This application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Application No. PCT/JP2015/069780, filed on 9 Jul. 2015, and published as WO2016/063583 on 28 Apr. 2016, which claims the benefit under 35 U.S.C. 119 to Japanese Application No. 2014-213391, filed on 20 Oct. 2014; which applications and publication are incorporated herein by reference in their entirety.
The present invention is related to a temperature switch that uses a bimetal element, and more particularly to a compact temperature switch that passes or breaks a large current used by a compact electrical appliance that uses a large current.
Temperature switches using a bimetal element have conventionally been known. For example, a temperature switch having a configuration in which fixed contacts provided respectively to ends of two terminals that are arranged in parallel are opened and closed by a single movable contact that operates in accordance with the operations of the bimetal element is proposed (see Patent Document 1 for example).
In the temperature switch of Patent Document 1, the two terminals are arranged in parallel as described above and the current-passing direction is turned back at the contact part in the switch so that currents are passed only at a contact part in the switch and do not flow to other constituents such as a bimetal element, a movable plate, etc.
Because the current-passing direction is turned back at the contact part as described above resulting in a minimum current-passing path in the switch, i.e., a minimum internal resistance of the switch, the configuration generates a very small amount of heat due to electric resistance, and thus has solved the problem wherein the operation temperature of the switch becomes lower than the actual operation temperature that is set in advance.
This temperature switch is based on an assumption that voltages used by the embedded electric devices are low, causing no problems even with a short distance between the parallel terminals, and accordingly the configuration with the current-passing direction turning back at the contact mechanism has an advantage of being able to make the overall configuration of the temperature switch compact.
Incidentally, in countries, where high commercial voltages such as 200V through 250V are supplied to standard homes etc., when for example an electric device such as a hairdryer having a temperature switch embedded in it uses a high voltage of 250V, there is a high possibility that the configuration, such as one for the temperature switch of Patent Document 1, with a small clearance between two parallel terminals of both of the current-passing directions will cause a short circuit of current between the terminals.
An increase in the distance between the terminals can eliminate this possibility. However, a greater clearance between two terminals arranged in parallel makes the overall configuration of the temperature switch correspondingly larger, and thus it is difficult to embed such a temperature switch in compact electric devices such as a hairdryer, which is problematic.
It is an object of the present invention to solve the above conventional problem, i.e., to provide a compact temperature switch that passes or breaks a large current used by a compact electric product that uses a large current.
In order to solve the above problem, a temperature switch according to the present invention includes
a first terminal unit, a switch body unit and a second terminal unit that are sequentially arranged in line, wherein
the first terminal unit includes a first terminal formed at an outer end and a first fixed contact provided at an inner end that is inside the switch body unit,
the second terminal unit includes a second terminal formed at an outer end and a second fixed contact that is provided at an inner end inside the switch body unit and that has a prescribed interval from the first fixed contact,
the switch body unit includes an insulation material, a movable plate and a bimetal element,
the insulation material includes
the movable plate
the tongue portion has
the bimetal element
The present invention can provide a compact temperature switch that passes or breaks a large current used by a compact electric product that uses a large current.
Hereinafter, detailed explanations will be given for the embodiments of the present invention. Note that a temperature switch according to the present invention is a compact temperature switch that passes or breaks a large current used by a compact electric product that uses a large current, such as a hairdryer etc.
The first terminal unit 2 includes a flat-plate metal material, and has a first terminal 5 formed at the outer end and a first fixed contact 6 provided in the inner end that is inside the switch body unit 3.
The second terminal unit 4 as well includes a fiat-plate metal material, and has a second terminal 7 formed at the outer end and a second fixed contact 8 provided at the inner end that is inside the switch body unit 3. The second fixed contact 8 is arranged with prescribed interval “a” from the first fixed contact 6.
Also, the switch body unit 3 has an insulation material 10, which integrates the first terminal unit 2 and the second terminal unit 4. The insulation material 10 has a first holding unit 11 that holds the connection part between the first terminal 5 and the first fixed contact 6, and a second holding unit. 12 that holds the connection part between the second terminal 7 and the second fixed contact 8.
Further, the insulation material 10 has, in the upper portion of one of the first holding unit 11 and the second holding unit 12 (the second holding unit 12 in the example shown in
The above configuration is obtained by using rolled sheet materials for the first terminal unit 2 and the second terminal unit 4 and creating a necessary shape by pressing. Then, the first terminal unit. 2 and the second terminal unit 4 are molded integratedly with the insulation material 10 by resin molding, and the first fixed contact 6 and the second fixed contact 8 are respectively joined to the ends of both terminal units in the center portion.
Also, the switch body unit 3 has a movable plate 15. The movable plate 15 has, in its center portion, a tongue portion 17, which is separated from a surrounding portion 16 excluding the root portions. In other words, the movable plate 15 is divided into the tongue portion 17 and the surrounding portion 16.
This shape is formed so that the two members can be deformed independently and without interferences by removing the boundary between the two members by punching. One movable contact 18 is jointed in a fixed manner on the lower surface of the tongue portion 17.
A post fitting unit 19 is formed at one end of this movable plate 15 in the longitudinal directions (the right end at which the tongue portion 17 is connected to the surrounding portion 16 in the example shown in
This movable plate 15 is set between the first holding unit 11 and the second holding unit 12 of the insulation material 10 so as to be fixed with the hook unit 21 fit with the insulation hook unit 14 loosely and with the post fitting unit 19 fit into the insulation post 13 tightly, and thereby is supported by the insulation material 10 in a cantilevered manner.
The insulation post 13 is made of metal so as to reinforce the cantilever-manner support. When the first terminal unit 2 and the second terminal unit 4 described above are integrated with the insulation material 10 by resin molding, they are molded integratedly with both terminal units, and they are separated electrically from both terminal units by cutting off a portion after the molding.
In the above embedded state, the movable contact 18 of the tongue portion 17 is arranged at a position that faces both the first fixed contact 6 and the second fixed contact 8, i.e., a position at which the movable contact 18 bridges the two fixed contacts.
In the upper portion of this movable plate 15, a bimetal element 22 is arranged as a thermally actuated element. The bimetal element 22 includes a cantilever fixation unit 23 and an inverted operation unit 24, and a fitting lock hole 25 is formed on the cantilever fixation unit 23.
The bimetal element 22 is set between the first holding unit 11 and the second holding unit 12 of the insulation material 10 in the upper portion of the movable plate 15. Then, the free end of the inverted operation unit 24 of the bimetal element 22 (the left end) is held by the insulation hook unit 14 of the movable plate 15, and the fitting lock hole 25 of the cantilever fixation unit 23 is fit into the post fitting unit 19 of the movable plate 15 from the outside.
Thereby, a fixation assisting member 26 having a shape of a lid of a box and made of metal is externally fit with the post fitting unit 19 of the movable plate 15 that is on one hand externally fit with the insulation post 13 of the insulation material 10 and that is on the other hand externally fit with the fitting lock hole 25 of the bimetal element 22.
Thereby, one end of the movable plate 15 (the end having the post fatting unit 19) and one end of the bimetal element 22 (the cantilever fixation unit 23) are firmly held on the second holding unit 12 of the insulation material 10 by the insulation post 13 and the fixation assisting member 26 in a cantilevered manner.
Note in
Also, in all the examples below for the present invention, the temperature switch can be used as a normally open switch (such as one in the state of
Specifically, when the bimetal element 22 having a convex shape is embedded in the direction of opening the contact at ordinary temperatures, the switch enters the ordinary-temperature-open state shown in
Then, as shown in
When the ambient temperature decreases to reach the recovering temperature of the bimetal element 22 after the closure of the contact circuit, the bending-back direction of the bimetal element 22 is inverted so as to open the movable contact and the two fixed contacts, and the state of a normally open switch is recovered.
When the above the bimetal element 22 is joined in the inverted direction, the switch enters the ordinary-temperature-close state shown in
However, for the convenience of explanations in the examples below, all explanations are based on an assumption that the temperature switch is a normally closed switch, i.e., a switch having its contact closed at ordinary temperatures as shown in
A force of a spring bending backward in the direction in which the movable contact 18 moves away from the fixed contacts 6 and 8, i.e., in the contact-opening direction, is applied to the tongue portion 17 in the present example. Note that the movable contact 18 and the fixed contacts 6 and 8 can be joined by using any method including for example welding, gluing, swaging, etc. as long as these members can be fixed to the portions to which they should be joined.
This temperature switch 1 has the movable contact 18 closed with respect to the first fixed contact 6 and the second fixed contact 8 at ordinary temperatures as shown in
At that moment, the bimetal element 22 is inversely deforming the bending-back direction into a shape that is convex in each contact direction. The convex-shaped center portion of the bimetal element 22 that has been inversely deformed in each contact direction acts to push the tongue portion 17 of the movable plate 15 while resisting the biasing force based on the spring property.
Thereby, the movable contact 18 is pressed in the direction of the first fixed contact 6 and the second fixed contact 8 together with the tongue port on 17, causing a contact force between the movable contact 18, the first fixed contact 6 and the second fixed contact 8, and a current is passed continuously between the first terminal 5 and the second terminal 7 while this contact force continues.
When prolonged passing of a current between the first terminal 5 and the second terminal 7 generates heat in the contact part or when hot air etc. increases the ambient temperature, the bending-back shape of the bimetal element 22 changes gradually so that the bending-back direction is deformed inversely into a shape that is concave in each contact direction at a prescribed temperature as shown in
This bends back the tongue portion 17 in the opposite direction to the first fixed contact 6 and the second fixed contact 8 by the biasing force of the spring property so that the movable contact 18 moves away from the first fixed contact 6 and the second fixed contact 8 to cancel the contact, and thereby a current is cut off between the first terminal 5 and the second terminal 7.
As shown in
In this configuration, when the movable contact 18 is closed with respect to the first fixed contact 6 and the second fixed contact 8 as shown in
Note that the interlocking relationship between the bimetal element 22, the movable plate 15 and the tongue portion 17 in the operation in which the movable contact 18 opens with respect to the first fixed contact 6 and the second fixed contact similar to that in
As shown in
However, in this phase, the hook-shaped projecting portion 29 is in a state wherein a valley folding portion 31 that is shallow at the center is formed and the pulling upward from the root is just shallow and slanted. On the bimetal element 22, a hole 32 has been formed at a position corresponding to a hook-shaped projection 29 when it is built into the movable plate 15 as shown in
Accordingly, as shown in
When the shallow valley folding of the valley folding portion 31 of the hook-shaped projecting portion 29 is bent to 90 degrees and the shallow upward-pulled portion from the root is pulled upward to 90 degrees, a hook 33 that is bent to 90 degrees horizontally with respect to the vertical portion is formed at the tip of the hook-shaped projecting portion 29, which is vertical with respect to the surface of the tongue portion 17. Note that either one of the bending and the pulling upward may be carried out first.
In this configuration, the hook-shaped projecting portion 29 locks the hook 33 at the edge of the hole 32 so as to assist the bending backward of the tongue portion 17 in the direction in which it moves away from the first fixed contact 6 and the second fixed contact 8 when the bimetal element 22 inverts the bending-back direction into a shape that is concave in each contact direction in the temperature switch according to example 3 (state in
When the bimetal element 22 inverts the bending-back direction into a shape that is convex in each contact direction (state in
As shown in
A shallow valley folding 35 is formed at the boundary between the connection portion 34-1 and the disconnection portion 34-2, i.e., at the root of the disconnection portion 34-2, and the disconnection portion 34-2 is pulled diagonally upward (the opposite direction from the surface on which the movable contact 18 is arranged) so as to form a projecting portion 36 (34-2) having a protruding shape.
Accordingly, in accordance with the 90-degree bending of the connection portion 34-1, the projecting portion 36 (34-2) can easily pass through the punch hole 37 from the side opposite to the surface on which the movable contact 18 is arranged so as to move out to the side of the surface on which the movable contact 18 is arranged.
When the valley folding of the valley folding 35 of the projecting portion 36 is bent to 90 degrees as shown in
As shown in
Also, for this temperature switch 38 according to example 4, a wire 41 is used as a material for the first terminal unit 2 and the second terminal unit 4 instead of rolled sheet materials. When the wire 41 is used for the first terminal unit 2 and the second terminal unit 4 as described above, a contact accommodation unit 43 formed of insulation resin is provided in a body center portion 42.
Then, through holes for the wire 41 are provided to the insulation resin on both sides of this body center portion 42. The wire 41 is formed by shaping a round wire so that the wire has a square section, and is inserted into through holes having the same shape. This can prevent the wire 41 from rotating.
Further, it is also possible to crush the tip of the wire 41 extruding into the contact accommodation unit 43 of the body center portion 42 after passing through the through hole and to weld the first fixed contact 6 and the second fixed contact 8 at a prescribed interval in order to configure them into a pair of fixed contacts and a lead terminal.
Also, on this temperature switch 38 according to example 4, the insulation hook unit 14 described in examples 1 through 3 is not formed on the upper portion of the first holding unit 11 that holds the connection part between the first terminal unit 2 and the first fixed contact 6.
Even when the insulation hook unit 14 is not formed on the upper portion of the first holding unit 11 and the movable plate 15 is fixed by the second holding unit 12 alone in a cantilevered manner as described above, the movable plate 15 is given a spring force of bending backward toward the side opposite to the tongue portion 17, i.e., to the fixed contact side.
Accordingly, because the hook unit 21 is biased in the direction of abutting on the upper surface of the first holding unit 11 continuously, the same operation as in a case when the hook unit 21 is held by the insulation hook unit 14 is obtained similarly to the cases of the other examples.
In this temperature switch 38, while the contact is open as shown in
Then, as shown in
If the tongue portion 17 is in contact with the bimetal element 22 while the contact is open, the tongue portion 17 operates as a force preventing the bending force of the bimetal element 22 that changes toward the inversion when a change in the ambient temperature inverts the bimetal element 22.
In the present example, because the projecting portion 36 prevents the tongue portion 17 from being brought into contact with the bimetal element 22 by the biasing force of the spring property thereof while the contact is open, the bending force of the bimetal element 22 that changes toward the inversion upon the initial movement of the inversion of the bimetal element 22 that transitions toward the closure of the contact from the opening of the contact is not prevented.
Thereby, the bimetal element 22 does not receive resistance against the operation toward the inversion upon the initial movement of the inversion, making it possible to conduct an inversion operation having a bias at an inherent inversion temperature and thereby to increase the force in the contact direction of the center portion of the bimetal element 22
This temperature switch 39 according to example 5 as well uses the wire 41 as a material of the first terminal unit 2 and the second terminal unit 4 instead of rolled sheet materials. The method of building these in the contact accommodation unit 43 is similar to that in the cases of
This temperature switch 39 according to example 5 as well does not have the insulation hook unit 14 of examples 1 through 3 formed on the upper portion of the first holding unit 11. Also, the projecting portion 36 of example 4 is not formed.
In this configuration too, the temperature switch 39 operates and functions roughly similarly to the temperature switch 27 according to example 2 shown in
Also, in the example 5, the lead terminal unit is not straight but has received a rounding process so that it has a round hole shape as shown in
Note that while the section of the portion through which a lead wire of a wire pierces the insulation portion is square shaped as shown in
As described above, according to the respective embodiments of the present invention, the current-passing path of the switch is straight and the first and the second terminals are arranged on both ends of the linear directions of the current-passing path, eliminating the possibility of a short circuit occurring between the first and second terminals, and the switch can be used without any problems even with a high voltage, which causes large breaking current or inrush current upon the opening and closing of the switch.
Also, because the first and second terminals are extended in the linear directions and two fixation terminals of the first and second terminals are arranged in the linear direction, the interval between the two fixed contacts can be adjusted with the width of the switch mechanism unit formed to be the minimum possible size and the invention can easily be embedded in small electric devices regardless of the level of used voltages.
Also, because there are no paths in which a current flows to the switch mechanism unit except the contact parts of the movable contact and the fixed contact, only a very small amount of heat is generated by the current passing through the switch even with a high voltage, making it possible to minimize the reduction in the actual operation temperature, which is easily affected by the internal heat generation.
As a matter of course, various changes can be made in the above examples without departing from the spirit of the embodiments.
The present invention can be used for a compact temperature switch that passes or breaks a large current used by a compact, electrical appliance using a large current such as in a hairdryer etc.
Number | Date | Country | Kind |
---|---|---|---|
2014-213391 | Oct 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/069780 | 7/9/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/063583 | 4/28/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3084237 | Mentzer | Apr 1963 | A |
3569888 | Taylor | Mar 1971 | A |
4914414 | Ubukata | Apr 1990 | A |
5463233 | Norling | Oct 1995 | A |
6144541 | Kato | Nov 2000 | A |
6211582 | Reimold | Apr 2001 | B1 |
6741159 | Kuczynski | May 2004 | B1 |
20020125981 | Yu | Sep 2002 | A1 |
20040100351 | Unno | May 2004 | A1 |
20070296540 | Takeda | Dec 2007 | A1 |
20100026446 | Takeda | Feb 2010 | A1 |
20140049355 | Takeda | Feb 2014 | A1 |
20140300445 | Takeda | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
06333477 | Dec 1994 | JP |
2007171268 | Jul 2007 | JP |
WO-2008053575 | May 2008 | WO |
Entry |
---|
“International Application No. PCT/JP2015/069780, International Search Report dated Sep. 29, 2015”, w/ English Translation, (Sep. 29, 2015), 4 pgs. |
“International Application No. PCT/JP2015/069780, Written Opinion dated Sep. 29, 2015”, (Sep. 29, 2015), 3 pgs. |
Number | Date | Country | |
---|---|---|---|
20170294281 A1 | Oct 2017 | US |