Many electronic devices use sensors for measuring various information, e.g., speed, motion, etc. However, the profile of the sensor changes in response to changes in temperature, resulting in inaccuracies. The inaccuracies resulting from changes in temperature are more pronounced in applications where wide temperature swings exist such as drone technology.
Accordingly, a need has arisen to control sensor profile as temperature changes. For example, a need has arisen to maintain a predetermined temperature within the enclosure that houses the sensor in order to maintain the sensor profile as temperature external to the enclosure varies. It is appreciated that in some embodiment the predetermined temperature may be user programmable.
In some embodiments, a device may include a substrate, a micro-electro-mechanical system (MEMS) device disposed on the substrate, a controller disposed on the substrate, a heating element, and an enclosure. The heating element, e.g., a resistor, a thermoelectric material having peltier effect (also known as peltier device), etc., is configured to generate heat in response to a signal generated by the controller. The enclosure encloses the MEMS sensor device, the controller, and the heating element. The controller is configured to generate the signal responsive to temperature measurements within the enclosure. The signal causes the heating element to generate heat and maintain a predetermined temperature, e.g., greater than 45° C., within the enclosure. As a result, the MEMS sensor device, e.g., a gyroscope sensor, a motion sensor, an accelerometer sensor, and a pressure sensor, maintains the same profile. In some embodiments, predetermined temperature is user programmable. The predetermined temperature may be automatically adjusted based on temperature outside of the enclosure. In some embodiments, the predetermined temperature is greater than the temperature outside of the enclosure.
In some embodiments, the substrate forms one side of the enclosure. The enclosure further includes another substrate forming another side of the enclosure and a mid-enclosure connecting to the substrate, e.g., a printed circuit board (PCB), and to the another substrate, e.g., a PCB, to enclose the MEMS sensor device, the controller, and the heating element within the enclosure. The mid-enclosure may include a plurality of vias for electrically coupling the substrate to the another substrate.
In some embodiments, the heating element may be disposed on the substrate and/or the another substrate. It is appreciated that according to some embodiments, more than one heating element may be used and disposed in various locations, e.g., the substrate and the another substrate.
In some embodiments, a device may include a substrate, a micro-electro-mechanical system (MEMS) device, e.g., a gyroscope sensor, a motion sensor, an accelerometer sensor, and a pressure sensor, etc., disposed on the substrate, a controller disposed on the substrate, a thermoelectric element, e.g., peltier device, and an enclosure that encloses the MEMS sensor device, the controller, and the thermoelectric element. The thermoelectric element is configured to heat up or cool in response to a signal generated by the controller. The controller is configured to generate the signal responsive to temperature measurements within the enclosure. The signal causes the thermoelectric element to heat up if a temperature measurement within the enclosure is below a predetermined temperature and the signal causes the thermoelectric element to cool if the temperature measurement within the enclosure is above the predetermined temperature to maintain temperature within the enclosure at the predetermined temperature. In some embodiments, predetermined temperature is user programmable.
It is appreciated that the substrate may form one side of the enclosure and the enclosure may further include another substrate forming another side of the enclosure and a mid-enclosure connecting to the substrate and to the another substrate to enclose the MEMS sensor device, the controller, and the thermoelectric element within the enclosure. It is appreciated that the mid-enclosure may include a plurality of vias for electrically coupling the substrate to the another substrate.
It is appreciated that the substrate and/or the another substrate may include a PCB. In some embodiments, the thermoelectric element may be disposed on the substrate and/or the another substrate.
These and other features and aspects of the concepts described herein may be better understood with reference to the following drawings, description, and appended claims.
Before various embodiments are described in greater detail, it should be understood by persons having ordinary skill in the art that the embodiments are not limiting, as elements in such embodiments may vary. It should likewise be understood that a particular embodiment described and/or illustrated herein has elements which may be readily separated from the particular embodiment and optionally combined with any of several other embodiments or substituted for elements in any of several other embodiments described herein.
It should also be understood by persons having ordinary skill in the art that the terminology used herein is for the purpose of describing the certain concepts, and the terminology is not intended to be limiting. Unless indicated otherwise, ordinal numbers (e.g., first, second, third, etc.) are used to distinguish or identify different elements or steps in a group of elements or steps, and do not supply a serial or numerical limitation on the elements or steps of the embodiments thereof. For example, “first,” “second,” and “third” elements or steps need not necessarily appear in that order, and the embodiments thereof need not necessarily be limited to three elements or steps. It should also be understood that, unless indicated otherwise, any labels such as “left,” “right,” “front,” “back,” “top,” “middle,” “bottom,” “forward,” “reverse,” “clockwise,” “counter clockwise,” “up,” “down,” or other similar terms such as “upper,” “lower,” “above,” “below,” “vertical,” “horizontal,” “proximal,” “distal,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. It should also be understood that the singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by persons of ordinary skill in the art to which the embodiments pertain.
Many electronic devices use sensors for measuring various information, e.g., speed, motion, etc. However, the profile of the sensor changes in response to changes in temperature, resulting in inaccuracies. Accordingly, a need has arisen to control the sensor profile as temperature changes. For example, a need has arisen to maintain a predetermined temperature within the enclosure that houses the sensor in order to maintain the sensor profile as temperature external to the enclosure varies. It is appreciated that in some embodiments the predetermined temperature may be user programmable.
Referring now to
It is appreciated that the electronic components 140 may be disposed on the substrate 110 and the heating element 150 may be disposed on the substrate 120. In some embodiments, the electronic components 140 may include a micro-electro-mechanical system (MEMS) device, e.g., a gyroscope sensor, a motion sensor, an accelerometer sensor, and a pressure sensor, etc., and a controller as well as other electronic components, e.g., temperature sensor. It is appreciated that the MEMS sensor device may be a sensor to measure motion, acceleration, pressure, rotation, etc. The controller may be a processor, e.g., central processing unit, application specific integrated circuit, a field programmable gate array, etc.
According to some embodiments, the substrates 110-120, and the mid-enclosure 130 enclose the electronic components 140 and the heating element 150 within. In other words, the substrates 110-120 and the mid-enclosure 130 separate the electronic components 140 and the heating element 150 from the external environment. It is appreciated that the substrates 110-120 may include a printed circuit board (PCB), plastic, metal, or any combination thereof. Furthermore, it is appreciated that in some embodiments a top enclosure (not shown) connected to the substrate 120, to mount the substrate 120, and a bottom enclosure (not shown) connected to the substrate 110, to mount the substrate 110, may be used that are each connected to the mid-enclosure 130 in order to form the enclosure and to enclose the electronic components 140 and the heating element 150 rather than using the substrates 110 and 120 as the top and bottom enclosures. The top and the bottom enclosure may include insulating material such as plastic compounds. In some embodiments, the mid-enclosure 130 may include insulating material such as plastic components. It is appreciated that the mid-enclosure 130 connects to the substrates 110 and 120 to enclose the electronic components 140 and the heating element 150. It is further appreciated that even though the mid-enclosure 130 is shown as a separate piece from the substrates 110 and 120 or the top and bottom enclosures (not shown) that the substrates 110-120 mount on, they may be formed as a single integrated piece.
According to some embodiments, a temperature sensor may measure the temperature within the enclosure. If the measured temperature is below the predetermined temperature, e.g., 45° C., the controller may generate a signal to cause the heating element 150 to generate heat. For example, a signal generated by the controller may cause a current to flow through the heating element 150 that may be a resistor in order to generate heat proportional to its resistance value.
It is appreciated that the predetermined temperature may be user programmable and selectable, e.g., 5° C., 10° C., 11° C., 14° C., 27° C., 32° C., 39° C., 45° C., 48° C., 53° C., 57° C., 61° C., 65° C., 73° C., etc. Moreover, it is appreciated that selection of a higher temperature, e.g., 45° C., maintains a substantially constant sensor profile because most locations are cooler than 45° C. In some embodiments, the predetermined temperature of 55° C. may be selected. As such, the environment within the enclosure maintains a constant temperature and therefore a substantially constant sensor profile is maintained.
Referring now to
Referring now to
The electronic components 230 may include components such as a temperature sensor and other electronic components. The temperature sensor, for example, may measure temperature within the enclosure. The controller 240 may be a processor, e.g., central processing unit, application specific integrated circuit, a field programmable gate array, etc., for processing data, e.g., whether to generate a signal for a heating element 280 (shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
For example, in one embodiment the controller 240 generates a signal to cause either or both of the thermoelectric components 450 and 452 to generate heat if a sensor (not shown but part of electronic components 230) detects that the internal temperature of the enclosure has fallen below the predetermined threshold. In contrast, the controller 240 generates a signal to cause either or both of the thermoelectric components 450 and 452 to cool if a sensor (not shown but part of electronic components 230) detects that the internal temperature of the enclosure is above the predetermined temperature. As such, the temperature within the enclosure is maintained at the predetermined temperature, thereby maintaining the sensor 250 profile independent of temperature variations external to the enclosure. Moreover, use of the thermoelectric components 450 and 452 enables a lower temperature, e.g., 10° C., 20° C., etc., within the enclosure to be maintained to maintain the sensor 250 profile the same while reducing power consumption required to generate heat or cool by maintaining an internal temperature that is close to the external temperature of the enclosure.
It is appreciated that any number of temperature sensors, MEMS sensors, controllers, thermoelectric components, and/or heating elements may be used. Moreover, it is appreciated that each element, e.g., thermoelectric component or heating element, may be controlled independently by one or more controllers and temperature sensors. As such, description of the embodiments with respect to specific number of elements and components is illustrative and should not be construed as limiting the scope of the embodiments.
It is appreciated that thermoelectric material may include Bismuth Chalcogenides and their nanostructures, e.g., Bi2Te3, Bi2Se3, etc., Lead Telluride, e.g., PbTe, PbTe1-xSex, etc., inorganic clathrates, Magnesium group IV compounds, e.g., Mg2Si, Mg2Ge, Mg2Sn, etc., Silicides, Skutterudite thermoelectrics formed from (Co, Ni, Fe)(P, Sb, As)3, Oxide thermoelectrics, e.g., (SrTiO3)n(SrO)m, half Heusler alloys, Silicon-Germanium, Sodium Cobaltate, e.g., Na0.8CoO2, amourphous material, nanomaterials and superlattices, PbTe/Pb SeTe quantum dot superlattice, graphene, etc.
Referring now to
It is appreciated that the description of the embodiments separate from one another is for illustration purposes only and should not be construed as limiting the embodiments. It is further appreciated that while various embodiments with respect to the heating elements, thermoelectric components, and a gel/foam thermal insulators are described, the embodiments should not be construed as limited thereto. For example, a combination of the heating element, thermoelectric component, and gel/foam thermal insulators may be used.
While the embodiments have been described and/or illustrated by means of particular examples, and while these embodiments and/or examples have been described in considerable detail, it is not the intention of the Applicants to restrict or in any way limit the scope of the embodiments to such detail. Additional adaptations and/or modifications of the embodiments may readily appear to persons having ordinary skill in the art to which the embodiments pertain, and, in its broader aspects, the embodiments may encompass these adaptations and/or modifications. Accordingly, departures may be made from the foregoing embodiments and/or examples without departing from the scope of the concepts described herein. The implementations described above and other implementations are within the scope of the following claims.
This application claims the benefit and priority to the U.S. Provisional Patent Application No. 62/270,490, filed on Dec. 21, 2015, entitled “Heating Enclosure with Stabilized Temperature,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62270490 | Dec 2015 | US |