The present invention relates to a temperature switch, and a fluid heating device in which the temperature switch is used.
A temperature switch that detects the temperature of a heater and performs switching when the temperature of the heater reaches the set temperature has been used conventionally. When using the temperature switch, it is necessary to keep a contact pressure between itself and the heater properly, in order to transfer heat from the heater efficiently.
JP62-62935A discloses the structure of attaching a temperature sensing member for detecting the temperature of a pipe onto the pipe. With this attachment structure, the temperature sensing member is attached to the pipe by clip-shaped fastening hardware.
According to the attachment structure of JP62-62935A, however, it is necessary to increase rigidity of the clip, in order to secure the contact pressure between the temperature sensing member and the pipe. When the rigidity of the clip is increased, an assembling property of the clip may be deteriorated, and deformation of the clip and the temperature sensing member may be caused at the time of assembly.
The present invention is made in view of the above-described problems, and its object is to provide a temperature switch capable of securing the contact pressure between itself and the heater with ease.
According to one aspect of the present invention, a temperature switch that is configured to perform switching according to temperature of a heater, includes a bimetal that is deformed when the temperature of the heater reaches set temperature, a switch mechanism that is opened and closed by deformation of the bimetal, and a housing member that houses the bimetal and the switch mechanism, and that is configured to conduct heat to the bimetal. The heater includes a pair of heat generation units that is adjacent to each other. The housing member includes a contact portion that is formed to project and that is inserted between the pair of heat generation units.
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.
Hereinafter, a bimetal switch 10 as a temperature switch, and a heater device 100 as a fluid heating device, in which the bimetal switch 10 is used, according to a first embodiment of the present invention will be explained with reference to
The heater device 100 is used in air conditioning devices (heating devices) for vehicles that are mounted on HEVs (Hybrid Electric Vehicles), EVs (Electric Vehicles) and the like.
First, an electric circuit 1, to which the heater device 100 is applied, will be explained with reference to
The heater device 100 is provided with a heater 3 that operates by a current supplied from a DC power supply 2 as a power supply, and a tank 4 through which a coolant as a fluid to be heated by the heater 3 circulates.
The electric circuit 1 is provided with the DC power supply 2 that supplies power to the heater 3, a short-circuit line 6 that establishes a short circuit in the supply line 5 between the upstream side and the downstream side of the heater 3 when the temperature of the heater 3 reaches the set temperature, and a power fuse 7 that is provided on the supply line 5 between the DC power supply 2 and the short-circuit line 6.
The DC power supply 2 is a high-voltage battery that is mounted on the HEV, the EV and the like, and that supplies power to a driving motor (not illustrated), too. An output voltage of the DC power supply 2 is a high voltage of 30 V or more, which is 350 V in this case. The current from the DC power supply 2 is supplied to the heater 3 via the supply line 5. An AC power supply, instead of the DC power supply 2, may be used as the power supply.
One end 6a of the short-circuit line 6 is connected to the position downstream of the power fuse 7 and upstream of the heater 3, in the direction of a current flow of the supply line 5, and the other end 6b is connected to the position downstream of the heater 3 and upstream of the DC power supply 2. The short-circuit line 6 is an electric conductor with a very small resistance and connects the one end 6a, connected to the supply line 5, and the other end 6b.
The short-circuit line 6 has a bimetal switch 10 that is switched to an energized state when the temperature of the heater 3 reaches the set temperature. The short-circuit line 6 is not shorted out when the temperature of the heater 3 is less than the set temperature. When the temperature of the heater 3 reaches the set temperature and the bimetal switch 10 is switched to the energized state, the short-circuit line 6 is brought into a short-circuited state.
The power fuse 7 is cut by a large current that flows instantaneously when the short-circuit line 6 is shorted out. As the resistance of the short-circuit line 6 is very small, an extremely large current, as compared with the current flowing through the heater 3, is made to flow through the power fuse 7 when the short-circuit line 6 is shorted out. The power fuse 7 is cut by the current supplied from the DC power supply 2, before heat generated by a harness (not illustrated) for supplying the current exceeds the allowable temperature. This allowable temperature is set to such temperature that parts forming the harness are not damaged.
As described thus far, the electric circuit 1 is provided with a safety device that interrupts the current supplied from the DC power supply 2 to the heater 3, when the temperature of the heater 3 increases beyond a range of the allowable temperature.
Next, the configuration of the heater device 100 will be explained with reference to
As illustrated in
The heater 3 is a sheathed heater that generates heat by energization, or a PTC (Positive Temperature Coefficient) heater. From the viewpoint of costs, it is desirable that the heater 3 be the sheathed heater. The heater 3 is housed in the tank 4, and heats the coolant used in the heating device for the vehicle.
As illustrated in
Each of the heat generation unit 3a is formed to have a ring-shaped cross section. In this case, the cross section of the heat generation unit 3a has a round shape. The heat generation unit 3a includes a straight portion 3c that is formed to have a straight shape, and a curved portion 3d as a coupling portion that couples the end of the straight portion 3c to another straight portion 3c that is adjacent thereto.
As illustrated in
As illustrated in the cross-sectional view of
As illustrated in
The bimetal 12 is set to reach the critical temperature when the temperature of the heater 3 reaches the set temperature. When the temperature of the bimetal 12 is lower than the critical temperature, it is projected upwardly as illustrated in
The switch mechanism 16 is provided with a fixed contact 14 that is fixed inside the casing 11, and a movable contact 15 that is biased toward the fixed contact 14. The fixed contact 14 and the movable contact 15 are respectively connected to terminals 17. The bimetal switch 10 is inserted in the short-circuit line 6 via the pair of terminals 17 (refer to
When the bimetal 12 reaches the critical temperature and is deformed to project downwardly, as illustrated in
The critical temperature, at which the bimetal 12 is deformed to project downwardly, is set at 130° C., for example. Meanwhile, the temperature, at which the bimetal 12 is deformed from the downwardly projecting state to the upwardly projecting state again, is set at −40° C., for example. Thus, a differential is set in such a manner that the bimetal 12, after being deformed to project downwardly, does not easily return to the upwardly projecting state within a temperature range of a normal usage environment.
The casing 11 is provided with a bottom surface 18 that faces the bimetal 12, and a contact portion 19 that is formed to project from the bottom surface 18 toward the outside. The bimetal 12 is housed inside the casing 11 in a heat conductive manner. According to this embodiment, the edge of the bimetal 12 is in direct contact with the casing 11 before the bimetal 12 is deformed. Incidentally, a heat transfer member, such as a heat conductive sheet formed by, for example, silicone or the like, may be laid between the bimetal 12 and the casing 11.
Before the bimetal 12 is deformed, as illustrated in
The contact portion 19 is inserted between a pair of the adjacent straight portions 3c of the heater 3. The contact portion 19 is in contact with the straight portions 3c of the heater 3. The contact portion 19 is projected to taper down toward the tip. The contact portion 19 is formed to incline from the central axis that is perpendicular to the heater 3, by a contact angle θ.
When the bimetal switch 10 is attached to the tank 4, the contact portion 19 is formed in such a manner that the portion located between the pair of adjacent straight portions 3c is larger than a distance between the pair of adjacent straight portions 3c. Thus, when the contact portion 19 is inserted into the heater 3, the space between the pair of adjacent straight portions 3c is widened by the contact portion 19. For this reason, when the bimetal switch 10 is attached to the tank 4, a contact pressure is generated between the contact portion 19 and the straight portions 3c, due to a spring force of the heater 3.
As illustrated in
Instead of the pair of plane surfaces 19a formed on the contact portion 19, a pair of curved surfaces that can be in surface-contact with the straight portions 3c of the heater 3 may be provided. When the curved surfaces are formed, a contact area between the heater 3 and the bimetal switch 10 increases, which makes it possible to further improve heat transfer efficiency.
As described thus far, the casing 11, in which the bimetal 12 is housed in a heat conductive manner, includes the contact portion 19 that is formed to project and that is inserted between the pair of adjacent straight portions 3c of the heater 3. For this reason, the contact pressure is generated between the contact portion 19 and the straight portions 3c, due to the spring force of the heater 3, only by inserting the contact portion 19 between the pair of straight portions 3c. This makes it possible to easily secure the contact pressure between the bimetal switch 10 and the heater 3.
Further, the contact portion 19 that is formed to taper down toward the tip can absorb manufacturing tolerance and assembling tolerance of the bimetal switch 10, the heater 3, the tank 4 and the like. Thus, it is not necessary to strictly manage dimensional tolerance of the respective parts, as a result of which cost reduction can be made possible.
As illustrated in
The holding portion 21 holds the straight portions 3c in such a manner that the heater 3 is located by being separated from the inner surface of the tank 4 by a predetermined distance. Thereby, even when the bimetal switch 10 is attached to the tank 4 and the contact portion 19 is inserted, the heater 3 does not escape in the direction separating from the bimetal switch 10.
Further, the holding portion 21 includes protruding portions 23 that hold the straight portions 3c at both ends of the heater 3 in such a manner to prevent them from moving toward the outer sides, when the bimetal switch 10 is attached to the tank 4 and the contact portion 19 is inserted. At this time, the straight portions 3c at both ends of the heater 3 may be fixed to the holding portion 21 by brazing or the like. Thus, the holding member 20 is able to fix one of the pair of adjacent heat generation units 3a, between which the contact portion 19 of the bimetal switch 10 is inserted, and to hold the other heat generation unit 3a to be able to separate from the one heat generation unit 3a.
When the bimetal switch 10 is attached to the tank 4 and the contact portion 19 is inserted, one heat generation unit 3a is fixed to the holding member 20 and the other heat generation unit 3a is separated from the one heat generation unit 3a. Thereby, the spring force of the heat generation units 3a is applied to sandwich the contact portion 19, as a result of which the contact pressure is generated between the contact portion 19 and the heat generation units 3a.
As illustrated in
In addition, assuming that a maximum displacement amount of the contact portion 19 of the bimetal switch 10, inserted in the heater 3, is zmax, a maximum reaction force W′ applied to the bimetal switch 10 at this time can be found by the expression (2).
Assuming that a length from the end of the holding member 20 to the end of the straight portions 3c of the heater 3 is Xs, the distance X is set to be shorter than Xs. In addition, the contact angle θ is set in such a manner that attaching strength of the bimetal switch 10 to the tank 4 is greater than W′.
When the setting is made like this, it is possible to properly keep the contact pressure between the contact portion 19 of the bimetal switch 10 and the straight portions 3c of the heater 3, by using a spring property of the heater 3. Further, it is possible to allow the size of the reaction force applied from the heater 3 to the bimetal switch 10 to be within a design value range. This makes it possible to improve heat transfer responsivity of the bimetal switch 10, and to prevent an excessive reaction force from being applied to the bimetal switch 10.
Incidentally, the case of using the heater 3 having the straight portions 3c has been explained in the above-described embodiment. However, this is not restrictive, and a heater 103 that is formed only by a curved portion 103d and that does not have the straight portions, as illustrated in
The following effects can be obtained according to the above-described embodiment.
The casing 11, in which the bimetal 12 is housed in a heat conductive manner, includes the contact portion 19 that is formed to project and that is inserted between the pair of adjacent straight portions 3c of the heater 3. For this reason, the contact pressure is generated between the contact portion 19 and the straight portions 3c, due to the spring force of the heater 3, only by inserting the contact portion 19 between the pair of straight portions 3c. This makes it possible to easily secure the contact pressure between the bimetal switch 10 and the heater 3.
Further, the contact portion 19 that is formed to taper down toward the tip can absorb the manufacturing tolerance and the assembling tolerance of the bimetal switch 10, the heater 3, the tank 4 and the like. Thus, it is not necessary to strictly manage the dimensional tolerance of the respective parts, as a result of which the cost reduction can be made possible.
Incidentally, the contact portion 19 of the bimetal switch 10 is formed to project and taper down toward the tip, according to the above-described first embodiment. Instead of this, the contact portion 19 may be formed to project vertically from the bottom surface 18.
In this case, the contact portion 19 is formed in such a manner that a width between the pair of plane surfaces 19a that is formed in parallel to each other is larger than a distance between the pair of adjacent straight portions 3c of the heater 3, when the bimetal switch 10 is attached to the tank 4. Thus, when the contact portion 19 is inserted into the heater 3, the space between the pair of adjacent straight portions 3c is widened by the contact portion 19. For this reason, the contact pressure is generated between the contact portion 19 and the straight portions 3c, due to the spring force of the heater 3, even when the contact portion 19 is formed to project vertically from the bottom surface 18.
Next, a second embodiment of the present invention will be explained with reference to
With the bimetal switch 10 of the first embodiment, a single piece of the contact portion 19 is formed on the casing 11. With a bimetal switch 110 of the second embodiment, however, a pair of contact portions 119 is formed on a casing 111. As the internal structure of the bimetal switch 110 is similar to that of the bimetal switch 10, explanations are omitted.
The pair of contact portions 119 is provided while being separated from each other with a predetermined distance therebetween. Each of the pair of contact portions 119 is extended along the straight portions 3c and in parallel to each other. The pair of contact portions 119 is in contact with the first to the fourth straight portions 3c that are adjacent to each other in order.
Specifically, one of the contact portions 119 is inserted between the first straight portion 3c and the second straight portion 3c, and the other contact portion 119 is inserted between the third straight portion 3c and the fourth straight portion 3c. At this time, either one of the pair of straight portions 3c, with which the contact portion 119 is in contact, is fixed by a holding member (not illustrated), and the other straight portion 3c is held to be able to separate from the one straight portion 3c.
Thus, similarly to the above-described first embodiment, the contact pressure is generated between the contact portions 119 and the straight portions 3c, due to the spring force of the heater 3, only by inserting the contact portions 119 between the pairs of straight portions 3c. This makes it possible to easily secure the contact pressure between the bimetal switch 10 and the heater 3.
In addition, the bimetal switch 110 has twice as large contact area with the heater 3 as that of the above-described bimetal switch 10 of the first embodiment. This makes it possible to further improve the heat transfer responsivity of the bimetal switch 110.
Incidentally, although the pair of contact portions 119 is formed in the bimetal switch 110, this is not restrictive, and three or more contact portions 119 may be formed.
Next, a third embodiment of the present invention will be explained with reference to
The bimetal switch 10 of the third embodiment has the same structure as that of the bimetal switch 10 of the first embodiment, except for the structure of a contact portion 191. The contact portion 191 of the bimetal switch 10 according to this embodiment, as illustrated in
In addition, a holding member 20a of this embodiment is a plate-shaped member (clip-shaped member) that is formed to sandwich the pair of adjacent straight portions 3c, as illustrated in
According to this embodiment as illustrated in
Next, a fourth embodiment of the present invention will be explained with reference to
A holding member 20b of the fourth embodiment has the similar structure as that of the holding member 20a of the third embodiment, except that a locking hole 21b is formed therein, as illustrated in
Further, the bimetal switch 10 of this embodiment has the same structure as that of the bimetal switch 10 of the third embodiment, except that the structure of the contact portion 192 is different from that of the third embodiment. With the bimetal switch 10 of this embodiment, as illustrated in
Incidentally, according to this embodiment, the contact portion between the bimetal switch 10 and the heater 3 is formed to have a small gradient, similarly to the third embodiment, so that a contact angle θ, when being in contact with the heater 3, becomes smaller.
According to this embodiment, the engagement between the tip portion 192a and locking hole 21b can prevent the holding member 20b from being detached from the heater 3.
Next, a fifth embodiment of the present invention will be explained with reference to
With the bimetal switch 10 of the fifth embodiment, a contact portion 193 is formed to have a pair of curved surfaces that is able to be in surface-contact with the straight portions 3c of the heater 3. With the bimetal switch 10 of this embodiment, not only a surface of the contact portion 193, but also the bottom surface 18 is in contact with the heater 3. Further, according to this embodiment, the heater 3 and the contact portion 193 are fixed by the brazing.
The holding member 20c of this embodiment has the same structure as that of the holding member 20 of the first embodiment, except that the contact surface with the heater 3 is formed as the curved surface along a contour of the heater 3.
According to this embodiment, the contact area between the heater 3 and the bimetal switch 10 is increased by the above-described structure. In addition, a minute gap between the heater 3 and the bimetal switch 10 is filled by a brazing material used for the brazing, which makes it possible to further improve a heat transfer property. Particularly, this effect becomes more obvious according to this embodiment, because the contact portion 193 is inserted between the pair of straight portions 3c and the brazing is performed while the contact pressure is generated therebetween.
Embodiments of this invention were described above, but the above embodiments are merely examples of applications of this invention, and the technical scope of this invention is not limited to the specific constitutions of the above embodiments.
This application claims priority based on Japanese Patent Application No. 2012-177474 filed with the Japan Patent Office on Aug. 9, 2012 and Japanese Patent Application No. 2013-138869 filed with the Japan Patent Office on Jul. 2, 2013, the entire contents of which are incorporated into this specification.
Number | Date | Country | Kind |
---|---|---|---|
2012-177474 | Aug 2012 | JP | national |
2013-138869 | Jul 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/070077 | 7/24/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/024684 | 2/13/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2924698 | Jepson | Feb 1960 | A |
5404421 | Wallace | Apr 1995 | A |
20020135453 | Russell et al. | Sep 2002 | A1 |
20040066269 | Nguyen | Apr 2004 | A1 |
20060208846 | Davis | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
2106412 | Jun 1992 | CN |
62-62935 | Apr 1987 | JP |
2-59541 | May 1990 | JP |
2-97739 | Aug 1990 | JP |
2011-075980 | Apr 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20150221466 A1 | Aug 2015 | US |