The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation or continuation-in-part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003, available at http://www.uspto.gov/web/offices/com/sol/og/2003/week11/patbene.htm. The present Applicant Entity (hereinafter “Applicant”) has provided above a specific reference to the application(s) from which priority is being claimed as recited by statute. Applicant understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, Applicant understands that the USPTO's computer programs have certain data entry requirements, and hence Applicant is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s).
In an aspect, a system includes, but is not limited to, a substantially thermally sealed storage container, including: an outer assembly, including one or more sections of ultra efficient insulation material substantially defining at least one thermally sealed storage region, wherein the outer assembly and the one or more sections of ultra efficient insulation material substantially define a single access aperture to the at least one thermally sealed storage region; and an inner assembly, including at least one heat sink unit within the at least one thermally sealed storage region, and at least one stored material dispenser unit, wherein the at least one stored material dispenser unit includes one or more interlocks.
In an aspect, a system includes, but is not limited to, a substantially thermally sealed storage container, including: an outer assembly, including an outer wall substantially defining a substantially thermally sealed storage container, the outer wall substantially defining a single outer wall aperture; an inner wall substantially defining a substantially thermally sealed storage region within the storage container, the inner wall substantially defining a single inner wall aperture; a gap between the inner wall and the outer wall; at least one section of ultra efficient insulation material within the gap; a conduit connecting the single outer wall aperture with the single inner wall aperture; a single access aperture to the substantially thermally sealed storage region, wherein the single access aperture is formed by the end of the conduit; and an inner assembly, including one or more heat sink units within the substantially thermally sealed storage region; and at least one stored material dispenser unit. In addition to the foregoing, other system aspects are described in the claims, drawings, and text forming a part of the present disclosure.
In an aspect, a method includes, but is not limited to, a method of assembling contents of a substantially thermally sealed storage container including: inserting, through an access aperture of a substantially thermally sealed storage container, a stored material egress unit; securing the stored material egress unit to a first storage region alignment unit within the storage region; inserting, through the access aperture, a stored material dispenser unit; operably connecting the stored material dispenser unit to the stored material egress unit; inserting, through the access aperture, at least one stored material retention unit; and wherein the storage region, the stored material egress unit, the stored material dispenser unit, the at least one stored material retention unit, and the stored material retention unit stabilizer are maintained within a predetermined temperature range during assembly. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
With reference now to
The substantially thermally sealed storage container 100 may include a base 160, which may be configured to provide stability or balance to the substantially thermally sealed storage container 100. For example, the base 160 may provide mass and therefore ensure stability of the substantially thermally sealed storage container 100 in an upright position, or a position for its intended use. For example, the base 160 may provide mass and form a stable support structure for the substantially thermally sealed storage container 100. In some embodiments, the substantially thermally sealed storage container 100 is configured to be maintained in a position so that the single access aperture to a substantially thermally sealed storage region is commonly maintained substantially at the highest elevated surface of the substantially thermally sealed storage container 100. In embodiments such as that depicted in
The substantially thermally sealed storage container 100 can include one or more sealed access ports 120 to the gap between the inner wall and outer wall 150. Such access ports may, for example, be remaining from the fabrication of the substantially thermally sealed storage container 100. Such access ports may, for example, be configured for access during refurbishment of the substantially thermally sealed storage container 100.
The substantially thermally sealed storage container 100 may include, in some embodiments, one or more handles attached to an exterior surface of the container 100, wherein the handles are configured for transport of the container 100. The handles may be fixed on the surface of the container, for example welded, fastened or glued to the surface of the container. The handles may be operably attached but not fixed to the surface of the container, such as with a harness, binding, hoop or chain running along the surface of the container. The handles may be positioned to retain the container 100 with the conduit 130 on the top of the container 100 during transport to minimize thermal transfer from the exterior of the container 100 through the conduit 130.
The substantially thermally sealed storage container 100 may include electronic components. Although it may be desirable, depending on the embodiment, to minimize thermal emissions within the container 100, electronics with thermal emissions may be operably attached to the exterior of the container 100. For example, one or more positioning devices, such as GPS devices, may be attached to the exterior of the container. One or more positioning devices may be configured as part of a system including, for example, monitors, displays, circuitry, power sources, an operator unit, and transmission units. Depending on the embodiment, one or more power sources may be attached to an exterior surface of the container 100, wherein the power source is configured to supply power to circuitry within the container. For example, a solar unit may be attached to the exterior surface of the container 100. For example, a battery unit may be attached to the exterior surface of the container 100. For example, one or more wires may be positioned within the conduit 130 to supply power to circuitry within the container 100. A power source may include wirelessly transmitted power sources, such as described in U.S. patent application Ser. No. 2005/0143787 to Boveja, titled “Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator,” which is herein incorporated by reference. A power source may include a magnetically transmitted power source. Depending on the embodiment, one or more temperature sensors may be attached to an exterior surface of the container 100. The one or more temperature sensors may be configured, for example, to display the ambient temperature at the surface of the container. The one or more temperature sensors may be configured, for example, to transmit data to one or more system. The one or more temperature sensors may be configured, for example, as part of a temperature monitoring system.
Depending on the embodiment, one or more transmission units may be operably attached to the container 100. For example, one or more transmission units may be operably attached to the exterior surface of the container 100. For example, one or more transmission units may be operably attached to an interior unit within the container 100 (see
The outer assembly may include a conduit 130 connecting the single outer wall aperture 290 with the single inner wall aperture 280. The outer assembly and the one or more sections of ultra efficient insulation material may substantially define a single access aperture, and may include a conduit 130 extending from an exterior surface of the storage container to an interior surface of the at least one thermally sealed storage region 220. The outer assembly and the one or more sections of ultra efficient insulation material may substantially define a single access aperture, and may include a conduit 130 surrounding a single access aperture region, wherein the exterior region 110 extends from an exterior surface of the storage container 100 into a region adjacent to the exterior the container 100. In some embodiments, the conduit 130 may extend beyond the outer wall 150 of the container 100, and include an external region 110. The conduit 130 may be configured to substantially define a tubular structure. The conduit 130 may be configured to include an internal surface 240. The conduit 130 may be configured as an elongated thermal pathway within the outer wall 150 of the container 100. The conduit 130 may be fabricated of a variety of materials, depending on the embodiment. For example, the conduit 130 may be fabricated from metal, plastic, fiberglass or a composite relative to the requirements of toughness, durability, stability, or cost associated with a particular embodiment. In some embodiments, the conduit 130 may be fabricated from aluminum. In some embodiments, the conduit 130 may be fabricated from stainless steel. The conduit may include an elongated region 230, which may be fabricated from the same or distinct material as the conduit 130.
In some embodiments, an outer assembly includes one or more sections of ultra efficient insulation material substantially defining at least one thermally sealed storage region 220. For example, the ultra efficient insulation material may be of a size and shape to substantially define at least one thermally sealed storage region 220. For example, the ultra efficient insulation material may be of suitable hardness and toughness to substantially define at least one thermally sealed storage region 220. In some embodiments, the outer assembly and the one or more sections of ultra efficient insulation material substantially define a single access aperture to the at least one thermally sealed storage region 220.
The at least one thermally sealed storage region 220 is configured to be maintained within a predetermined temperature range. Depending on the heat loss from the container, the volume of the at least one thermally sealed storage region 220, the volume and thermal absorption capacity of the heat sink material, the predetermined maintenance temperature range of the at least one thermally sealed storage region 220, and the ambient temperature in the region external to the container, the length of time for the at least one thermally sealed storage region 220 to remain within the predetermined maintenance temperature range may be calculated using standard techniques. See Demko et al., “Design tool for cryogenic thermal insulation systems,” Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC, 53 (2008), which is incorporated herein by reference. Therefore, various embodiments may be designed and configured to provide at least one thermally sealed storage region 220 remaining within the predetermined maintenance temperature range relative to the volume of the thermally sealed storage region 220, the volume of a particular included heat sink material, the predetermined maintenance temperature range of the at least one thermally sealed storage region 220, and the ambient temperature in the region external to the container. For example, a substantially thermally sealed storage container 100 may be configured to maintain at least one thermally sealed storage region 220 at a temperature substantially between approximately 2 degrees Centigrade and approximately 8 degrees Centigrade for a period of 30 days. For example, for a container with an internal volume of 25 cubic liters including sufficient ultra efficient insulation material, 7 kilograms (kg) of purified water ice may be sufficient to maintain a temperature within the storage region 200 between approximately 2 degrees Centigrade and approximately 4 degrees Centigrade for a period of 30 days in an ambient external temperature of approximately 30 degrees Centigrade.
Some embodiments may include at least one temperature indicator. Temperature indicators may be located at multiple locations relative to the container. Temperature indicators may include temperature indicating labels, which may be reversible or irreversible. Temperature indicators suitable for some embodiments may include, for example, the Environmental Indicators sold by ShockWatch Company, with headquarters in Dallas Tex., the Temperature Indicators sold by Cole-Palmer Company of Vernon Hills Ill. and the Time Temperature Indicators sold by 3M Company, with corporate headquarters in St. Paul Minn., the brochures for which are each hereby incorporated by reference. Temperature indicators suitable for some embodiments may include time-temperature indicators, such as those described in U.S. Pat. Nos. 5,709,472 and 6,042,264 to Prusik et al., titled “Time-temperature indicator device and method of manufacture” and U.S. Pat. No. 4,057,029 to Seiter, titled “Time-temperature indicator,” each of which is herein incorporated by reference. Temperature indicators may include, for example, chemically-based indicators, temperature gauges, thermometers, bimetallic strips, or thermocouples.
The inner wall 200 and the outer wall 150 of the substantially thermally sealed storage container 100 may be fabricated from distinct or similar materials. The inner wall 200 and the outer wall 150 may be fabricated from any material of suitable hardness, strength, durability, cost or composition as appropriate to the embodiment. In some embodiments, one or both of the inner wall 200 and the outer wall 150 may be fabricated from stainless steel, or a stainless steel alloy. In some embodiments, one or both of the inner wall 200 and the outer wall 150 may be fabricated from aluminum, or an aluminum alloy. In some embodiments, one or both of the inner wall 200 and the outer wall 150 may be fabricated from fiberglass, or a fiberglass composite. In some embodiments, one or both of the inner wall 200 and the outer wall 150 may be fabricated from suitable plastic, which may include acrylonitrile butadiene styrene (ABS) plastic.
The term “ultra efficient insulation material,” as used herein, may include one or more type of insulation material with extremely low heat conductance and extremely low heat radiation transfer between the surfaces of the insulation material. The ultra efficient insulation material may include, for example, one or more layers of thermally reflective film, high vacuum, aerogel, low thermal conductivity bead-like units, disordered layered crystals, low density solids, or low density foam. In some embodiments, the ultra efficient insulation material includes one or more low density solids such as aerogels, such as those described in, for example: Fricke and Emmerling, Aerogels—preparation, properties, applications, Structure and Bonding 77: 37-87 (1992); and Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of Materials Science 24: 3221-3227 (1989), each of which is incorporated herein by reference. As used herein, “low density” may include materials with density from about 0.01 g/cm3 to about 0.10 g/cm3, and materials with density from about 0.005 g/cm3 to about 0.05 g/cm3. In some embodiments, the ultra efficient insulation material includes one or more layers of disordered layered crystals, such as those described in, for example: Chiritescu et al., Ultralow thermal conductivity in disordered, layered WSe2 crystals, Science 315: 351-353 (2007), which is herein incorporated by reference. In some embodiments, the ultra efficient insulation material includes at least two layers of thermal reflective film separated, for example, by at least one of: high vacuum, low thermal conductivity spacer units, low thermal conductivity bead like units, or low density foam. In some embodiments, the ultra efficient insulation material may include at least two layers of thermal reflective material and at least one spacer unit between the layers of thermal reflective material. For example, the ultra-efficient insulation material may include at least one multiple layer insulating composite such as described in U.S. Pat. No. 6,485,805 to Smith et al., titled “Multilayer insulation composite,” which is herein incorporated by reference. See also “Thermal Performance of Multilayer Insulations—Final Report,” Prepared for NASA 5 Apr. 1974, which is incorporated herein by reference. See also: Hedayat, et al., “Variable Density Multilayer Insulation for Cryogenic Storage,” (2000); “High-Performance Thermal Protection Systems Final Report,” Vol II, Lockheed Missiles and Space Company, Dec. 31, 1969; and “Liquid Propellant Losses During Space Flight,” NASA report No. 65008-00-04 October 1964, which are herein incorporated by reference. For example, the ultra-efficient insulation material may include at least one metallic sheet insulation system, such as that described in U.S. Pat. No. 5,915,283 to Reed et al., titled “Metallic sheet insulation system,” which is incorporated herein by reference. For example, the ultra-efficient insulation material may include at least one thermal insulation system, such as that described in U.S. Pat. No. 6,967,051 to Augustynowicz et al., titled “Thermal insulation systems,” which is incorporated herein by reference. For example, the ultra-efficient insulation material may include at least one rigid multilayer material for thermal insulation, such as that described in U.S. Pat. No. 7,001,656 to Maignan et al., titled “Rigid multilayer material for thermal insulation,” which is herein incorporated by reference. See also Moshfegh, “A new thermal insulation system for vaccine distribution,” Journal of Building Physics 15:226-247 (1992), which is incorporated herein by reference.
In some embodiments, an ultra efficient insulation material includes at least one material described above and at least one superinsulation material. As used herein, a “superinsulation material” may include structures wherein at least two floating thermal radiation shields exist in an evacuated double-wall annulus, closely spaced but thermally separated by at least one poor-conducting fiber-like material.
In some embodiments, one or more sections of the ultra efficient insulation material includes at least two layers of thermal reflective material separated from each other by magnetic suspension. The layers of thermal reflective material may be separated, for example, by magnetic suspension methods including magnetic induction suspension or ferromagnetic suspension. For more information regarding magnetic suspension systems, see Thompson, Eddy current magnetic levitation models and experiments, IEEE Potentials, February/March 2000, 40-44, and Post, Maglev: a new approach, Scientific American, January 2000, 82-87, which are each incorporated herein by reference. Ferromagnetic suspension may include, for example, the use of magnets with a Halbach field distribution. For more information regarding Halbach machine topologies and related applications, see Zhu and Howe, Halbach permanent magnet machines and applications: a review, IEE Proc.-Electr. Power Appl. 148: 299-308 (2001), which is herein incorporated by reference.
In some embodiments, an ultra efficient insulation material may include at least one multilayer insulation material. For example, an ultra efficient insulation material may include multilayer insulation material such as that used in space program launch vehicles, including by NASA. See, e.g., Daryabeigi, Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating, Journal of Spacecraft and Rockets 39: 509-514 (2002), which is herein incorporated by reference. Some embodiments may include one or more sections of ultra efficient insulation material comprising at least one layer of thermal reflective material and at least one spacer unit adjacent to the at least one layer of thermal reflective material. In some embodiments, one or more sections of ultra efficient insulation material may include at least one layer of thermal reflective material and at least one spacer unit adjacent to the at least one layer of thermal reflective material. The low thermal conductivity spacer units may include, for example, low thermal conductivity bead-like structures, aerogel particles, folds or inserts of thermal reflective film. There may be one layer of thermal reflective film or more than two layers of thermal reflective film. Similarly, there may be greater or fewer numbers of low thermal conductivity spacer units depending on the embodiment. In some embodiments there may be one or more additional layers within or in addition to the ultra efficient insulation material, such as, for example, an outer structural layer or an inner structural layer. An inner or an outer structural layer may be made of any material appropriate to the embodiment, for example an inner or an outer structural layer may include: plastic, metal, alloy, composite, or glass. In some embodiments, there may be one or more regions of high vacuum between layers of thermal reflective film and/or surrounding layers of thermal reflective film. Such regions of high vacuum may include substantially evacuated space. In some embodiments, the ultra efficient insulation material includes a plurality of layers of multilayer insulation, and substantially evacuated space surrounding the plurality of layers of multilayer insulation. For example, substantially evacuated space may have pressure less than or equal to 5×10−4 torr.
The substantially thermally sealed storage container 100 includes an inner assembly, which includes one or more heat sink units within the substantially thermally sealed storage region 220, and at least one stored material dispenser unit. The inner assembly includes at least one stored material dispenser unit, which includes one or more interlocks.
The heat sink units are thermally connected to the substantially thermally sealed storage region 220, such as by having exposed surfaces within the substantially thermally sealed storage region 220. Such exposed surfaces serve as thermal conductors between the substantially thermally sealed storage region 220 and the heat sink units. The one or more heat sink units include one or more heat sink material, such as dry ice, wet ice, liquid nitrogen, or other heat sink material. The term “heat sink unit,” as used herein, includes one or more units that absorb thermal energy. See, for example, U.S. Pat. No. 5,390,734 to Voorhes et al., titled “Heat Sink,” U.S. Pat. No. 4,057,101 to Ruka et al., titled “Heat Sink,” U.S. Pat. No. 4,003,426 to Best et al., titled “Heat or Thermal Energy Storage Structure,” and U.S. Pat. No. 4,976,308 to Faghri titled “Thermal Energy Storage Heat Exchanger,” which are each incorporated herein by reference. Heat sink units may include, for example: units containing frozen water or other types of ice; units including frozen material that is generally gaseous at ambient temperature and pressure, such as frozen carbon dioxide (CO2); units including liquid material that is generally gaseous at ambient temperature and pressure, such as liquid nitrogen; units including artificial gels or composites with heat sink properties; units including phase change materials; and units including refrigerants. See, for example: U.S. Pat. No. 5,261,241 to Kitahara et al., titled “Refrigerant,” U.S. Pat. No. 4,810,403 to Bivens et al., titled “Halocarbon Blends for Refrigerant Use,” U.S. Pat. No. 4,428,854 to Enjo et al., titled “Absorption Refrigerant Compositions for Use in Absorption Refrigeration Systems,” and U.S. Pat. No. 4,482,465 to Gray, titled “Hydrocarbon-Halocarbon Refrigerant Blends,” which are each herein incorporated by reference. In some embodiments, the heat sink units include water ice, or a mixture of water and ice. In some embodiments, the heat sink units may include purified water, such as deionized or degassed water, or ice made from purified water.
In some embodiments, there are a plurality of heat sink units 300 distributed within the substantially thermally sealed storage region 200, wherein the plurality of heat sink units 300 are configured to form material storage regions 320 between the heat sink units 300. For example,
In some embodiments, such as depicted in
In some embodiments, such as depicted in
In some embodiments, a stored material dispenser unit 400 includes at least one storage unit exchange unit 410, wherein the at least one storage unit exchange unit 410 is of a size and shape to contain a single stored unit, at least one gear mechanism operably attached to the at least one storage unit exchange unit 410, and a control mechanism 430, wherein the control mechanism 430 includes a gear mechanism operably attached to the at least one storage unit exchange unit 410.
In some embodiments, the stored material dispenser unit 400 may include at least one surface configured to reversibly attach to a surface of a stored material egress unit. In some embodiments, the stored material dispenser unit 400 may include at least one surface configured to reversibly attach to a stored material egress unit. In some embodiments, the stored material dispenser unit 400 may include at least one surface configured to reversibly attach to a surface of a stored material holding unit and at least one surface configured to reversibly attach to a surface of a stored material stabilizer unit. In some embodiments, the stored material dispenser unit 400 may include at least one surface configured to reversibly attach to a stored material holding unit and at least one surface configured to reversibly attach to a stored material stabilizer unit. For example, a stored material dispenser unit 400 may include one or more attachment regions 480 configured to engage one or more fasteners between a stored material dispenser unit 400 and another unit. In some embodiments, the stored material dispenser unit 400 may include projections 460 configured to align and maintain the position of the stored material dispenser unit 400 and another unit. In some embodiments, the stored material dispenser unit 400 may include one or more holes or indentations 470 configured to mate with a hooked rod during the positioning of the stored material dispenser unit 400 within the storage region 200.
As shown in
Some embodiments include one or more core stabilizer 1400, such as illustrated in
In some embodiments, one or more electronic elements are arranged along the length of the sore stabilizer 1400 as illustrated in
Depending on the embodiment, a substantially thermally sealed storage container 100 may include one or more sensors. The sensors may be located internally to the container, for example within the conduit 130, within the storage region 220 such as operably attached to a surface of the core stabilizer 1400. For example, a substantially thermally sealed storage container 100 may include one or more sensors of radio frequency identification (“RFID”) tags to identify material within the at least one substantially thermally sealed storage region. RFID tags are well known in the art, for example in U.S. Pat. No. 5,444,223 to Blama, titled “Radio frequency identification tag and method,” which is herein incorporated by reference. For example, a substantially thermally sealed storage container 100 may include one or more sensors such as a physical sensor component such as described in U.S. Pat. No. 6,453,749 to Petrovic et al., titled “Physical sensor component,” which is herein incorporated by reference. For example, a substantially thermally sealed storage container 100 may include one or more sensors such as a pressure sensor such as described in U.S. Pat. No. 5,900,554 to Baba et al., titled “Pressure sensor,” which is herein incorporated by reference. For example, a substantially thermally sealed storage container 100 may include one or more sensors such as a vertically integrated sensor structure such as described in U.S. Pat. No. 5,600,071 to Sooriakumar et al., titled “Vertically integrated sensor structure and method,” which is herein incorporated by reference. For example, a substantially thermally sealed storage container 100 may include one or more sensors such as a system for determining a quantity of liquid or fluid within a container, such as described in U.S. Pat. No. 5,138,559 to Kuehl et al., titled “System and method for measuring liquid mass quantity,” U.S. Pat. No. 6,050,598 to Upton, titled “Apparatus for and method of monitoring the mass quantity and density of a fluid in a closed container, and a vehicular air bag system incorporating such apparatus,” and U.S. Pat. No. 5,245,869 to Clarke et al., titled “High accuracy mass sensor for monitoring fluid quantity in storage tanks,” each of which is herein incorporated by reference.
A substantially thermally sealed container 100 may include one or more light sources positioned to illuminate the substantially thermally sealed storage region 220. Although thermal transfer of energy is a consideration for a light source positioned to illuminate the substantially thermally sealed storage region 220, multiple types and configurations are possible depending on the embodiment. For example, in some embodiments, an LED light source may be positioned within the substantially thermally sealed storage region 220. For example, a light source may be operably connected to the conduit 130 and positioned to illuminate the substantially thermally sealed storage region 220. For example, a light source may be operably connected to a storage region alignment unit 310 within the substantially thermally sealed storage region 220. For example, a light source may be operably connected to a core stabilizer 1400. For example, a light source may be operably connected to an egress unit 600. For example, a light source may be operably connected to a stored material removal unit 1500.
A substantially thermally sealed container 100 may include one or more optical sensors within the storage region 220, the one or more optical sensors oriented to detect stored material. A substantially thermally sealed container 100 may include one or more optical sensors within the storage region 220, the one or more optical sensors oriented to detect stored material within one or more of the at least one stored material dispenser unit 400. For example, one or more optical sensors may be operably connected to a storage region alignment unit 310 within the substantially thermally sealed storage region 220. For example, one or more optical sensors may be operably connected to a core stabilizer 1400. For example, one or more optical sensors may be operably connected to an egress unit 600. For example, one or more optical sensors may be operably connected to a stored material removal unit 1500.
A method of assembling the contents of a substantially thermally sealed container, such as the assemblies illustrated in
For example, some embodiments include: reducing the temperature of the storage region within the substantially thermally sealed storage container to below 0 degrees Centigrade; elevating the temperature of the storage region within the substantially thermally sealed storage container to substantially between approximately 2 degrees Centigrade and approximately 8 degrees Centigrade; inserting, through the access aperture, a stored material retention unit containing stored material, the stored material retention unit containing stored material having a temperature substantially between approximately 2 degrees Centigrade and approximately 8 degrees Centigrade; and securing the stored material retention unit containing stored material to the stored material dispenser unit.
In some embodiments, the method includes inserting, through an access aperture of a substantially thermally sealed storage container, a stored material egress unit which includes inserting the stored material egress unit with a hooked rod. In some embodiments, the method includes inserting, through an access aperture of a substantially thermally sealed storage container, a stored material egress unit wherein the stored material egress unit is maintained at a temperature substantially between 2 degrees Centigrade and 8 degrees Centigrade. For example, the stored material egress unit may be maintained at a temperature substantially between 2 degrees Centigrade and 4 degrees Centigrade.
In some embodiments, the securing the stored material egress unit to a first storage region alignment unit within the storage region includes engaging the stored material egress unit with a surface of the first storage region alignment unit, and reversibly securing the stored material egress unit to the surface of the first storage region alignment unit. In some embodiments, the securing the stored material egress unit to a first storage region alignment unit within the storage region includes engaging the stored material egress unit with a first storage region alignment unit at a location where a surface of the second storage region alignment unit is configured for attachment. In some embodiments, the securing the stored material egress unit to a first storage region alignment unit within the storage region includes securing the stored material egress unit to an internal surface of the first alignment unit, wherein the first alignment unit is positioned opposite to the access aperture.
In some embodiments, the inserting, through the access aperture, a stored material dispenser unit includes inserting, through the access aperture, a stored material dispenser unit with a hooked rod. In some embodiments, the method includes inserting, through an access aperture of a substantially thermally sealed storage container, a stored material dispenser unit wherein the stored material dispenser unit is maintained at a temperature substantially between 2 degrees Centigrade and 8 degrees Centigrade. For example, the stored material dispenser unit may be maintained at a temperature substantially between 2 degrees Centigrade and 4 degrees Centigrade.
In some embodiments, the operably connecting the stored material dispenser unit to the stored material egress unit includes positioning the stored material dispenser unit in alignment with the stored material egress unit. In some embodiments, the operably connecting the stored material dispenser unit to the stored material egress unit includes connecting the stored material dispenser unit with the stored material egress unit with fasteners. For example, the operably connecting the stored material dispenser unit to the stored material egress unit may include connecting the stored material dispenser unit with the stored material egress unit with screw-type fasteners. For example, the operably connecting the stored material dispenser unit to the stored material egress unit may include connecting the stored material dispenser unit with the stored material egress unit with magnetic fasteners. For example, the operably connecting the stored material dispenser unit to the stored material egress unit may include connecting the stored material dispenser unit with the stored material egress unit with nail-type fasteners.
In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes inserting, through the access aperture, at least one stored material retention unit wherein the stored material retention unit is maintained at a temperature substantially between 2 degrees Centigrade and 8 degrees Centigrade. For example, the stored material retention unit may be maintained at a temperature substantially between 2 degrees Centigrade and 4 degrees Centigrade. In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes inserting, through the access aperture, more than one stored material retention unit. In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes inserting, through the access aperture, at least one stored material retention unit including stored material. In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes inserting, through the access aperture, at least one stored material retention unit including vaccine vials. In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes inserting, through the access aperture, at least one stored material retention unit including biological material. In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes inserting, through the access aperture, at least one stored material retention unit with a hooked rod. In some embodiments, the inserting, through the access aperture, at least one stored material retention unit includes aligning the at least one stored material retention unit with brackets attached to the first storage region alignment unit, and allowing gravity to move the at least one stored material retention unit along a pathway defined by the brackets. (See, e.g.
Some embodiments of the method further include operably connecting the at least one stored material retention unit to the stored material dispenser unit. In some embodiments, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include securing the at least one stored material retention unit to a surface of the second storage region alignment unit. In some embodiments, the operably connecting at least one stored material retention unit to the stored material dispenser unit includes connecting the stored material dispenser unit with the stored material egress unit with fasteners. In some embodiments, the operably connecting at least one stored material retention unit to the stored material dispenser unit includes reversibly securing the at least one stored material retention unit to the stored material dispenser unit. For example, the operably connecting at least one stored material retention unit to the stored material dispenser unit may include connecting the at least one stored material retention unit to the stored material dispenser unit with screw-type fasteners. For example, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include connecting the at least one stored material retention unit to the stored material dispenser unit with magnetic fasteners. For example, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include connecting the at least one stored material retention unit to the stored material dispenser unit with nail-type fasteners. In some embodiments, the operably connecting at least one stored material retention unit to the stored material dispenser unit includes connecting the stored material dispenser unit with the stored material egress unit by mating one or more surfaces of the at least one stored material retention unit to one or more surfaces of the stored material dispenser unit. In some embodiments, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include engaging at least one surface of the at least one stored material retention unit with at least one surface of the stored material dispenser unit, and reversibly securing the at least one stored material retention unit to the stored material dispenser unit. In some embodiments, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include engaging at least one surface of the at least one stored material retention unit with at least one surface of the stored material dispenser unit, wherein the engaging aligns the at least one stored material retention unit with an interlock of the stored material dispenser unit so as to orient a unit of stored material within the at least one stored material dispenser unit with an interlock region of the interlock, and engaging at least one surface of the at least one stored material retention unit with a surface of the second storage region alignment unit. In some embodiments, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include securing the at least one stored material retention unit in vertical alignment with at least one additional stored material retention unit. In some embodiments, the operably connecting the at least one stored material retention unit to the stored material dispenser unit may include securing the at least one stored material retention unit in an orientation to allow progression of stored material into the stored material dispenser unit.
In some embodiments, the method includes: inserting, through the access aperture, a stored material retention unit stabilizer; and placing the stored material retention unit stabilizer adjacent to one of the at least one stored material retention unit, the stored material dispenser unit and a second storage region alignment unit within the storage region. Embodiments of the method may include inserting, through the access aperture, a stored material retention unit stabilizer with a hooked rod. Embodiments of the method may include placing the stored material retention unit stabilizer adjacent to one of the at least one stored material retention unit, the stored material dispenser unit and a second storage region alignment unit within the storage region wherein the placing includes: aligning the at least one surface of the stored material retention unit stabilizer with at least one surface of the stored material dispenser unit, wherein the at least one surface of the stored material retention unit stabilizer and the at least one surface of the stored material dispenser unit are configured to mate; compressing the stored material retention unit stabilizer; aligning the stored material retention unit stabilizer with a predetermined location of a surface of the second storage region alignment unit; and releasing the compression on the stored material retention unit stabilizer.
In some embodiments, the method includes placing a cover over an exterior of the access aperture, wherein the cover is configured to reversibly mate with a surface of the access aperture. For example, placing a cover over an exterior of the access aperture may be desirable prior to storage or transport of the container.
In some embodiments, the method includes: inserting a stored material dispenser unit operator into the storage region; and engaging at least one surface of the stored material dispenser unit operator with a stored material dispenser unit, wherein the engaging surfaces of the stored material dispenser unit operator and the stored material dispenser unit are configured to reversibly mate.
In some embodiments, the method includes: inserting, through the access aperture, a core stabilizer; and securing the core stabilizer to a surface of the second storage region alignment unit, so that the core stabilizer functionally extends the access aperture into the storage region.
In some embodiments, the method includes: inserting, through the access aperture of the substantially thermally sealed storage container, a stored material removal unit; and aligning the stored material removal unit with the first storage region alignment unit.
The method may also, depending on the embodiment, include removing stored material from the storage region through the access aperture with a stored material removal unit.
In some embodiments, the method includes: disengaging the stored material retention unit stabilizer from the stored material dispenser unit; disengaging at least one stored material retention unit from the stored material dispenser unit; and removing the at least one stored material retention unit from the interior of the container through the access aperture. The method may also include: inserting, through the access aperture, at least one additional stored material retention unit; securing the at least one additional stored material retention unit to the stored material dispenser unit; and placing the stored material retention unit stabilizer adjacent to one of the at least one additional stored material retention unit, the stored material dispenser unit and a surface of the second storage region alignment unit; wherein the storage region, the stored material egress unit, the stored material dispenser unit, the additional at least one stored material retention unit, and the stored material retention unit stabilizer are maintained within a predetermined temperature range during assembly.
In some embodiments, the method includes: adding water to at least one heat sink unit within the storage region, wherein the water is at a temperature substantially between approximately 85 degrees Centigrade and approximately 100 degrees Centigrade; sealing the at least one heat sink unit; cooling the storage region and the at least one heat sink unit to below 0 degrees Centigrade; and warming the storage region to a temperature within a predetermined temperature range above 0 degrees Centigrade. The method may include sealing the heat sink unit while the water is at a temperature substantially between approximately 85 degrees Centigrade and approximately 100 degrees Centigrade and cooling the storage region and the at least one heat sink unit to approximately degrees Centigrade. The water may be purified water. The water may be degassed water. The water may be purified and degassed. Depending on the embodiment, these aspects of the method may minimize physical deformation of the heat sink unit during freezing.
In some implementations described herein, logic and similar implementations may include software or other control structures. Electronic circuitry, for example, may have one or more paths of electrical current constructed and arranged to implement various functions as described herein. In some implementations, one or more media may be configured to bear a device-detectable implementation when such media hold or transmit a device detectable instructions operable to perform as described herein. In some variants, for example, implementations may include an update or modification of existing software or firmware, or of gate arrays or programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein. Alternatively or additionally, in some variants, an implementation may include special-purpose hardware, software, firmware components, and/or general-purpose components executing or otherwise invoking special-purpose components. Specifications or other implementations may be transmitted by one or more instances of tangible transmission media as described herein, optionally by packet transmission or otherwise by passing through distributed media at various times.
Alternatively or additionally, implementations may include executing a special-purpose instruction sequence or invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of virtually any functional operations described herein. In some variants, operational or other logical descriptions herein may be expressed as source code and compiled or otherwise invoked as an executable instruction sequence. In some contexts, for example, implementations may be provided, in whole or in part, by source code, such as C++, or other code sequences. In other implementations, source or other code implementation, using commercially available and/or techniques in the art, may be compiled//implemented/translated/converted into a high-level descriptor language (e.g., initially implementing described technologies in C or C++ programming language and thereafter converting the programming language implementation into a logic-synthesizable language implementation, a hardware description language implementation, a hardware design simulation implementation, and/or other such similar mode(s) of expression). For example, some or all of a logical expression (e.g., computer programming language implementation) may be manifested as a Verilog-type hardware description (e.g., via Hardware Description Language (HDL) and/or Very High Speed Integrated Circuit Hardware Descriptor Language (VHDL)) or other circuitry model which may then be used to create a physical implementation having hardware (e.g., an Application Specific Integrated Circuit). The reader will recognize how to obtain, configure, and optimize suitable transmission or computational elements, material supplies, actuators, or other structures in light of these teachings.
In a general sense, the various embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, and/or virtually any combination thereof; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, electro-magnetically actuated devices, and/or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, a Micro Electro Mechanical System (MEMS), etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.), and/or any non-electrical analog thereto, such as optical or other analogs. Examples of electro-mechanical systems include but are not limited to a variety of consumer electronics systems, medical devices, as well as other systems such as motorized transport systems, factory automation systems, security systems, and/or communication/computing systems. Electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.
In a general sense, the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, and/or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.). The subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
At least a portion of the devices and/or processes described herein can be integrated into an image processing system. A typical image processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), control systems including feedback loops and control motors (e.g., feedback for sensing lens position and/or velocity; control motors for moving/distorting lenses to give desired focuses). An image processing system may be implemented utilizing suitable commercially available components, such as those typically found in digital still systems and/or digital motion systems.
At least a portion of the devices and/or processes described herein can be integrated into a data processing system. A data processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A data processing system may be implemented utilizing suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
It is common within the art to implement devices and/or processes and/or systems, and thereafter use engineering and/or other practices to integrate such implemented devices and/or processes and/or systems into more comprehensive devices and/or processes and/or systems. That is, at least a portion of the devices and/or processes and/or systems described herein can be integrated into other devices and/or processes and/or systems via a reasonable amount of experimentation. Examples of such other devices and/or processes and/or systems might include—as appropriate to context and application—all or part of devices and/or processes and/or systems of (a) an air conveyance (e.g., an airplane, rocket, helicopter, etc.), (b) a ground conveyance (e.g., a car, truck, locomotive, tank, armored personnel carrier, etc.), (c) a building (e.g., a home, warehouse, office, etc.), (d) an appliance (e.g., a refrigerator, a washing machine, a dryer, etc.), (e) a communications system (e.g., a networked system, a telephone system, a Voice over IP system, etc.), (f) a business entity (e.g., an Internet Service Provider (ISP) entity such as Comcast Cable, Qwest, Southwestern Bell, etc.), or (g) a wired/wireless services entity (e.g., Sprint, Cingular, Nextel, etc.), etc.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
The herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific examples set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific example is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, to the extent not inconsistent herewith.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
In some instances, one or more components may be referred to herein as “configured to,” “configured by,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. The terms (e.g. “configured to”) can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the present subject matter described herein have been shown and described, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. In general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). If a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, some reference is made herein to a range of values, e.g., from “approximately X to Y” means that the range is approximately from X to approximately Y. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, the recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art after reading the description herein. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
The present application is related to and claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Related Applications”) (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Related Application(s)). All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/001,757, entitled TEMPERATURE-STABILIZED STORAGE CONTAINERS, naming Roderick A. Hyde; Edward K. Y. Jung; Nathan P. Myhrvold; Clarence T. Tegreene; William H. Gates, III; Charles Whitmer; and Lowell L. Wood, Jr. as inventors, filed Dec. 11, 2007, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/006,088, entitled TEMPERATURE-STABILIZED STORAGE CONTAINERS WITH DIRECTED ACCESS, naming Roderick A. Hyde; Edward K. Y. Jung; Nathan P. Myhrvold; Clarence T. Tegreene; William H. Gates, III; Charles Whitmer; and Lowell L. Wood, Jr. as inventors, filed Dec. 27, 2007, now U.S. Pat. No. 8,215,518, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/006,089, entitled TEMPERATURE-STABILIZED STORAGE SYSTEMS, naming Roderick A. Hyde; Edward K. Y. Jung; Nathan P. Myhrvold; Clarence T. Tegreene; William H. Gates, III; Charles Whitmer; and Lowell L. Wood, Jr. as inventors, filed Dec. 27, 2007, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/008,695, entitled TEMPERATURE-STABILIZED STORAGE CONTAINERS FOR MEDICINALS, naming Roderick A. Hyde; Edward K. Y. Jung; Nathan P. Myhrvold; Clarence T. Tegreene; William H. Gates, III; Charles Whitmer; and Lowell L. Wood, Jr. as inventors, filed Jan. 10, 2008, now U.S. Pat. No. 8,377,030, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/012,490, entitled METHODS OF MANUFACTURING TEMPERATURE-STABILIZED STORAGE CONTAINERS, naming Roderick A. Hyde; Edward K. Y. Jung; Nathan P. Myhrvold; Clarence T. Tegreene; William H. Gates, III; Charles Whitmer; and Lowell L. Wood, Jr. as inventors, filed Jan. 31, 2008, now U.S. Pat. No. 8,069,680, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/077,322, entitled TEMPERATURE-STABILIZED MEDICINAL STORAGE SYSTEMS, naming Roderick A. Hyde; Edward K. Y. Jung; Nathan P. Myhrvold; Clarence T. Tegreene; William Gates; Charles Whitmer; and Lowell L. Wood, Jr. as inventors, filed Mar. 17, 2008, now U.S. Pat. No. 8,215,835, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/152,465, entitled STORAGE CONTAINER INCLUDING MULTI-LAYER INSULATION COMPOSITE MATERIAL HAVING BANDGAP MATERIAL AND RELATED METHODS, naming Jeffrey A. Bowers; Roderick A. Hyde; Muriel Y. Ishikawa; Edward K. Y. Jung; Jordin T. Kare; Eric C. Leuthardt; Nathan P. Myhrvold; Thomas J. Nugent Jr.; Clarence T. Tegreene; Charles Whitmer; and Lowell L. Wood Jr. as inventors, filed May 13, 2008, now U.S. Pat. No. 8,485,387, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/152,467, entitled MULTI-LAYER INSULATION COMPOSITE MATERIAL INCLUDING BANDGAP MATERIAL, STORAGE CONTAINER USING SAME, AND RELATED METHODS, naming Jeffrey A. Bowers; Roderick A. Hyde; Muriel Y. Ishikawa; Edward K. Y. Jung; Jordin T. Kare; Eric C. Leuthardt; Nathan P. Myhrvold; Thomas J. Nugent Jr.; Clarence T. Tegreene; Charles Whitmer; and Lowell L. Wood Jr. as inventors, filed May 13, 2008, now U.S. Pat. No. 8,211,516, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 12/220,439, entitled MULTI-LAYER INSULATION COMPOSITE MATERIAL HAVING AT LEAST ONE THERMALLY-REFLECTIVE LAYER WITH THROUGH OPENINGS, STORAGE CONTAINER USING SAME, AND RELATED METHODS, naming Roderick A. Hyde; Muriel Y. Ishikawa; Jordin T. Kare; and Lowell L. Wood, Jr. as inventors, filed Jul. 23, 2008, now U.S. Pat. No. 8,603,598, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
Number | Name | Date | Kind |
---|---|---|---|
520584 | Turner | May 1894 | A |
1903171 | Cordrey | Mar 1933 | A |
2161295 | Hirschberg | Jun 1939 | A |
2496296 | Lobl | Feb 1950 | A |
2717937 | Lehr et al. | Sep 1955 | A |
2967152 | Matsch et al. | Jan 1961 | A |
3029967 | Morrison | Apr 1962 | A |
3034845 | Haumann | May 1962 | A |
3069045 | Haumann et al. | Dec 1962 | A |
3108840 | Conrad et al. | Oct 1963 | A |
3238002 | O'Connell et al. | Mar 1966 | A |
3921844 | Walles | Nov 1975 | A |
3948411 | Conte | Apr 1976 | A |
4003426 | Best et al. | Jan 1977 | A |
4034129 | Kittle | Jul 1977 | A |
4057029 | Seiter | Nov 1977 | A |
4057101 | Ruka et al. | Nov 1977 | A |
4094127 | Romagnoli | Jun 1978 | A |
4154363 | Barthel | May 1979 | A |
4184601 | Stewart et al. | Jan 1980 | A |
4312669 | Boffito et al. | Jan 1982 | A |
4318058 | Mito et al. | Mar 1982 | A |
4358490 | Nagai | Nov 1982 | A |
4388051 | Dresler et al. | Jun 1983 | A |
4402927 | Von Dardel et al. | Sep 1983 | A |
4428854 | Enjo et al. | Jan 1984 | A |
4481779 | Barthel | Nov 1984 | A |
4481792 | Groeger et al. | Nov 1984 | A |
4482465 | Gray | Nov 1984 | A |
4521800 | Howe | Jun 1985 | A |
4526015 | Laskaris | Jul 1985 | A |
4640574 | Unger | Feb 1987 | A |
4726974 | Nowobilski et al. | Feb 1988 | A |
4766471 | Ovshinsky et al. | Aug 1988 | A |
4796432 | Fixsen et al. | Jan 1989 | A |
4810403 | Bivens et al. | Mar 1989 | A |
4855950 | Takada | Aug 1989 | A |
4862674 | Lejondahl et al. | Sep 1989 | A |
4920387 | Takasu et al. | Apr 1990 | A |
4951014 | Wohlert et al. | Aug 1990 | A |
4955204 | Pehl et al. | Sep 1990 | A |
4956976 | Kral et al. | Sep 1990 | A |
4969336 | Knippscheer et al. | Nov 1990 | A |
4974423 | Pring | Dec 1990 | A |
4976308 | Faghri | Dec 1990 | A |
5012102 | Gowlett | Apr 1991 | A |
5103337 | Schrenk et al. | Apr 1992 | A |
5116105 | Hong | May 1992 | A |
5138559 | Kuehl et al. | Aug 1992 | A |
5187116 | Kitagawa et al. | Feb 1993 | A |
5215214 | Lev et al. | Jun 1993 | A |
5245869 | Clarke et al. | Sep 1993 | A |
5261241 | Kitahara et al. | Nov 1993 | A |
5277031 | Miller et al. | Jan 1994 | A |
5277959 | Kourtides et al. | Jan 1994 | A |
5302840 | Takikawa | Apr 1994 | A |
5330816 | Rusek, Jr. | Jul 1994 | A |
5355684 | Guice | Oct 1994 | A |
5376184 | Aspden | Dec 1994 | A |
5390734 | Voorhes et al. | Feb 1995 | A |
5390791 | Yeager | Feb 1995 | A |
5444223 | Blama | Aug 1995 | A |
5452565 | Blom et al. | Sep 1995 | A |
5505046 | Nelson et al. | Apr 1996 | A |
5548116 | Pandelisev | Aug 1996 | A |
5563182 | Epstein et al. | Oct 1996 | A |
5573133 | Park | Nov 1996 | A |
5580522 | Leonard et al. | Dec 1996 | A |
5590054 | McIntosh | Dec 1996 | A |
5600071 | Sooriakumar et al. | Feb 1997 | A |
5607076 | Anthony | Mar 1997 | A |
5633077 | Olinger | May 1997 | A |
5671856 | Lisch | Sep 1997 | A |
5679412 | Kuehnle et al. | Oct 1997 | A |
5709472 | Prusik et al. | Jan 1998 | A |
5782344 | Edwards et al. | Jul 1998 | A |
5800905 | Sheridan et al. | Sep 1998 | A |
5821762 | Hamaguchi et al. | Oct 1998 | A |
5829594 | Warder | Nov 1998 | A |
5846224 | Sword et al. | Dec 1998 | A |
5846883 | Moslehi | Dec 1998 | A |
5857778 | Ells | Jan 1999 | A |
5900554 | Baba et al. | May 1999 | A |
5915283 | Reed et al. | Jun 1999 | A |
5954101 | Drube et al. | Sep 1999 | A |
6030580 | Raasch et al. | Feb 2000 | A |
6042264 | Prusik et al. | Mar 2000 | A |
6050598 | Upton | Apr 2000 | A |
6209343 | Owen | Apr 2001 | B1 |
6212904 | Arkharov et al. | Apr 2001 | B1 |
6213339 | Lee | Apr 2001 | B1 |
6234341 | Tattam | May 2001 | B1 |
6272679 | Norin | Aug 2001 | B1 |
6287652 | Speckhals et al. | Sep 2001 | B2 |
6321977 | Lee | Nov 2001 | B1 |
6337052 | Rosenwasser | Jan 2002 | B1 |
6438992 | Smith et al. | Aug 2002 | B1 |
6439406 | Duhon | Aug 2002 | B1 |
6453749 | Petrovic et al. | Sep 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6467642 | Mullens et al. | Oct 2002 | B2 |
6485805 | Smith et al. | Nov 2002 | B1 |
6521077 | McGivern et al. | Feb 2003 | B1 |
6571971 | Weiler | Jun 2003 | B1 |
6584797 | Smith et al. | Jul 2003 | B1 |
6624349 | Bass | Sep 2003 | B1 |
6673594 | Owen et al. | Jan 2004 | B1 |
6688132 | Smith et al. | Feb 2004 | B2 |
6692695 | Bronshtein et al. | Feb 2004 | B1 |
6701724 | Smith et al. | Mar 2004 | B2 |
6742650 | Yang et al. | Jun 2004 | B2 |
6742673 | Credle, Jr. et al. | Jun 2004 | B2 |
6751963 | Navedo et al. | Jun 2004 | B2 |
6771183 | Hunter | Aug 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6813330 | Barker et al. | Nov 2004 | B1 |
6841917 | Potter | Jan 2005 | B2 |
6877504 | Schreff et al. | Apr 2005 | B2 |
6967051 | Augustynowicz et al. | Nov 2005 | B1 |
6997241 | Chou et al. | Feb 2006 | B2 |
7001656 | Maignan et al. | Feb 2006 | B2 |
7038585 | Hall et al. | May 2006 | B2 |
7128807 | Mörschner et al. | Oct 2006 | B2 |
7240513 | Conforti | Jul 2007 | B1 |
7253788 | Choi et al. | Aug 2007 | B2 |
7258247 | Marquez | Aug 2007 | B2 |
7267795 | Ammann et al. | Sep 2007 | B2 |
7278278 | Wowk et al. | Oct 2007 | B2 |
7596957 | Fuhr et al. | Oct 2009 | B2 |
7789258 | Anderson | Sep 2010 | B1 |
7807242 | Soerensen et al. | Oct 2010 | B2 |
7982673 | Orton et al. | Jul 2011 | B2 |
8074271 | Davis et al. | Dec 2011 | B2 |
8138913 | Nagel et al. | Mar 2012 | B2 |
8174369 | Jones et al. | May 2012 | B2 |
8211516 | Bowers et al. | Jul 2012 | B2 |
20020050514 | Schein | May 2002 | A1 |
20020083717 | Mullens et al. | Jul 2002 | A1 |
20020084235 | Lake | Jul 2002 | A1 |
20020130131 | Zucker et al. | Sep 2002 | A1 |
20020155699 | Ueda | Oct 2002 | A1 |
20020187618 | Potter | Dec 2002 | A1 |
20030039446 | Hutchinson et al. | Feb 2003 | A1 |
20030072687 | Nehring et al. | Apr 2003 | A1 |
20030148773 | Spriestersbach et al. | Aug 2003 | A1 |
20030160059 | Credle, Jr. et al. | Aug 2003 | A1 |
20040035120 | Brunnhofer | Feb 2004 | A1 |
20040055313 | Navedo et al. | Mar 2004 | A1 |
20040055600 | Izuchukwu | Mar 2004 | A1 |
20040103302 | Yoshimura et al. | May 2004 | A1 |
20040145533 | Taubman | Jul 2004 | A1 |
20050009192 | Page | Jan 2005 | A1 |
20050029149 | Leung et al. | Feb 2005 | A1 |
20050053345 | Bayindir et al. | Mar 2005 | A1 |
20050067441 | Alley | Mar 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050188715 | Aragon | Sep 2005 | A1 |
20050247312 | Davies | Nov 2005 | A1 |
20050255261 | Nomula | Nov 2005 | A1 |
20050274378 | Bonney et al. | Dec 2005 | A1 |
20060021355 | Boesel et al. | Feb 2006 | A1 |
20060027467 | Ferguson | Feb 2006 | A1 |
20060054305 | Ye | Mar 2006 | A1 |
20060071585 | Wang | Apr 2006 | A1 |
20060150662 | Lee et al. | Jul 2006 | A1 |
20060187026 | Kochis | Aug 2006 | A1 |
20060191282 | Sekiya et al. | Aug 2006 | A1 |
20060196876 | Rohwer | Sep 2006 | A1 |
20060259188 | Berg | Nov 2006 | A1 |
20060280007 | Ito et al. | Dec 2006 | A1 |
20070041814 | Lowe | Feb 2007 | A1 |
20070210090 | Sixt et al. | Sep 2007 | A1 |
20080012577 | Potyrailo et al. | Jan 2008 | A1 |
20080022698 | Hobbs et al. | Jan 2008 | A1 |
20080060215 | Reilly et al. | Mar 2008 | A1 |
20080129511 | Yuen et al. | Jun 2008 | A1 |
20080164265 | Conforti | Jul 2008 | A1 |
20080184719 | Lowenstein | Aug 2008 | A1 |
20080186139 | Butler et al. | Aug 2008 | A1 |
20080233391 | Sterzel et al. | Sep 2008 | A1 |
20080269676 | Bieberich et al. | Oct 2008 | A1 |
20080272131 | Roberts et al. | Nov 2008 | A1 |
20080297346 | Brackmann et al. | Dec 2008 | A1 |
20090049845 | McStravick et al. | Feb 2009 | A1 |
20090275478 | Atkins et al. | Nov 2009 | A1 |
20090301125 | Myles et al. | Dec 2009 | A1 |
20090309733 | Moran et al. | Dec 2009 | A1 |
20100016168 | Atkins et al. | Jan 2010 | A1 |
20100028214 | Howard et al. | Feb 2010 | A1 |
20100265068 | Brackmann et al. | Oct 2010 | A1 |
20100287963 | Billen et al. | Nov 2010 | A1 |
20110100605 | Zheng et al. | May 2011 | A1 |
20110117538 | Niazi | May 2011 | A1 |
20110297306 | Yang | Dec 2011 | A1 |
20120168645 | Atzmony et al. | Jul 2012 | A1 |
20130306656 | Eckhoff et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2414742 | Jan 2001 | CN |
2460457 | Nov 2001 | CN |
1496537 | May 2004 | CN |
1756912 | Apr 2006 | CN |
1827486 | Sep 2006 | CN |
101073524 | Nov 2007 | CN |
2 621 685 | Oct 1987 | FR |
2 441 636 | Mar 2008 | GB |
WO 9415034 | Jul 1994 | WO |
WO 9936725 | Jul 1999 | WO |
WO 2005084353 | Sep 2005 | WO |
WO 2007039553 | Apr 2007 | WO |
Entry |
---|
Chinese State Intellectual Property Office; First Office Action; App No. 200880119918.0; Jul. 13, 2011. |
PCT International Search Report; Application No. PCT/US2011/001939; Mar. 27, 2012; pp. 1-2. |
Chinese State Intellectual Property Office; App. No. 200880119777.2; Mar. 30, 2012; pp. 1-10 (no translation available). |
U.S. Appl. No. 13/385,088, Hyde et al. |
U.S. Appl. No. 13/374,218, Hyde et al. |
U.S. Appl. No. 13/489,058, Bowers et al. |
Chinese State Intellectual Property Office; Office Action; Chinese Application No. 200980109399.4; dated Aug. 29, 2012; pp. 1-12 (No translation provided). |
Winn, Joshua N. et al.; “Omnidirectional reflection from a one-dimensional photonic crystal”; Optics Letters; Oct. 15, 1998; pp. 1573-1575; vol. 23, No. 20; Optical Society of America. |
Chinese State Intellectual Property Office; Office Action; App. No. 200880119918.0; May 27, 2013 (received by our agent on May 29, 2013); 9 pages (No English Translation Available). |
Chinese State Intellectual Property Office, Office Action; App. No. 200880119918.0; Sep. 18, 2013 (rec'd by our agent Sep. 20, 2013); pp. 1-10 (no English translation available). |
U.S. Appl. No. 13/720,328, Hyde et al. |
U.S. Appl. No. 13/720,256, Hyde et al. |
Chinese State Intellectual Property Office; Office Action; App. No. 200880120366.5; Jun. 27, 2013; 3 pages (no English translation available). |
Abdul-Wahab et al.; “Design and experimental investigation of portable solar thermoelectric refrigerator”; Renewable Energy; 2009; pp. 30-34; vol. 34; Elsevier Ltd. |
Astrain et al.; “Computational model for refrigerators based on Peltier effect application”; Applied Thermal Engineering; 2005; pp. 3149-3162; vol. 25; Elsevier Ltd. |
Azzouz et al.; “Improving the energy efficiency of a vapor compression system using a phase change material”; Second Conference on Phase Change Material & Slurry: Scientific Conference & Business Forum; Jun. 15-17, 2005; pp. 1-11; Yverdon-les-Bains, Switzerland. |
Chatterjee et al.; “Thermoelectric cold-chain chests for storing/transporting vaccines in remote regions”; Applied Energy; 2003; pp. 415-433; vol. 76; Elsevier Ltd. |
Chiu et al.; “Submerged finned heat exchanger latent heat storage design and its experimental verification”; Applied Energy; 2012; pp. 507-516; vol. 93; Elsevier Ltd. |
Conway et al.; “Improving Cold Chain Technologies through the Use of Phase Change Material”; Thesis, University of Maryland; 2012; pp. ii-xv and 16-228. |
Dai et al.; “Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells”; Solar Energy Materials & Solar Cells; 2003; pp. 377-391; vol. 77; Elsevier Science B.V. |
U.S. Appl. No. 13/907,470, Bowers et al. |
U.S. Appl. No. 13/906,909, Bloedow et al. |
Ghoshal et al.; “Efficient Switched Thermoelectric Refrigerators for Cold Storage Applications”; Journal of Electronic Materials; 2009; pp. 1-6; doi: 10.1007/s11664-009-0725-3. |
Groulx et al.; “Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System”; Excerpt from the Proceedings of the COMSOL Conference, Boston; 2009; pp. 1-7. |
Jiajitsawat, Somchai; “A Portable Direct-PV Thermoelectric Vaccine Refrigerator with Ice Storage Through Heat Pipes”; Dissertation, University of Massachusetts, Lowell; 2008; three cover pages, pp. ii-x, 1-137. |
Kempers et al.; “Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe”; International Journal of Heat and Mass Transfer; 2008; pp. 6039-6046; vol. 51; Elsevier Ltd. |
Mohamad et al.; “An Analysis of Sensitivity Distribution Using Two Differential Excitation Potentials in ECT”; IEEE Fifth International Conference on Sensing Technology; 2011; pp. 575-580; IEEE. |
Mohamad et al.; “A introduction of two differential excitation potentials technique in electrical capacitance tomography”; Sensors and Actuators A; 2012; pp. 1-10; vol. 180; Elsevier B.V. |
Mughal et al.; “Review of Capacitive Atmospheric Icing Sensors”; The Sixth International Conference on Sensor Technologies and Applications (SENSORCOMM); 2012; pp. 42-47; IARIA. |
Omer et al.; “Design optimization of thermoelectric devices for solar power generation”; Solar Energy Materials and Solar Cells; 1998; pp. 67-82; vol. 53; Elsevier Science B.V. |
Omer et al.; “Experimental investigation of a thermoelectric refrigeration system employing a phase change material integrated with thermal diode (thermosyphons)”; Applied Thermal Engineering; 2001; pp. 1265-1271; vol. 21; Elsevier Science Ltd. |
Oró et al.; “Review on phase change materials (PCMs) for cold thermal energy storage applications”; Applied Energy; 2012; pp. 1-21; doi: 10.1016/j.apenergy.2012.03.058; Elsevier Ltd. |
Owusu, Kwadwo Poku; “Capacitive Probe for Ice Detection and Accretion Rate Measurement: Proof of Concept”; Master of Science Thesis, Department of Mechanical Engineering, University of Manitoba; 2010; pp. i-xi, 1-95. |
Peng et al.; “Determination of the optimal axial length of the electrode in an electrical capacitance tomography sensor”; Flow Measurement and Instrumentation; 2005; pp. 169-175; vol. 16; Elsevier Ltd. |
Peng et al.; “Evaluation of Effect of Number of Electrodes in ECT Sensors on Image Quality”; IEEE Sensors Journal; May 2012; pp. 1554-1565; vol. 12, No. 5; IEEE. |
Riffat et al.; “A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation”; Renewable Energy; 2001; pp. 313-323; vol. 23; Elsevier Science Ltd. |
Robak et al.; “Enhancement of latent heat energy storage using embedded heat pipes”; International Journal of Heat and Mass Transfer; 2011; pp. 3476-3483; vol. 54; Elsevier Ltd. |
Rodríguez et al.; “Development and experimental validation of a computational model in order to simulate ice cube production in a thermoelectric ice maker”; Applied Thermal Engineering; 2009; one cover page and pp. 1-28; doi: 10.1016/j.applthermaleng.2009.03.005. |
Russel et al.; “Characterization of a thermoelectric cooler based thermal management system under different operating conditions”; Applied Thermal Engineering; 2012; two cover pages and pp. 1-29; doi: 10.1016/j.applthermaleng.2012.05.002. |
Sharifi et al.; “Heat pipe-assisted melting of a phase change material”; International Journal of Heat and Mass Transfer; 2012; pp. 3458-3469; vol. 55; Elsevier Ltd. |
Stampa et al.; “Numerical Study of Ice Layer Growth Around a Vertical Tube”; Engenharia Térmica (Thermal Engineering); Oct. 2005; pp. 138-144; vol. 4, No. 2. |
Vián et al.; “Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift”; Applied Thermal Engineering; 2008; one cover page and pp. 1-16 doi: 10.1016/j.applthermaleng.2008.09.018. |
Ye et al.; “Evaluation of Electrical Capacitance Tomography Sensors for Concentric Annulus”; IEEE Sensors Journal; Feb. 2013; pp. 446-456; vol. 13, No. 2; IEEE. |
Yu et al.; “Comparison Study of Three Common Technologies for Freezing-Thawing Measurement”; Advances in Civil Engineering; 2010; pp. 1-10; doi: 10.1155/2010/239651. |
Chen, Dexiang, et al.; “Opportunities and challenges of developing thermostable vaccines”; Expert Reviews Vaccines; 2009; pp. 547-557; vol. 8, No. 5; Expert Reviews Ltd. |
Greenbox Systems; “Thermal Management System”; 2010; Printed on: Feb. 3, 2011; p. 1 of 1; located at http://www.greenboxsystems.com. |
Matthias, Dipika M., et al.; “Freezing temperatures in the vaccine cold chain: A systematic literature review”; Vaccine; 2007; pp. 3980-3986; vol. 25; Elsevier Ltd. |
Pure Temp; “Technology”; Printed on: Feb. 9, 2011; p. 1-3; located at httn://puretemp.com/technology.html. |
Spur Industries Inc.; “The Only Way to Get Them Apart is to Melt Them Apart”; 2006; pp. 1-3; located at http://www.spurind.com/applications.php. |
Williams, Preston; “Greenbox Thermal Management System Refrigerate—able 2 to 8 C Shipping Containers”; Printed on: Feb. 9, 2011; p. 1; located at http://www.puretemp.com/documents/Refrigerate-able%202%20to%208%20C%20Shipping%20Containers.pdf. |
Wirkas, Theo, et al.; “A vaccine cold chain freezing study in PNG highlights technology needs for hot climate countries”; Vaccine; 2007; pp. 691-697; vol. 25; Elsevier Ltd. |
World Health Organization; “Preventing Freeze Damage to Vaccines: Aide-memoire for prevention of freeze damage to vaccines”; 2007; pp. 1-4; WHO/IVB/07.09; World Health Organization. |
U.S. Appl. No. 12/927,982, Deane et al. |
U.S. Appl. No. 12/927,981, Chou et al. |
World Health Organization; “Temperature sensitivity of vaccines”; Department of Immunization, Vaccines and Biologicals, World Health Organization; Aug. 2006; pp. 1-62 plus cover sheet, pp. i-ix, and end sheet (73 pages total); WHO/IVB/06.10; World Health Organization. |
Saes Getters; “St707 Getter Alloy for Vacuum Systems”; printed on Sep. 22, 2011; pp. 1-2; located at http://www.saegetters.com/default.aspx?idPage=212. |
U.S. Appl. No. 13/200,555, Chou et al. |
U.S. Appl. No. 13/199,439, Hyde et al. |
Chinese Office Action; Application No. 200880120367.X; Oct. 25, 2012 (received by our agent on Oct. 29, 2012); pp. 1-5; No English Translation Provided. |
Intellectual Property Office of the People's Republic of China; Office Action; Chinese Application No. 200880119918.0; Dec. 12, 2012; pp. 1-11. |
Chinese State Intellectual Property Office; Chinese Office Action; App. No. 200880119777.2; Jan. 7, 2013 (received by our agent on Jan. 9, 2013); pp. 1-12; No English Translation Available. |
Chinese State Intellectual Property Office; Office Action; App. No. 200880120366.5; Feb. 17, 2013 (received by our agent Feb. 19, 2013); pp. 1-3 (No English Translation Available). |
Chinese State Intellectual Property Office; Office Action; App. No. 200880120366.5; Jun. 1, 2012; pp. 1-19 (no English translation available). |
BINE Informationsdienst; “Zeolite/water refrigerators, Projektinfo 16/10”; BINE Information Service; printed on Feb. 12, 2013; pp. 1-4; FIZ Karlsruhe, Germany; located at: htpp://www.bine.info/fileadmin/content/Publikationen/Englische—Infos/projekt—1610—engl—internetx.pdf. |
Conde-Petit, Manuel R.; “Aqueous solutions of lithium and calcium chlorides:—Property formulations for use in air conditioning equipment design”; 2009; pp. 1-27 plus two cover pages; M. Conde Engineering, Zurich, Switzerland. |
Cool-System KEG GMBH; “Cool-System presents: CoolKeg® The world's first self-chilling Keg!”; printed on Feb. 6, 2013; pp. 1-5; located at: http://www.coolsystem.de/. |
U.S. Appl. No. 13/853,245, Eckhoff et al. |
Dawoud, et al.; “Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps”; International Journal of Heat and Mass Transfer; 2003; pp. 273-281; vol. 46; Elsevier Science Ltd. |
Dometic S.A.R.L.; “Introduction of Zeolite Technology into refrigeration systems, LIFE04 ENV/LU/000829, Layman's Report”; printed on Feb. 6, 2013; pp. 1-10; located at: http//ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=LIFE04—ENV—LU—000829—LAYMAN.pdf. |
Dow Chemical Company; “Calcium Chloride Handbook: A Guide to Properties, Forms, Storage and Handling”; Aug. 2003; pp. 1-28. |
GAST Manufacturing, Inc.; “Vacuum and Pressure Systems Handbook”; printed on Jan. 3, 2013; pp. 1-20; located at: http://www.gastmfg.com/vphb/vphb—s1.pdf. |
Gea Wiegand; “Pressure loss in vacuum lines with water vapour”; printed on Mar. 13, 2013; pp. 1-2; located at: http://produkte.gea-wiegand.de/GEA/GEACategory/139/index—en.html. |
Hall, Larry D.; “Building Your Own Larry Hall Icyball”; printed on Mar. 27, 2013; pp. 1-4; located at: http://crosleyautoclub.com/IcyBall/HomeBuilt/HallPlans/IB—Directions.html. |
Kozubal, et al.; “Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning, Technical Report NREL/TP-5500-49722”; National Renewable Energy Laboratory; Jan. 2011; pp. i-vii, 1-60, plus three cover pages and Report Documentation Page. |
Machine-History.com; “Refrigeration Machines”; printed on Mar. 27, 2013; pp. 1-10; located at: http://www.machine-history.com/Refrigeration%20Machines. |
Marquardt, Niels; “Introduction to the Principles of Vacuum Physics”; 1999; pp. 1-24; located at: http://www.cientificosaficionados.com/libros/CERN/vaciol-CERN.pdf. |
Modern Mechanix; “Icyball Is Practical Refrigerator for Farm or Camp Use (Aug. 1930)”; bearing a date of Aug. 1930; printed on Mar. 27, 2013; pp. 1-3; located at: http://blog.modernmechanix.com/icyball-is-practical-refrigerator-for-farm-or-camp-use/. |
NSM Archive; “Band structure and carrier concentration”; date of Jan. 22, 2004 provided by examiner, printed on Feb. 16, 2013; pp. 1-10, 1 additional page of archive information; located at: http://web.archive.org/20040122200811/http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/bandstr.html. |
OXYCHEM; “Calcium Chloride, A Guide to Physical Properties”; printed on Jan. 3, 2013; pp. 1-9, plus two cover pages and back page; Occidental Chemical Corporation; located at: http://www.cal-chlor.com/PDF/GUIDE-physical-properties.pdf. |
Restuccia, et al.; “Selective water sorbent for solid sorption chiller: experimental results and modeling”; International Journal of Refrigeration; 2004; pp. 284-293; vol. 27; Elsevier Ltd and IIR. |
Rezk, et al.; “Physical and operating conditions effects on silica gel/water adsorption chiller performance”; Applied Energy; 2012; pp. 142-149; vol. 89; Elsevier Ltd. |
Rietschle Thomas; “Calculating Pipe Size & Pressure Drops in Vacuum Systems, Section 9—Technical Reference”; printed on Jan. 3, 2013; pp. 9-5 through 9-7; located at: http://www.ejglobalinc.com/Tech.htm. |
Saha, et al.; “A new generation of cooling device employing CaC12-in-silica gel-water system”; International Journal of Heat and Mass Transfer; 2009; pp. 516-524; vol. 52; Elsevier Ltd. |
UOP; “An Introduction to Zeolite Molecular Sieves”; printed on Jan. 10, 2013; pp. 1-20; located at: http://www.eltrex.p1.pdf/karty/adsorbenty/ENG-Introduction%20to%20Zeolite%20Molecular%20Sieves.pdf. |
Wang, et al.; “Study of a novel silica gel-water adsorption chiller. Part I. Design and performance prediction”; International Journal of Refrigeration; 2005; pp. 1073-1083; vol. 28; Elsevier Ltd and IIR. |
Wikipedia; “Icyball”; Mar. 14, 2013; printed on Mar. 27, 2013; pp. 1-4; located at: http://en.wikipedia.org/wiki/Icyball. |
U.S. Appl. No. 13/135,126, Deane et al. |
Cabeza, L. F. et al.; “Heat transfer enhancement in water when used as PCM in thermal energy storage”; Applied Thermal Engineering; 2002; pp. 1141-1151; vol. 22; Elsevier Science Ltd. |
Chen, Dexiang et al.; “Characterization of the freeze sensitivity of a hepatitis B vaccine”; Human Vaccines; Jan. 2009; pp. 26-32; vol. 5, Issue 1; Landes Bioscience. |
Edstam, James S. et al.; “Exposure of hepatitis B vaccine to freezing temperatures during transport to rural health centers in Mongolia”; Preventive Medicine; 2004; pp. 384-388; vol. 39; The Institute for Cancer Prevention and Elsevier Inc. |
Efe, Emine et al.; “What do midwives in one region in Turkey know about cold chain?”; Midwifery; 2008; pp. 328-334; vol. 24; Elsevier Ltd. |
Günter, M. M. et al.; “Microstructure and bulk reactivity of the nonevaporable getter Zr57V36Fe7”; J. Vac. Sci. Technol. A; Nov./Dec. 1998; pp. 3526-3535; vol. 16, No. 6; American Vacuum Society. |
Hipgrave, David B. et al ; “Immunogenicity of a Locally Produced Hepatitis B Vaccine With the Birth Dose Stored Outside the Cold Chain in Rural Vietnam”; Am. J. Trop. Med. Hyg.; 2006; pp. 255-260; vol. 74, No. 2; The American Society of Tropical Medicine and Hygiene. |
Hipgrave, David B. et al.; “Improving birth dose coverage of hepatitis B vaccine”; Bulletin of the World Health Organization; Jan. 2006; pp. 65-71; vol. 84, No. 1; World Health Organization. |
Hobson, J. P. et al.; “Pumping of methane by St707 at low temperatures”; J. Vac. Sci. Technol. A; May/Jun. 1986; pp. 300-302; vol. 4, No. 3; American Vacuum Society. |
Kendal, Alan P. et al.; “Validation of cold chain procedures suitable for distribution of vaccines by public health programs in the USA”; Vaccine; 1997; pp. 1459-1465; vol. 15, No. 12/13; Elsevier Science Ltd. |
Khemis, O. et al.; “Experimental analysis of heat transfers in a cryogenic tank without lateral insulation”; Applied Thermal Engineering; 2003; pp. 2107-2117; vol. 23; Elsevier Ltd. |
Li, Yang et al.; “Study on effect of liquid level on the heat leak into vertical cryogenic vessels”; Cryogenics; 2010; pp. 367-372; vol. 50; Elsevier Ltd. |
Magennis, Teri et al. “Pharmaceutical Cold Chain: A Gap in the Last Mile—Part 1. Wholesaler/Distributer: Missing Audit Assurance”; Pharmaceutical & Medical Packaging News; Sep. 2010; pp. 44, 46-48, and 50; pmpnews.com. |
Matolin, V. et al.; “Static SIMS study of TiZrV NEG activation”; Vacuum; 2002; pp. 177-184; vol. 67; Elsevier Science Ltd. |
Nelson, Carib M. et al.; “Hepatitis B vaccine freezing in the Indonesian cold chain: evidence and solutions”; Bulletin of the World Health Organization; Feb. 2004; pp. 99-105 (plus copyright page); vol. 82, No. 2; World Health Organization. |
Ren, Qian et al.; “Evaluation of an Outside-The-Cold-Chain Vaccine Delivery Strategy in Remote Regions of Western China”; Public Health Reports; Sep.-Oct. 2009; pp. 745-750; vol. 124. |
Rogers, Bonnie et al.; “Vaccine Cold Chain—Part 1. Proper Handling and Storage of Vaccine”; AAOHN Journal; 2010; pp. 337-344 (plus copyright page); vol. 58, No. 8; American Association of Occupational Health Nurses, Inc. |
Rogers, Bonnie et al.; Vaccine Cold Chain—Part 2. Training Personnel and Program Management; AAOHN Journal; 2010; pp. 391-402 (plus copyright page); vol. 58, No. 9; American Association of Occupational Health Nurses, Inc. |
Techathawat, Sirirat et al.; “Exposure to heat and freezing in the vaccine cold chain in Thailand”; Vaccine; 2007; p. 1328-1333; vol. 25; Elsevier Ltd. |
Thakker, Yogini et al.; “Storage of Vaccines in the Community: Weak Link in the Cold Chain?”; British Medical Journal; Mar. 21, 1992; pp. 756-758; vol. 304, No. 6829; BMJ Publishing Group. |
Wang, Lixia et al.; “Hepatitis B vaccination of newborn infants in rural China: evaluation of a village-based, out-of-cold-chain delivery strategy”; Bulletin of the World Health Organization; Sep. 2007; pp. 688-694; vol. 85, No. 9; World Health Organization. |
Wei, Wei et al.; “Effects of structure and shape on thermal performance of Perforated Multi-Layer Insulation Blankets”; Applied Thermal Engineering; 2009; pp. 1264-1266; vol. 29; Elsevier Ltd. |
World Health Organization; “Guidelines on the international packaging and shipping of vaccines”; Department of Immunization, Vaccines and Biologicals; Dec. 2005; 40 pages; WHO/IVB/05.23. |
PCT International Search Report; International App. No. PCT/US 11/00234; Jun. 9, 2011; pp. 1-4. |
U.S. Appl. No. 12/220,439, Hyde et al. |
U.S. Appl. No. 12/152,467, Bowers et al. |
U.S. Appl. No. 12/152,465, Bowers et al. |
U.S. Appl. No. 12/077,322, Hyde et al. |
U.S. Appl. No. 12/012,490, Hyde et al. |
3M Monitor Mark™; “Time Temperature Indicators—Providing a visual history of time temperature exposure”; 3M Microbiology; bearing a date of 2006; pp. 1-4; located at 3M.com/microbiology. |
Adams, R. O.; “A review of the stainless steel surface”; The Journal of Vacuum Science and Technology A; Bearing a date of Jan.-Mar. 1983; pp. 12-18; vol. 1, No. 1; American Vacuum Society. |
Arora, Anubhav; Hakim, Itzhak; Baxter, Joy; Rathnasingham, Ruben; Srinivasan, Ravi; Fletcher, Daniel A.; “Needle-Free Delivery of Macromolecules Across the Skin by Nanoliter-Volume Pulsed Microjets”; PNAS Applied Biological Sciences; Mar. 13, 2007; pp. 4255-4260; vol. 104; No. 11; The National Academy of Sciences USA. |
U.S. Appl. No. 12/088,695, Hyde et al. |
U.S. Appl. No. 12/006,089, Hyde et al. |
U.S. Appl. No. 12/006,088, Hyde et al. |
U.S. Appl. No. 12/001,757, Hyde et al. |
Bang, Abhay T.; Bang, Rani A.; Baitule, Sanjay B.; Reddy, M. Hanimi; Deshmukh, Mahesh D.; “Effect of Home-Based Neonatal Care and Management of Sepsis on Neonatal Mortality: Field Trial in Rural India”; The Lancet; Dec. 4, 1999; pp. 1955-1961; vol. 354; SEARCH (Society for Education, Action, and Research in Community Health). |
Bartl, J., et al.; “Emissivity of aluminium and its importance for radiometric measurement”; Measurement Science Review; Bearing a date of 2004; pp. 31-36; vol. 4, Section 3. |
Beavis, L. C.; “Interaction of Hydrogen with the Surface of Type 304 Stainless Steel”; The Journal of Vacuum Science and Technology; Bearing a date of Mar.-Apr. 1973; pp. 386-390; vol. 10, No. 2; American Vacuum Society. |
Benvenuti, C., et al.; “Pumping characteristics of the St707 nonevaporable getter (Zr 70 V 24.6-Fe 5.4 wt %)”; The Journal of Vacuum Science and Technology A; Bearing a date of Nov.-Dec. 1996; pp. 3278-3282; vol. 14, No. 6; American Vacuum Society. |
Brenzel, Logan; Wolfson, Lara J.; Fox-Rushby, Julia; Miller, Mark; Halsey, Neal A.; “Vaccine-Preventable Diseases—Chapter 20”; Disease Control Priorities in Developing Countries; printed on Oct. 15, 2007; pp. 389-411. |
CDC; “Vaccine Management: Recommendations for Storage and Handling of Selected Biologicals”; Jan. 2007; 16 pages total; Department of Health & Human Services U.S.A. |
Chiritescu, Catalin; Cahill, David G.; Nguyen, Ngoc; Johnson, David; Bodapati, Arun; Keblinski, Pawel; Zschack, Paul; “Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals; Science”; Jan. 19, 2007; pp. 351-353; vol. 315; The American Association for the Advancement of Science. |
Cohen, Sharon; Hayes, Janice S. Tordella, Tracey; Puente, Ivan; “Thermal Efficiency of Prewarmed Cotton, Reflective, and Forced—Warm-Air Inflatable Blankets in Trauma Patients”; International Journal of Trauma Nursing; Jan.-Mar. 2002; pp. 4-8; vol. 8; No. 1; The Emergency Nurses Association. |
Cole-Palmer; “Temperature Labels and Crayons”; www.coleparmer.com; bearing a date of 1971 and printed on Sep. 27, 2007; p. 1. |
Cornell University Coop; “The Food Keeper”; printed on Oct. 15, 2007; 7 pages total (un-numbered). |
Daryabeigi, Kamran; “Thermal Analysis and Design Optimization of Multilayer Insulation for Reentry Aerodynamic Heating”; Journal of Spacecraft and Rockets; Jul.-Aug. 2002; pp. 509-514; vol. 39; No. 4; American Institute of Aeronautics and Astronautics Inc. |
Demko, J. A., et al.; “Design Tool for Cryogenic Thermal Insulation Systems”; Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC; Bearing a date of 2008; pp. 145-151; vol. 53; American institute of Physics. |
Department of Health and Social Services, Division of Public Health, Section of Community Health and EMS, State of Alaska; Cold Injuries Guidelines—Alaska Multi-Level 2003 Version; bearing dates of 2003 and Jan. 2005; pp. 1-60; located at http://www.chems.alaska.gov. |
Ette, Ene I.; “Conscience, the Law, and Donation of Expired Drugs”; The Annals of Pharmacotherapy; Jul./Aug. 2004; pp. 1310-1313; vol. 38. |
Ferrotec; “Ferrofluid: Magnetic Liquid Technology”; bearing dates of 2001-2008; printed on Mar. 10, 2008; found at http://www.ferrotec.com/technology/ferrofluid.php. |
Fricke, Jochen; Emmerling, Andreas; “Aerogels—Preparation, Properties, Applications”; Structure and Bonding; 1992; pp. 37-87; vol. 77; Springer-Verlag Berlin Heidelberg. |
Hedayat, A., et al.; “Variable Density Multilayer Insulation for Cryogenic Storage”; Bearing a date of 2000; pp. 1-10. |
Horgan, A. M., et al.; “Hydrogen and Nitrogen Desorption Phenomena Associated with a Stainless Steel 304 Low Energy Electron Diffraction (LEED) and Molecular Beam Assembly”; The Journal of Vacuum Science and Technology; Bearing a date of Jul.-Aug. 1972; pp. 1218-1226; vol. 9, No. 4. |
JAMC; “Preventing Cold Chain Failure: Vaccine Storage and Handling”; JAMC; Oct. 26, 2004; p. 1050; vol. 171; No. 9; Canadian Medical Association. |
Jorgensen, Pernille; Chanthap, Lon; Rebueno, Antero; Tsuyuoka, Reiko; Bell, David; “Malaria Rapid Diagnostic Tests in Tropical Climates: The Need for a Cool Chain”; American Journal of Tropical Medicine and Hygiene; 2006; pp. 750-754; vol. 74; No. 5; The American Society of Tropical Medicine and Hygiene. |
Keller, C. W., et al.; “Thermal Performance of Multilayer Insulations, Final Report, Contract NAS 3-14377”; Bearing a date of Apr. 5, 1974; pp. 1-446. |
Kishiyama, K., et al.; “Measurement of Ultra Low Outgassing Rates for NLC UHV Vacuum Chambers”; Proceedings of the 2001 Particle Accelerator Conference, Chicago; Bearing a date of 2001; pp. 2195-2197; IEEE. |
Levin, Carol E.; Nelson, Carib M.; Widjaya, Anton; Moniaga, Vanda; Anwar, Chairiyah; “The Costs of Home Delivery of a Birth Dose of Hepatitis B Vaccine in a Prefilled Syringe in Indonesia”; Bulletin of the World Health Organization; Jun. 2005; pp. 456-461 + 1 pg. Addenda; vol. 83; No. 6. |
Little, Arthur D.; “Liquid Propellant Losses During Space Flight, Final Report on Contract No. NASw-615”; Bearing a date of Oct. 1964; pp. 1-315. |
Llanos-Cuentas, A.; Campus, P.; Clendenes, M.; Canfield. C.J.; Hutchinson, D.B.A.; “Atovaquone and Proguanil Hydrochloride Compared with Chloroquine or Pyrimethamine/Sulfadoxine for Treatment of Acute Plasmodium Falciparum Malaria in Peru”; The Brazilian Journal of Infectious Diseases; 2001; pp. 67-72; vol. 5; No. 2; The Brazilian Journal of Infectious Diseases and Contexto Publishing. |
Lockheed Missiles & Space Company; “High-Performance Thermal Protection Systems, Contract NAS 8-20758, vol. II”; Bearing a date of Dec. 31, 1969; pp. 1-117. |
Lockman, Shahin; Ndase, P.; Holland, D.; Shapiro, R.; Connor, J.; Capparelli, E.; “Stability of Didanosine and Stavudine Pediatric Oral Solutions and Kaletra Capsules at Temperatures from 4° C. to 55° C.”; 12th Conference on Retroviruses and Opportunistic Infections, Boston, Massachusetts; Feb. 22-25, 2005; p. 1; Foundation for Retrovirology and Human Health. |
Ma, Kun-Quan; and Liu, Jing; “Nano liquid-metal fluid as ultimate coolant”; Physics Letters A; bearing dates of Jul. 10, 2006, Sep. 9, 2006, Sep. 18, 2006, Sep. 26, 2006, and Jan. 29, 2007; pp. 252-256; vol. 361, Issue 3; Elsevier B.V. |
Moonasar, Devanand; Goga, Ameena Ebrahim; Frean, John; Kruger, Philip; Chandramohan; Daniel; “An Exploratory Study of Factors that Affect the Performance and Usage of Rapid Diagnostic Tests for Malaria in the Limpopo Province, South Africa”; Malaria Journal; Jun. 2007; pp. 1-5; vol. 6; No. 74; Moonasar et al.; licensee BioMed Central Ltd. |
Moshfegh, B.; “A New Thermal Insulation System for Vaccine Distribution; Journal of Thermal Insulation”; Jan. 1992; pp. 226-247; vol. 15; Technomic Publishing,Co., Inc. |
Nemani{hacek over (c)}, Vincenc, et al.; “Experiments with a thin-walled stainless-steel vacuum chamber”; The Journal of Vacuum Science and Technology A; Bearing a date of Jul.-Aug. 2000; pp. 1789-1793; vol. 18, No. 4; American Vacuum Society. |
Nemani{hacek over (c)}, Vincenc, et al.; “Outgassing of a thin wall vacuum insulating panel”; Vacuum; Bearing a date of 1998; pp. 233-237; vol. 49, No. 3; Elsevier Science Ltd. |
Nemani{hacek over (c)}, Vincenc, et al.; “A study of thermal treatment procedures to reduce hydrogen outgassing rate in thin wall stainless steel cells”; Vacuum; Bearing a date of 1999; pp. 277-280; vol. 53; Elsevier Science Ltd. |
Nolan, Timothy D. C.; Hattler, Brack G.; Federspiel, William J.; “Development of a Balloon Volume Sensor for Pulsating Balloon Catheters”; ASAIO Journal; 2004; pp. 225-233; vol. 50; No. 3; American Society of Artificial Internal Organs. |
PATH—A Catalyst for Global Health; “Uniject™ Device—The Radically Simple Uniject™ Device—Rethinking the Needle to Improve Immunization”; bearing dates of 1995-2006; printed on Oct. 11, 2007; pp. 1-2; located at http://www.path.org/projects/uniject.php; PATH Organization. |
Pau, Alice K.; Moodley, Neelambal K.; Holland, Diane T.; Fomundam, Henry; Matchaba, Gugu U.; and Capparelli, Edmund V.; “Instability of lopinavir/ritonavir capsules at ambient temperatures in sub-Saharan Africa: relevance to WHO antiretroviral guidelines”; AIDS; Bearing dates of 2005, Mar. 29, 2005, and Apr. 20, 2005; pp. 1229-1236; vol. 19, No. 11; Lippincott Williams & Wilkins. |
PCT International Search Report; International App. No. PCT/US09/01715; Jan. 8, 2010; pp. 1-2. |
PCT International Search Report; International App. No. PCT/US08/13646; Apr. 9, 2009; pp. 1-2. |
PCT International Search Report; International App. No. PCT/US08/13648; Mar. 13, 2009; pp. 1-2. |
PCT International Search Report; International App. No. PCT/US08/13642; Feb. 26, 2009; pp. 1-2. |
PCT International Search Report; International App. No. PCT/US08/13643; Feb. 20, 2009; pp. 1-2. |
Pekala, R. W.; “Organic Aerogels From the Polycondensation of Resorcinol With Formaldehyde”; Journal of Materials Science; Sep. 1989; pp. 3221-3227; vol. 24; No. 9; Springer Netherlands. |
Pickering, Larry K.; Wallace, Gregory; Rodewald, Lance; “Too Hot, Too Cold: Issues with Vaccine Storage”; Pediatrics®—Official Journal of the American Academy of Pediatrics; 2006; pp. 1738-1739 (4 pages total, incl. cover sheet and end page); vol. 118; American Academy of Pediatrics. |
Post, Richard F.; “Maglev: A New Approach”; Scientific American; Jan. 2000; pp. 82-87; Scientific American, Inc. |
Program for Appropriate Technology in Health (PATH); “The Radically Simple Uniject Device”; PATH—Reflections on Innovations in Global Health; printed on Jan. 26, 2007; pp. 1-4; located at www.path.org. |
Reeler, Anne V.; Simonsen, Lone; Health Access International; “Unsafe Injections, Fatal Infections”; Bill and Melinda Gates Children's Vaccine Program Occasional Paper #2; May 2000; pp. 1-8; located at www.ChildrensVaccine.org/html/safe—injection.htm. |
Risha, Peter G.; Shewiyo, Danstan; Msami, Amani; Masuki, Gerald; Vergote, Geert; Vervaet, Chris; Remon, Jean Paul; “In vitro Evaluation of the Quality of Essential Drugs on the Tanzanian Market”; Tropical Medicine and International Health; Aug. 2002; pp. 701-707; vol. 7; No. 8; Blackwell Science Ltd. |
Sasaki, Y. Tito; “A survey of vacuum material cleaning procedures: A subcommittee report of the American Vacuum Society Recommended Practices Committee”; The Journal of Vacuum Science and Technology A; Bearing a date of May-Jun. 1991; pp. 2025-2035; vol. 9, No. 3; American Vacuum Society. |
Seto, Joyce; Marra, Fawziah; “Cold Chain Management of Vaccines”; Continuing Pharmacy Professional Development HomeStudy Program; Feb. 2005; pp. 1-19; University of British Columbia. |
Shockwatch; “Environmental Indicators”; printed on Sep. 27, 2007; pp. 1-2; located at www.shockwatch.com. |
Suttmeier, Chris; “Warm Mix Asphalt: A Cooler Alternative”; Material Matters—Around the Hot Mix Industry; Spring 2006; pp. 21-22; Peckham Materials Corporation. |
Thompson, Marc T.; “Eddy current magnetic levitation—Models and experiments”; IEEE Potentials; Feb./Mar. 2000; pp. 40-46; IEEE. |
“Two Wire Gage / Absolute Pressure Transmitters—Model 415 and 440”; Honeywell Sensotec; pp. 1-2; Located at www.sensotec.com and www.honeywell.com/sensing. |
UNICEF Regional Office for Latin America & The Carribean (UNICEF-TACRO); Program for Appropriate Technology in Health (PATH); “Final Report Cold Chain Workshop,” Panama City, May 31-Jun. 2, 2006; pp. 1-4 plus cover sheet, table of contents, and annexes A, B and C (22 pages total). |
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; “Recommended Immunization Schedule for Persons Aged 0 Through 6 Years—United States”; Bearing a date of 2009; p. 1. |
Vesel, Alenka, et al.; “Oxidation of AISI 304L stainless steel surface with atomic oxygen”; Applied Surface Science; Bearing a date of 2002; pp. 94-103; vol. 200; Elsevier Science B.V. |
World Health Organization; “Getting started with vaccine vial monitors; Vaccines and Biologicals”; World Health Organization; Dec. 2002; pp. 1-20 plus cover sheets, end sheet, contents pages, abbreviations page; revision history page and acknowledgments page (29 pages total); World Health Organization; located at www.who.int/vaccines-documents. |
World Health Organization; “Getting started with vaccine vial monitors—Questions and answers on field operations”; Technical Session on Vaccine Vial Monitors, Mar. 27, 2002, Geneva; pp. 1-17 (p. 2 left intentionally blank); World Health Organization. |
Yamakage, Michiaki; Sasaki, Hideaki; Jeong, Seong-Wook; Iwasaki, Sohshi; Namiki, Akiyoshi; “Safety and Beneficial Effect on Body Core Temperature of Prewarmed Plasma Substitute Hydroxyethyl Starch During Anesthesia” [Abstract]; Anesthesiology; 2004; p. A-1285; vol. 101; ASA. |
Young, J. R.; “Outgassing Characteristics of Stainless Steel and Aluminum with Different Surface Treatments”; The Journal of Vacuum Science and Technology; Bearing a date of Oct. 14, 1968; pp. 398-400; vol. 6, No. 3. |
Zajec, Bojan, et al.; “Hydrogen bulk states in stainless-steel related to hydrogen release kinetics and associated redistribution phenomena”; Vacuum; Bearing a date of 2001; pp. 447-452; vol. 61; Elsevier Science Ltd. |
Zhu, Z. Q.; Howe, D.; “Halbach Permanent Magnet Machines and Applications: A Review”; IEE Proceedings—Electric Power Applications; Jul. 2001; pp. 299-308; vol. 148; No. 4; University of Sheffield, Department of Electronic & Electrical Engineering, Sheffield, United Kingdom. |
Bapat, S. L. et al.; “Experimental investigations of multilayer insulation”; Cryogenics; Bearing a date of Aug. 1990; pp. 711-719; vol. 30. |
Bapat, S. L. et al.; “Performance prediction of multilayer insulation”; Cryogenics; Bearing a date of Aug. 1990; pp. 700-710; vol. 30. |
Barth, W. et al.; “Experimental investigations of superinsulation models equipped with carbon paper”; Cryogenics; Bearing a date of May 1988; pp. 317-320; vol. 28. |
Barth, W. et al.; “Test results for a high quality industrial superinsulation”; Cryogenics; Bearing a date of Sep. 1988; pp. 607-609; vol. 28. |
Benvenuti, C. et al.; “Obtention of pressures in the 10−14 torr range by means of a Zr V Fe non evaporable getter”; Vacuum; Bearing a date of 1993; pp. 511-513; vol. 44; No. 5-7; Pergamon Press Ltd. |
Benvenuti, C.; “Decreasing surface outgassing by thin film getter coatings”; Vacuum; Bearing a date of 1998; pp. 57-63; vol. 50; No. 1-2; Elsevier Science Ltd. |
Benvenuti, C.; “Nonevaporable getter films for ultrahigh vacuum applications”; Journal of Vacuum Science Technology A Vacuum Surfaces, and Films; Bearing a date of Jan./Feb. 1998; pp. 148-154; vol. 16; No. 1; American Chemical Society. |
Berman, A.; “Water vapor in vacuum systems”; Vacuum; Bearing a date of 1996; pp. 327-332; vol. 47; No. 4; Elsevier Science Ltd. |
Bernardini, M. et al.; “Air bake-out to reduce hydrogen outgassing from stainless steel”; Journal of Vacuum Science Technology; Bearing a date of Jan./Feb. 1998; pp. 188-193; vol. 16; No. 1; American Chemical Society. |
Bo, H. et al.; “Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems”; Energy; Bearing a date of 1999; vol. 24; pp. 1015-1028; Elsevier Science Ltd. |
Boffito, C. et al.; “A nonevaporable low temperature activatable getter material”; Journal of Vacuum Science Technology; Bearing a date of Apr. 1981; pp. 1117-1120; vol. 18; No. 3; American Vacuum Society. |
Brown, R.D.; “Outgassing of epoxy resins in vacumm.”; Vacuum; Bearing a date of 1967; pp. 25-28; vol. 17; No. 9; Pergamon Press Ltd. |
Burns, H. D.; “Outgassing Test for Non-metallic Materials Associated with Sensitive Optical Surfaces in a Space Environment”; MSFC-SPEC-1443; Bearing a date of Oct. 1987; pp. 1-10. |
Chen, G. et al.; “Performance of multilayer insulation with slotted shield”; Cryogenics ICEC Supplement; Bearing a date of 1994; pp. 381-384; vol. 34. |
Chen, J. R. et al.; “An aluminum vacuum chamber for the bending magnet of the SRRC synchrotron light source”; Vacuum; Bearing a date of 1990; pp. 2079-2081; vol. 41; No. 7-9; Pergamon Press PLC. |
Chen, J. R. et al.; “Outgassing behavior of A6063-EX aluminum alloy and SUS 304 stainless steel”; Journal of Vacuum Science Technology; Bearing a date of Nov./Dec. 1987; pp. 3422-3424; vol. 5; No. 6; American Vacuum Society. |
Chen, J. R. et al.; “Outgassing behavior on aluminum surfaces: Water in vacuum systems”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1994; pp. 1750-1754; vol. 12; No. 4; American Vacuum Society. |
Chen, J. R. et al.; “Thermal outgassing from aluminum alloy vacuum chambers”; Journal of Vacuum Science Technology; Bearing a date of Nov./Dec. 1985; pp. 2188-2191; vol. 3; No. 6; American Vacuum Society. |
Chen, J. R.; “A comparison of outgassing rate of 304 stainless steel and A6063-EX aluminum alloy vacuum chamber after filling with water”; Journal of Vacuum Science Technology A Vacuum Surfaces and Film; Bearing a date of Mar. 1987; pp. 262-264; vol. 5; No. 2; American Chemical Society. |
Chiggiato, P.; “Production of extreme high vacuum with non evaporable getters” Physica Scripta; Bearing a date of 1997; pp. 9-13; vol. T71. |
Cho, B.; “Creation of extreme high vacuum with a turbomolecular pumping system: A baking approach”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1995; pp. 2228-2232; vol. 13; No. 4; American Vacuum Society. |
Choi, S. et al.; “Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems”; Composites Part B: Engineering; Bearing a date of 2008; pp. 782-791; vol. 39; Elsevier Science Ltd. |
Chun, I. et al.; “Effect of the Cr-rich oxide surface on fast pumpdown to ultrahigh vacuum”; Journal of Vacuum Science Technology A Vacuum, Surfaces, and Films; Bearing a date of Sep./Oct. 1997; pp. 2518-2520; vol. 15; No. 5; American Vacuum Society. |
Chun, I. et al.; “Outgassing rate characteristic of a stainless-steel extreme high vacuum system”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1996; pp. 2636-2640; vol. 14; No. 4; American Vacuum Society. |
Crawley, D J. et al.; “Degassing Characteristics of Some ‘O’ Ring Materials”; Vacuum; Bearing a date of 1963; pp. 7-9; vol. 14; Pergamon Press Ltd. |
Csernatony, L.; “The Properties of Viton ‘A’ Elastomers II. The influence of permeation, diffusion and solubility of gases on the gas emission rate from an O-ring used as an atmospheric seal or high vacuum immersed”; Vacuum; Bearing a date of 1965; pp. 129-134; vol. 16; No. 3; Pergamon Press Ltd. |
Day, C.; “The use of active carbons as cryosorbent”; Colloids and Surfaces A Physicochemical and Engineering Aspects; Bearing a date of 2001; pp. 187-206; vol. 187-188; Elsevier Science. |
Della Porta, P.; “Gas problem and gettering in sealed-off vacuum devices”; Vacuum; Bearing a date of 1996; pp. 771-777; vol. 47; No. 6-8 Elsevier Science Ltd. |
Dylla, H. F. et al.; “Correlation of outgassing of stainless steel and aluminum with various surface treatments”; Journal of Vacuum Science Technology; Bearing a date of Sep./Oct. 1993; pp. 2623-2636; vol. 11; No. 5; American Vacuum Society. |
Elsey, R. J. “Outgassing of vacuum material I”; Vacuum; Bearing a date of 1975; pp. 299-306; vol. 25; No. 7; Pergamon Press Ltd. |
Elsey, R. J. “Outgassing of vacuum materials II” Vacuum; Bearing a date of 1975; pp. 347-361; vol. 25; No. 8; Pergamon Press Ltd. |
Engelmann, G. et al.; “Vacuum chambers in composite material”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1987; pp. 2337-2341; vol. 5; No. 4; American Vacuum Society. |
Eyssa, Y. M. et al.; “Thermodynamic optimization of thermal radiation shields for a cryogenic apparatus”; Cryogenics; Bearing a date of May 1978; pp. 305-307; vol. 18; IPC Business Press. |
Glassford, A. P. M. et al.; “Outgassing rate of multilayer insulation”; 1978; Bearing a date of 1978; pp. 83-106. |
Gupta, A. K. et al.; “Outgassing from epoxy resins and methods for its reduction”; Vacuum; Bearing a date of 1977; pp. 61-63; vol. 27; No. 12; Pergamon Press Ltd. |
Haaczek, T. et al.; “Flat-plate cryostat for measurements of multilayer insulation thermal conductivity”; Cryogenics; Bearing a date of Oct. 1985; pp. 593-595; vol. 25; Butterworth & Co. Ltd. |
Haaczek, T. et al.; “Unguarded cryostat for thermal conductivity measurements of multilayer insulations”; Cryogenics; Bearing a date of Sep. 1985; pp. 529-530; vol. 25; Butterworth & Co. Ltd. |
Haaczek, T. L. et al.; “Heat transport in self-pumping multilayer insulation”; Cryogenics; Bearing a date of Jun. 1986; pp. 373-376; vol. 26; Butterworth & Co. Ltd. |
Haaczek, T. L. et al.; “Temperature variation of thermal conductivity of self-pumping multilayer insulation”; Cryogenics; Bearing a date of Oct. 1986; pp. 544-546.; vol. 26; Butterworth & Co. Ltd. |
Halldórsson, Árni, et al.; “The sustainable agenda and energy efficiency: Logistics solutions and supply chains in times of climate change”; International Journal of Physical Distribution & Logistics Management; Bearing a date of 2010; pp. 5-13; vol. 40; No. ½; Emerald Group Publishing Ltd. |
Halliday, B. S.; “An introduction to materials for use in vacuum”; Vacuum; Bearing a date of 1987; pp. 583-585; vol. 37; No. 8-9; Pergamon Journals Ltd. |
Hirohata, Y.; “Hydrogen desorption behavior of aluminium materials used for extremely high vacuum chamber”; Journal of Vacuum Science Technology; Bearing a date of Sep./Oct. 1993; pp. 2637-2641; vol. 11; No. 5; American Vacuum Society. |
Holtrop, K. L. et al.; “High temperature outgassing tests on materials used in the DIII-D tokamak”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 2006; pp. 1572—; vol. 24; No. 4; American Vacuum Society. |
Hong, S. et al.; “Investigation of gas species in a stainless steel ultrahigh vacuum chamber with hot cathode ionization gauges”; Measurement Science and Technology; Bearing a date of 2004; pp. 359-364; vol. 15; IOP Science. |
Ishikawa, Y. et al.; “Reduction of outgassing from stainless surfaces by surface oxidation”; Vacuum; Bearing a date of 1990; pp. 1995-1997; vol. 4; No. 7-9; Pergamon Press PLC. |
Ishikawa, Y.; “An overview of methods to suppress hydrogen outgassing rate from austenitic stainless steel with reference to UHV and EXV”; Vacuum; Bearing a date of 2003; pp. 501-512; vol. 69; No. 4; Elsevier Science Ltd. |
Ishimaru, H. et al.; “All Aluminum Alloy Vacuum System for the TRISTAN e+e-Storage”; IEEE Transactions on Nuclear Science; Bearing a date of Jun. 1981; pp. 3320-3322; vol. NS-28; No. 3. |
Ishimaru, H. et al.; “Fast pump-down aluminum ultrahigh vacuum system”; Journal of Vacuum Science Technology; Bearing a date of May/Jun. 1992; pp. 547-552 ; vol. 10; No. 3; American Vacuum Society. |
Ishimaru, H. et al.; “Turbomolecular pump with an ultimate pressure of 10 −12 Torr”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1994; pp. 1695-1698; vol. 12; No. 4; American Vacuum Society. |
Ishimaru, H.; “All-aluminum-alloy ultrahigh vacuum system for a large-scale electron-positron collider”; Journal of Vacuum Science Technology; Bearing a date of Jun. 1984; pp. 1170-1175; vol. 2; No. 2; American Vacuum Society. |
Ishimaru, H.; “Aluminium alloy-sapphire sealed window for ultrahigh vacuum”; Vacuum; Bearing a date of 1983; pp. 339-340.; vol. 33; No. 6; Pergamon Press Ltd. |
Ishimaru, H.; “Bakeable aluminium vacuum chamber and bellows with an aluminium flange and metal seal for ultra-high vacuum”; Journal of Vacuum Science Technology; Bearing a date of Nov./Dec. 1978; pp. 1853-1854; vol. 15; No. 6; American Vacuum Society. |
Ishimaru, H.; “Ultimate pressure of the order of 10 −13 Torr in an aluminum alloy vacuum chamber”; Journal of Vacuum Science and Technology; Bearing a date of May/Jun. 1989; pp. 2439-2442; vol. 7; No. 3; American Vacuum Society. |
Jacob, S. et al.; “Investigations into the thermal performance of multilayer insulation (300-77 K) Part 2: Thermal analysis”; Cryogenics; Bearing a date of 1992; pp. 1147-1153; vol. 32; No. 12; Butterworth-Heinemann Ltd. |
Jacob, S. et al.; “Investigations into the thermal performance of multilayer insulation (300-77 K) Part 1: Calorimetric studies”; Cryogenics; Bearing a date of 1992; pp. 1137-1146; vol. 32; No. 12; Butterworth-Heinemann Ltd. |
Jenkins, C. H. M.; “Gossamer spacecraft: membrane and inflatable structures technology for space applications”; AIAA; Bearing a date of 2000; pp. 503-527; vol. 191. |
Jhung, K. H. C. et al.; “Achievement of extremely high vacuum using a cryopump and conflat aluminium”; Vacuum; Bearing a date of 1992; pp. 309-311; vol. 43; No. 4; Pergamon Press PLC. |
Kato, S. et al.; “Achievement of extreme high vacuum in the order of 10−10 Pa without baking of test chamber”; Journal of Vacuum Science Technology; Bearing a date of May/Jun. 1990; pp. 2860-2864; vol. 8 ; No. 3; American Vacuum Society. |
Keller, K. et al.; “Application of high temperature multilayer insulations”; Acta Astronautica ; Bearing a date of 1992; pp. 451-458; vol. 26; No. 6; Pergamon Press Ltd. |
Koyatsu, Y. et al. “Measurements of outgassing rate from copper and copper alloy chambers”; Vacuum; Bearing a date of 1996; pp. 709-711; vol. 4; No. 6-8; Elsevier Science Ltd. |
Kristensen, D. et al.; “Stabilization of vaccines: Lessons learned”; Human Vaccines; Bearing a date of Mar. 2010; pp. 227-231; vol. 6; No. 3; Landes Bioscience. |
Kropschot, R. H.; “Multiple layer insulation for cryogenic applications”; Cryogenics; Bearing a date of Mar. 1961; pp. 135-135; vol. 1. |
Li, Y.; “Design and pumping characteristics of a compact titanium—vanadium non-evaporable getter pump”; Journal of Vacuum Science Technology; Bearing a date of May/Jun. 1998; pp. 1139-1144; vol. 16; No. 3; American Vacuum Society. |
Liu, Y. C. et al.; “Thermal outgassing study on aluminum surfaces”; Vacuum; Bearing a date of 1993; pp. 435-437; vol. 44; No. 5-7; Pergamon Press Ltd. |
Londer, H. et al.; “New high capacity getter for vacuum insulated mobile LH2 storage tank systems”; Vacuum; Bearing a date of 2008; pp. 431-434; vol. 82; No. 4; Elsevier Ltd. |
Matsuda, A. et al.; “Simple structure insulating material properties for multilayer insulation”; Cryogenics; Bearing a date of Mar. 1980; pp. 135-138; vol. 20; IPC Business Press. |
Mikhalchenko, R. S. et al.; “Study of heat transfer in multilayer insulations based on composite spacer materials.”; Cryogenics; Bearing a date of Jun. 1983; pp. 309-311; vol. 23; Butterworth & Co. Ltd. |
Mikhalchenko, R. S. et al.; “Theoretical and experimental investigation of radiative-conductive heat transfer in multilayer insulation”; Cryogenics; Bearing a date of May 1985; pp. 275-278; vol. 25; Butterworth & Co. Ltd. |
Miki, M. et al.; “Characteristics of extremely fast pump-down process in an aluminum ultrahigh vacuum system”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1994; pp. 1760-1766; vol. 12; No. 4; American Vacuum Society. |
Mohri, M. et al.; “Surface study of Type 6063 aluminium alloys for vacuum chamber materials”; Vacuum; Bearing a date of 1984; pp. 643-647; vol. 34; No. 6; Pergamon Press Ltd. |
Mukugi, K. et al.; “Characteristics of cold cathode gauges for outgassing measurements in uhv range”; Vacuum; Bearing a date of 1993; pp. 591-593; vol. 44; No. 5-7; Pergamon Press Ltd. |
Nemani{hacek over (c)}, V. et al.; “Anomalies in kinetics of hydrogen evolution from austenitic stainless steel from 300 to 1000° C.”; Journal of Vacuum Science Technology; Bearing a date of Jan./Feb. 2001; pp. 215-222; vol. 19; No. 1; American Vacuum Society. |
Nemani{hacek over (c)}, V. et al.; “Outgassing in thin wall stainless steel cells”; Journal of Vacuum Science Technology; Bearing a date of May/Jun. 1999; pp. 1040-1046; vol. 17; No. 3; American Vacuum Society. |
Nemani{hacek over (c)}, V.; “Outgassing of thin wall stainless steel chamber”; Vacuum; Bearing a date of 1998; pp. 431-437; vol. 50; No. 3-4; Elsevier Science Ltd. |
Nemani{hacek over (c)}, V.; “Vacuum insulating panel”; Vacuum; bearing a date of 1995; pp. 839-842; vol. 46; No. 8-10; Elsevier Science Ltd. |
Odaka, K. et al.;“Effect of baking temperature and air exposure on the outgassing rate of type 316L stainless steel”; Journal of Vacuum Science Technology; Bearing a date of Sep./Oct. 1987; pp. 2902-2906; vol. 5; No. 5; American Vacuum Society. |
Odaka, K.; “Dependence of outgassing rate on surface oxide layer thickness in type 304 stainless steel before and after surface oxidation in air”; Vacuum; Bearing a date of 1996; pp. 689-692; vol. 47; No. 6-8; Elsevier Science Ltd. |
Okamura, S. et al.; “Outgassing measurement of finely polished stainless steel”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1991; pp. 2405-2407; vol. 9; No. 4; American Vacuum Society. |
Patrick, T. J.; “Outgassing and the choice of materials for space instrumentation”; Vacuum; Bearing a date of 1973; pp. 411-413; vol. 23; No. 11; Pergamon Press Ltd. |
Patrick, T. J.; “Space environment and vacuum properties of spacecraft materials”; Vacuum; Bearing a date of 1981; pp. 351-357; vol. 31; No. 8-9; Pergamon Press Ltd. |
Poole, K. F. et al.; “Hialvac and Teflon outgassing under ultra-high vacuum conditions”; Vacuum; Bearing a date of Jun. 30, 1980; pp. 415-417; vol. 30; No. 10; Pergamon Press Ltd. |
Redhead, P. A.; “Recommended practices for measuring and reporting outgassing data”; Journal of Vacuum Science Technology; Bearing a date of Sep./Oct. 2002; pp. 1667-1675; vol. 20; No. 5; American Vacuum Society. |
Rutherford, S; “The Benefits of Viton Outgassing”; Bearing a date of 1997; pp. 1-5; Duniway Stockroom Corp. |
Saito, K. et al.; “Measurement system for low outgassing materials by switching between two pumping paths”; Vacuum; Bearing a date of 1996; pp. 749-752; vol. 47; No. 6-8; Elsevier Science Ltd. |
Saitoh, M. et al.; “Influence of vacuum gauges on outgassing rate measurements”; Journal of Vacuum Science Technology; Bearing a date of Sep./Oct. 1993; pp. 2816-2821; vol. 11; No. 5; American Vacuum Society. |
Santhanam, S. M. T. J. et al. ;“Outgassing rate of reinforced epoxy and its control by different pretreatment methods”; Vacuum; Bearing a date of 1978; pp. 365-366; vol. 28; No. 8-9; Pergamon Press Ltd. |
Sasaki, Y. T.; “Reducing SS 304/316 hydrogen outgassing to 2×10−15torr Vcm 2s”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 2007; pp. 1309-1311; vol. 25; No. 4; American Vacuum Society. |
Scurlock, R. G. et al.; “Development of multilayer insulations with thermal conductivities below 0.1 μW cm−1 K−1”; Cryogenics; Bearing a date of May 1976; pp. 303-311; vol. 16. |
Setia, S. et al.; “Frequency and causes of vaccine wastage”; Vaccine ; Bearing a date of 2002; pp. 1148-1156; vol. 20; Elsevier Science Ltd. |
Shu, Q. S. et al.; “Heat flux from 277 to 77 K through a few layers of multilayer insulation”; Cryogenics; Bearing a date of Dec. 1986; pp. 671-677; vol. 26; Butterworth & Co. Ltd. |
Shu, Q. S. et al.; “Systematic study to reduce the effects of cracks in multilayer insulation Part 1: Theoretical model”; Cryogenics; Bearing a date of May 1987; pp. 249-256; vol. 27; Butterworth & Co. Ltd. |
Shu, Q. S. et al.; “Systematic study to reduce the effects of cracks in multilayer insulation Part 2: experimental results”; Cryogenics; Bearing a date of Jun. 1987; pp. 298-311; vol. 27; No. 6; Butterworth & Co. Ltd. |
Suemitsu, M. et al.; “Development of extremely high vacuums with mirror-polished A1-alloy chambers”; Vacuum; Bearing a date of 1993; pp. 425-428; vol. 44; No. 5-7; Pergamon Press Ltd. |
Suemitsu, M. et al.; “Ultrahigh-vacuum compatible mirror-polished aluminum-alloy surface: Observation of surface-roughness-correlated outgassing rates”; Journal of Vacuum Science Technology; Bearing a date of May/Jun. 1992; pp. 570-572; vol. 10; No. 3; American Vacuum Society. |
Tatenuma, K. et al.; “Acquisition of clean ultrahigh vacuum using chemical treatment”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1998; pp. 2693-2697; vol. 16; No. 4; American Vacuum Society. |
Tatenuma, K.; “Quick acquisition of clean ultrahigh vacuum by chemical process technology”; Journal of Vacuum Science Technology; Bearing a date of Jul./Aug. 1993; pp. 2693-2697; vol. 11; No. 4; American Vacuum Society. |
Tripathi, A. et al.; “Hydrogen intake capacity of ZrVFe alloy bulk getters”; Vacuum; Bearing a date of Aug. 6, 1997; pp. 1023-1025; vol. 48; No. 12; Elsevier Science Ltd. |
Watanabe, S. et al.; “Reduction of outgassing rate from residual gas analyzers for extreme high vacuum measurements”; Journal of Vacuum Science Technology; Bearing a date of Nov./Dec. 1996; pp. 3261-3266; vol. 14; No. 6; American Vacuum Society. |
Wiedemann, C. et al.; “Multi-layer Insulation Literatures Review”; Advances; Printed on May 2, 2011; pp. 1-10; German Aerospace Center. |
Yamazaki, K. et al.; “High-speed pumping to UHV”; Vacuum ; Bearing a date of 2010; pp. 756-759; vol. 84; Elsevier Science Ltd. |
Zalba, B. et al.; “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications”; Applied Thermal Engineering; Bearing a date of 2003; pp. 251-283; vol. 23; Elsevier Science Ltd. |
Zhitomirskij, I.S. et al.; “A theoretical model of the heat transfer processes in multilayer insulation”; Cryogenics; Bearing a date of May 1979; pp. 265-268; IPC Business Press. |
Chinese State Intellectual Property Office, Office Action; App. No. 201180016103.1 (based on PCT Patent Application No. PCT/US2011/000234); Jun. 23, 2014 (received by our Agent on Jun. 25, 2014); pp. 1-23. |
U.S. Appl. No. 14/098,886, Bloedow et al. |
U.S. Appl. No. 14/070,892, Hyde et al. |
U.S. Appl. No. 14/070,234, Hyde et al. |
“About Heat Leak—Comparison”; Technifab Products, Inc.; printed on Jun. 25, 2014; 2 pages; located at www.technifab.com/cryogenic-resource-library/about-heat-leak.html. |
PCT International Search Report; International App. No. PCT/US2014/067863; Mar. 27, 2015; pp. 1-3. |
Number | Date | Country | |
---|---|---|---|
20100213200 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12001757 | Dec 2007 | US |
Child | 12658579 | US | |
Parent | 12006088 | Dec 2007 | US |
Child | 12001757 | US | |
Parent | 12006089 | Dec 2007 | US |
Child | 12006088 | US | |
Parent | 12008695 | Jan 2008 | US |
Child | 12006089 | US | |
Parent | 12012490 | Jan 2008 | US |
Child | 12008695 | US | |
Parent | 12077322 | Mar 2008 | US |
Child | 12012490 | US | |
Parent | 12152465 | May 2008 | US |
Child | 12077322 | US | |
Parent | 12152467 | May 2008 | US |
Child | 12152465 | US | |
Parent | 12220439 | Jul 2008 | US |
Child | 12152467 | US |