main case 30 such that one end part of the terminal 34 is exposed in the inside of the recess 31 at the main case 30, and the other end part of the terminal 34 projects into the opening 32 at the terminal 34. The other end part of the terminal 34, which projects into the opening 32, is electrically connected to, for example, the external circuit through an external wiring member, such as a wire harness (not shown). The structure of the main case 30 has been described above.
The connector case 10 is formed such that the molded member 20 is press fitted into the through-hole 33 that is formed in the main case 30. Specifically, the molded member 20 is press fitted into the through-hole 33 of the main case 30 such that the other end parts of the lead portions 23b are exposed in the recess 31, and the one end part (the sensing device 25) of the sensor unit 22 projects outward toward the opposite side of the body portion 30a, which is opposite from the main case 30.
In the recess 31, the one end part of each terminal 34 is electrically connected to the other end part of the corresponding lead portion 23b through, for example, welding. In this way, the sensor unit 22 is electrically connected to the terminals 34 through the circuit device 21 and the lead portions 23b, so that the sensor unit 22 is connected to the external circuit. Furthermore, a potting material 35, which protects a welded joint between the one end part of each terminal 34 and the other end part of the corresponding lead portion 23b, is placed in the recess 31 (see
Furthermore, in the main case 30, a groove 36 is formed at the opposite end part of the body portion 30a, which is opposite from the connector portion 30b, such that the groove 36 is in a ring form that surrounds the through-hole 33, and an O-ring 37 is placed in the groove 36.
Furthermore, a potting material 38 is placed between the molded member 20 and the main case 30 to seal a gap between the molded member 20 and the main case 30. The structure of the main case 30 has been described above.
When the housing 40 is assembled to the connector case 10, the casing 50 is formed, and there is formed the temperature sensor 100, in which the sensor unit 22 is placed in the casing 50. Specifically, the housing 40 is formed through cutting and/or cold forging of a metal material, such as stainless steel, SUS or aluminum. The housing 40 includes a receiving recess 41 and an extending portion 43, and an introducing hole 42, which is communicated with the receiving recess 41, is formed in the extending portion 43. The body portion 30a of the connector case 10 is inserted into the receiving recess 41 such that the sensor unit 22 is placed in the introducing hole 42, and an opening end part 44 of the receiving recess 41 of the housing 40 is swaged against the body portion 30a. Thereby, the connector case 10 and the housing 40 are assembled together.
In the present embodiment, the housing 40 corresponds to a second case of the present disclosure. Furthermore, the O-ring 37, which is placed in the groove 36 of the main case 30, is compressed by a swaging pressure that is exerted at the time of swaging the housing 40 against the connector case 10. In this way, leakage of the measurement-subject medium, which is introduced into the introducing hole 42, through a gap between the connector case 10 and the housing 40 is limited.
The extending portion 43 is shaped into a bottomed cylindrical tubular form such that a cover portion 43a is formed at a projecting distal end part (a distal end part that is opposite from the connector case 10 side) of the extending portion 43. A threaded portion 45, which is used to fix the housing 40 (the temperature sensor 100) to a installation-subject member 61, is formed at an outer peripheral surface of the extending portion 43. Furthermore, in the extending portion 43, a plurality of openings 47 is formed at a projection 46 that is located on an opposite side of the threaded portion 45, which is opposite from the connector case 10.
In the present embodiment, the openings 47 are respectively shaped into an ellipse form. Furthermore, as shown in
In the present embodiment, the projection 46 includes a wall surface 42a, which forms an introducing hole 42, in at least a part of a portion of the projection 46 that is opposed to a corresponding one of the openings 47 in a corresponding direction, which is perpendicular to the central axis O. That is, the openings 47 are formed such that at least the part of the portion of the projection 46, which is opposed to the corresponding one of the openings 47, is left in the projection 46. In the present embodiment, this wall surface 42a corresponds to the flow direction changing portion of the present disclosure.
In the present embodiment, all of the openings 47 are equally sized. Furthermore, the openings 47 are formed by, for example, press processing and/or cutting. In the case where the openings 47 are formed by the press processing, an auxiliary hole, which receives a jig used at the time of press processing, is formed before the time of forming the openings 47, so that the openings 47 can be easily formed by using the auxiliary hole.
As shown in
Furthermore, the opening 47 is placed at the upstream side in the flow direction of the measurement-subject medium when the temperature sensor 100 (the housing 40) is installed to the installation-subject member 61. In other words, the opening 47 is formed in a visible area of the outer peripheral surface 46a of the projection 46, which is visible at the time of viewing the outer peripheral surface 46a in the flow direction of the measurement-subject medium upon installation of the temperature sensor 100 (the housing 40) to the installation-subject member 61. In the present embodiment, the number of the openings 47 is three, and the temperature sensor 100 is installed such that one of the three openings 47 is placed in the visible area of the outer peripheral surface 46a. In the present embodiment, the number of the openings 47 is three, and these three openings 47 are arranged one after another at equal intervals. Therefore, one of the three openings 47 must be placed in the visible area of the outer peripheral surface 46a without a need for precise positioning of the openings 47.
When the temperature sensor 100 is installed to the installation-subject member 61 in the above-described manner, the measurement-subject medium, which flows in the passage 60, is introduced into the introducing hole 42 through the opening 47. Then, when the measurement-subject medium collides against the wall surface 42a, the flow direction of the measurement-subject medium is changed to a direction toward the sensor unit 22. Therefore, the measurement-subject medium can be easily introduced to the sensor unit 22, and thereby the responsiveness of the sensor unit 22 can be improved.
As discussed above, according to the present embodiment, the openings 47 are formed at the projection 46 of the housing 40, and the projection 46 includes the wall surface 42a that serves as the flow direction changing portion (the flow direction changing means), which changes the flow direction of the measurement-subject medium toward the sensor unit 22. Therefore, when the measurement-subject medium, which flows in the passage 60, is introduced into the introducing hole 42 through the opening 47, the measurement-subject medium collides against the wall surface 42a. Thereby, the flow direction of the measurement-subject medium is changed to the direction toward the sensor unit 22. Therefore, the introduction of the measurement-subject medium to the sensor unit 22 is eased, and thereby the responsiveness of the sensor unit 22 can be improved.
Hereinafter, this point will be specifically described with reference to
With reference to
Furthermore, in the present embodiment, the number of the openings 47 is the even number, and these openings 47 are arranged one after another at equal intervals in the circumferential direction. Therefore, at the time of installing the temperature sensor 100 to the installation-subject member 61, the temperature sensor 100 can be easily installed such that at least one of the openings 47 is placed in the visible area of the outer peripheral surface 46a of the projection 46, which is visible at the time of viewing the outer peripheral surface 46a in the flow direction of the measurement-subject medium upon installation of the temperature sensor 100 to the installation-subject member 61, and thereby the installation of the temperature sensor 100 can be eased. In other words, installation variations can be reduced.
Furthermore, the housing 40 is made of the metal material and is kept to have the electric potential that is the same as the electric potential of the installation-subject member 61 by installing the housing 40 to the installation-subject member 61. Therefore, it is possible to limit fluctuation of the electric potential of the housing 40, and thereby it is possible to limit the deterioration in the sensing accuracy of the sensor unit 22, which would be otherwise caused by the fluctuation of the electric potential of the housing 40.
Furthermore, the projection 46 includes the cover portion 43a. Therefore, when the measurement-subject medium, which is introduced into the introducing hole 42, collides against the wall surface 42a, the flow direction of the measurement-subject medium can be more easily changed to the direction toward the sensor unit 22 in comparison to the case where the cover portion 43a is absent, and thereby the responsiveness can be further improved.
The openings 47 are respectively shaped into the ellipse form. Therefore, it is possible to limit concentration of a stress at a predetermined location in comparison to a case where the opening 47 is shaped into a form, such as a rectangular form, which has a corner(s).
A second embodiment of the present disclosure will be described. The present embodiment is a modification of the first embodiment where the number of the openings 47 is changed from that of the first embodiment, and the rest of the present embodiment is the same as that of the first embodiment and thereby will not be described here for the sake of simplicity.
In the present embodiment, as shown in
More specifically, the plurality of openings 47 of the present embodiment includes a plurality (three in the present embodiment) of primary openings (a first set of openings) 47a, which are arranged one after another at equal intervals in the circumferential direction, as shown in
With this construction, at least one of the openings 47 (at least one of the primary openings 47a and the secondary openings 47b) can be more easily placed in the visible area of the outer peripheral surface 46a of the projection 46, which is visible at the time of viewing the outer peripheral surface 46a in the flow direction of the measurement-subject medium upon installation of the temperature sensor 100 to the installation-subject member 61. Furthermore, even in a case where the installation variation occurs at the time of installing the temperature sensor 100 to the installation-subject member 61, since the centers of the openings 47 of the sets (the circumferential positions of the center points 47ac of the primary openings 47a and the circumferential positions of the center points 47bc of the secondary openings 47b) do not coincide with each other, it is possible to reduce the variation in the angle of screwing relative to the opening 47 (positioned at the most upstream side), into which the measurement-subject medium can be most easily introduced.
A third embodiment of the present disclosure will be described. The present embodiment is a modification of the first embodiment where a flow direction changing portion (a flow direction changing means) is provided at the cover portion 43a, and the rest of the present embodiment is the same as that of the first embodiment and thereby will not be described here for the sake of simplicity.
In the present embodiment, as shown in
In this way, similar to the first embodiment, when the measurement-subject medium is introduced into the introducing hole 42 through the opening 47, the measurement-subject medium collides against the introducing member 48, and thereby, the flow direction of the measurement-subject medium is changed to the direction toward the sensor unit 22. Thus, the advantages, which are similar to those of the first embodiment can be achieved.
In the present embodiment, the flow direction of the measurement-subject medium is changed by the introducing member 48. Therefore, each of the openings 47 may be formed in an opposing wall surface of the projection 46, which is opposed to the introducing member 48. That is, the number of the openings 47 in the projection 46 may be set to four, and these openings 47 may be arranged one after another at equal intervals in the circumferential direction about the central axis O.
A fourth embodiment of the present disclosure will be described. The present embodiment is a modification of the first embodiment where the sensor unit 22 is placed at the projection 46, and the rest of the present embodiment is the same as that of the first embodiment and thereby will not be described here for the sake of simplicity.
In the present embodiment, as shown in
In this way, when the measurement-subject medium is introduced into the introducing hole 42 through the opening 47, the sensor unit 22 is directly exposed to the measurement-subject medium. Thereby, the responsiveness of the sensor unit 22 can be improved. Furthermore, according to the present embodiment, the projection 46 is placed in the inside of the passage 60 in addition to the sensor unit 22, Therefore, in comparison to the case where only the sensor unit 22 is placed in the inside of the passage 60, the projection 46 can implement the function of protecting the sensor unit 22 to limit destruction of the sensor unit 22. The mounting structure of the temperature sensor 100 can be appropriately used in an environment where the flow rate of the measurement-subject medium is slow.
The present disclosure should not be limited to the above embodiments, and the above embodiments may be modified in an appropriate manner within the scope of the present disclosure.
In each of the above embodiments, the shape of the respective openings 47 should not be limited to the ellipse form and may be changed to, for example, a circular form or a rectangular form. Furthermore, the number of the openings 47 may be changed in an appropriate manner.
In each of the above embodiments, the shape of the projection 46 (the extending portion 43) may be changed to a bottomed polygonal tubular form that is different from the bottomed cylindrical tubular form. Furthermore, in the first, second and fourth embodiments, the cover portion 43a may be eliminated from the projection 46. Specifically, the projection 46 may be shaped into a tubular form.
Furthermore, in each of the above embodiments, the sensor unit 22 may be modified to sense only the temperature.
Furthermore, in each of the above embodiments, the circuit device 21 and the sensor unit 22 may be integrated into a single chip.
Furthermore, the respective embodiments may be combined in any appropriate combination. For example, the second embodiment may be combined to the third or fourth embodiment to arrange the openings 47 into the staggered configuration.
Number | Date | Country | Kind |
---|---|---|---|
2015-079397 | Apr 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/001893 | 4/4/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/163109 | 10/13/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2290694 | Malone | Jul 1942 | A |
3526134 | Schaus | Sep 1970 | A |
5022766 | Phipps | Jun 1991 | A |
5241262 | Guthrie | Aug 1993 | A |
5348395 | Corr, II | Sep 1994 | A |
5670032 | Friese | Sep 1997 | A |
5871375 | Muzslay | Feb 1999 | A |
7841769 | Ma | Nov 2010 | B2 |
8192078 | Gebauer | Jun 2012 | B2 |
8256956 | Suzuki | Sep 2012 | B2 |
9709461 | Lenferink | Jul 2017 | B2 |
9841335 | Rueth | Dec 2017 | B2 |
20040227636 | Gul | Nov 2004 | A1 |
20050038172 | Nimberger | Feb 2005 | A1 |
20160011031 | Asano et al. | Jan 2016 | A1 |
20170045435 | Sugiyama | Feb 2017 | A1 |
20170211454 | Matsuoka | Jul 2017 | A1 |
20180094989 | Jackson | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
50-027583 | Mar 1975 | JP |
62-203451 | Dec 1987 | JP |
2008-064732 | Mar 2008 | JP |
2009-014484 | Jan 2009 | JP |
2014-016188 | Jan 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20180031427 A1 | Feb 2018 | US |