The present embodiments generally relate to a method and an apparatus for template-based intra prediction in video encoding and decoding.
To achieve high compression efficiency, image and video coding schemes usually employ prediction and transform to leverage spatial and temporal redundancy in the video content. Generally, intra or inter prediction is used to exploit the intra or inter picture correlation, then the differences between the original block and the predicted block, often denoted as prediction errors or prediction residuals, are transformed, quantized, and entropy coded. To reconstruct the video, the compressed data are decoded by inverse processes corresponding to the entropy coding, quantization, transform, and prediction.
According to an embodiment, a method of video encoding or decoding is provided, comprising: for each of a plurality of candidate intra coding modes, obtaining a prediction of a template region adjacent to a block of a picture, using a respective candidate intra coding mode and a set of reference samples; determining a cost of using said respective candidate intra coding mode to predict said template region; selecting an intra coding mode from said plurality of candidate intra coding modes based on said cost; and predicting samples in said block with intra prediction based on said selected intra coding mode and said set of reference samples.
According to another embodiment, a method of video encoding or decoding is provided, comprising: for each of a plurality of candidate intra coding modes, obtaining a template region adjacent to a block of a picture, based on a respective candidate intra coding mode; obtaining a prediction of said template region, based on said respective candidate intra coding mode; determining a cost of using said respective candidate intra coding mode to predict said template region; selecting an intra coding mode from said plurality of candidate intra coding modes based on said cost; and predicting samples in said block with intra prediction based on said selected intra coding mode.
According to another embodiment, an apparatus for video encoding or decoding is presented, comprising one or more processors, wherein said one or more processors are configured to: for each of a plurality of candidate intra coding modes, obtain a prediction of a template region adjacent to a block of a picture, using a respective candidate intra coding mode and a set of reference samples; determine a cost of using said respective candidate intra coding mode to predict said template region; select an intra coding mode from said plurality of candidate intra coding modes based on said cost; and predict samples in said block with intra prediction based on said selected intra coding mode and said set of reference samples.
According to another embodiment, an apparatus for video encoding or decoding is presented, comprising one or more processors, wherein said one or more processors are configured to: for each of a plurality of candidate intra coding modes, obtain a template region adjacent to a block of a picture, based on a respective candidate intra coding mode; obtain a prediction of said template region, based on said respective candidate intra coding mode; determine a cost of using said respective candidate intra coding mode to predict said template region; select an intra coding mode from said plurality of candidate intra coding modes based on said cost; and predict samples in said block with intra prediction based on said selected intra coding mode.
One or more embodiments also provide a computer program comprising instructions which when executed by one or more processors cause the one or more processors to perform the encoding method or decoding method according to any of the embodiments described above. One or more of the present embodiments also provide a computer readable storage medium having stored thereon instructions for encoding or decoding video data according to the methods described above.
One or more embodiments also provide a computer readable storage medium having stored thereon a bitstream generated according to the methods described above. One or more embodiments also provide a method and apparatus for transmitting or receiving the bitstream generated according to the methods described above.
The system 100 includes at least one processor 110 configured to execute instructions loaded therein for implementing, for example, the various aspects described in this application. Processor 110 may include embedded memory, input output interface, and various other circuitries as known in the art. The system 100 includes at least one memory 120 (e.g., a volatile memory device, and/or a non-volatile memory device). System 100 includes a storage device 140, which may include non-volatile memory and/or volatile memory, including, but not limited to, EEPROM, ROM, PROM, RAM, DRAM, SRAM, flash, magnetic disk drive, and/or optical disk drive. The storage device 140 may include an internal storage device, an attached storage device, and/or a network accessible storage device, as non-limiting examples.
System 100 includes an encoder/decoder module 130 configured, for example, to process data to provide an encoded video or decoded video, and the encoder/decoder module 130 may include its own processor and memory. The encoder/decoder module 130 represents module(s) that may be included in a device to perform the encoding and/or decoding functions. As is known, a device may include one or both of the encoding and decoding modules. Additionally, encoder/decoder module 130 may be implemented as a separate element of system 100 or may be incorporated within processor 110 as a combination of hardware and software as known to those skilled in the art.
Program code to be loaded onto processor 110 or encoder/decoder 130 to perform the various aspects described in this application may be stored in storage device 140 and subsequently loaded onto memory 120 for execution by processor 110. In accordance with various embodiments, one or more of processor 110, memory 120, storage device 140, and encoder/decoder module 130 may store one or more of various items during the performance of the processes described in this application. Such stored items may include, but are not limited to, the input video, the decoded video or portions of the decoded video, the bitstream, matrices, variables, and intermediate or final results from the processing of equations, formulas, operations, and operational logic.
In several embodiments, memory inside of the processor 110 and/or the encoder/decoder module 130 is used to store instructions and to provide working memory for processing that is needed during encoding or decoding. In other embodiments, however, a memory external to the processing device (for example, the processing device may be either the processor 110 or the encoder/decoder module 130 ) is used for one or more of these functions. The external memory may be the memory 120 and/or the storage device 140, for example, a dynamic volatile memory and/or a non-volatile flash memory. In several embodiments, an external non-volatile flash memory is used to store the operating system of a television. In at least one embodiment, a fast external dynamic volatile memory such as a RAM is used as working memory for video coding and decoding operations, such as for MPEG-2, HEVC, or VVC.
The input to the elements of system 100 may be provided through various input devices as indicated in block 105. Such input devices include, but are not limited to, (i) an RF portion that receives an RF signal transmitted, for example, over the air by a broadcaster, (ii) a Composite input terminal, (iii) a USB input terminal, and/or (iv) an HDMI input terminal.
In various embodiments, the input devices of block 105 have associated respective input processing elements as known in the art. For example, the RF portion may be associated with elements suitable for (i) selecting a desired frequency (also referred to as selecting a signal, or band-limiting a signal to a band of frequencies), (ii) down converting the selected signal, (iii) band-limiting again to a narrower band of frequencies to select (for example) a signal frequency band which may be referred to as a channel in certain embodiments, (iv) demodulating the down converted and band-limited signal, (v) performing error correction, and (vi) demultiplexing to select the desired stream of data packets. The RF portion of various embodiments includes one or more elements to perform these functions, for example, frequency selectors, signal selectors, band-limiters, channel selectors, filters, downconverters, demodulators, error correctors, and demultiplexers. The RF portion may include a tuner that performs various of these functions, including, for example, down converting the received signal to a lower frequency (for example, an intermediate frequency or a near-baseband frequency) or to baseband. In one set-top box embodiment, the RF portion and its associated input processing element receives an RF signal transmitted over a wired (for example, cable) medium, and performs frequency selection by filtering, down converting, and filtering again to a desired frequency band. Various embodiments rearrange the order of the above-described (and other) elements, remove some of these elements, and/or add other elements performing similar or different functions. Adding elements may include inserting elements in between existing elements, for example, inserting amplifiers and an analog-to-digital converter. In various embodiments, the RF portion includes an antenna.
Additionally, the USB and/or HDMI terminals may include respective interface processors for connecting system 100 to other electronic devices across USB and/or HDMI connections. It is to be understood that various aspects of input processing, for example, Reed-Solomon error correction, may be implemented, for example, within a separate input processing IC or within processor 110 as necessary. Similarly, aspects of USB or HDMI interface processing may be implemented within separate interface ICs or within processor 110 as necessary. The demodulated, error corrected, and demultiplexed stream is provided to various processing elements, including, for example, processor 110, and encoder/decoder 130 operating in combination with the memory and storage elements to process the datastream as necessary for presentation on an output device.
Various elements of system 100 may be provided within an integrated housing, Within the integrated housing, the various elements may be interconnected and transmit data therebetween using suitable connection arrangement 115, for example, an internal bus as known in the art, including the I2C bus, wiring, and printed circuit boards.
The system 100 includes communication interface 150 that enables communication with other devices via communication channel 190. The communication interface 150 may include, but is not limited to, a transceiver configured to transmit and to receive data over communication channel 190. The communication interface 150 may include, but is not limited to, a modem or network card and the communication channel 190 may be implemented, for example, within a wired and/or a wireless medium.
Data is streamed to the system 100, in various embodiments, using a Wi-Fi network such as IEEE 802.11. The Wi-Fi signal of these embodiments is received over the communications channel 190 and the communications interface 150 which are adapted for Wi-Fi communications. The communications channel 190 of these embodiments is typically connected to an access point or router that provides access to outside networks including the Internet for allowing streaming applications and other over-the-top communications. Other embodiments provide streamed data to the system 100 using a set-top box that delivers the data over the HDMI connection of the input block 105. Still other embodiments provide streamed data to the system 100 using the RF connection of the input block 105.
The system 100 may provide an output signal to various output devices, including a display 165, speakers 175, and other peripheral devices 185. The other peripheral devices 185 include, in various examples of embodiments, one or more of a stand-alone DVR, a disk player, a stereo system, a lighting system, and other devices that provide a function based on the output of the system 100. In various embodiments, control signals are communicated between the system 100 and the display 165, speakers 175, or other peripheral devices 185 using signaling such as AV. Link, CEC, or other communications protocols that enable device-to-device control with or without user intervention. The output devices may be communicatively coupled to system 100 via dedicated connections through respective interfaces 160, 170, and 180. Alternatively, the output devices may be connected to system 100 using the communications channel 190 via the communications interface 150. The display 165 and speakers 175 may be integrated in a single unit with the other components of system 100 in an electronic device, for example, a television. In various embodiments, the display interface 160 includes a display driver, for example, a timing controller (T Con) chip.
The display 165 and speaker 175 may alternatively be separate from one or more of the other components, for example, if the RF portion of input 105 is part of a separate set-top box. In various embodiments in which the display 165 and speakers 175 are external components, the output signal may be provided via dedicated output connections, including, for example, HDMI ports, USB ports, or COMP outputs.
In the present application, the terms “reconstructed” and “decoded” may be used interchangeably, the terms “encoded” or “coded” may be used interchangeably, and the terms “image,” “picture” and “frame” may be used interchangeably. Usually, but not necessarily, the term “reconstructed” is used at the encoder side while “decoded” is used at the decoder side.
Before being encoded, the video sequence may go through pre-encoding processing (201), for example, applying a color transform to the input color picture (e.g., conversion from RGB 4:4:4 to YCbCr 4:2:0), or performing a remapping of the input picture components in order to get a signal distribution more resilient to compression (for instance using a histogram equalization of one of the color components). Metadata can be associated with the pre-processing, and attached to the bitstream.
In the encoder 200, a picture is encoded by the encoder elements as described below. The picture to be encoded is partitioned (202) and processed in units of, for example, CUs. Each unit is encoded using, for example, either an intra or inter mode. When a unit is encoded in an intra mode, it performs intra prediction (260). In an inter mode, motion estimation (275) and compensation (270) are performed. The encoder decides (205) which one of the intra mode or inter mode to use for encoding the unit, and indicates the intra/inter decision by, for example, a prediction mode flag. Prediction residuals are calculated, for example, by subtracting (210) the predicted block from the original image block.
The prediction residuals are then transformed (225) and quantized (230). The quantized transform coefficients, as well as motion vectors and other syntax elements, are entropy coded (245) to output a bitstream. The encoder can skip the transform and apply quantization directly to the non-transformed residual signal. The encoder can bypass both transform and quantization, i. e., the residual is coded directly without the application of the transform or quantization processes.
The encoder decodes an encoded block to provide a reference for further predictions. The quantized transform coefficients are de-quantized (240) and inverse transformed (250) to decode prediction residuals. Combining (255) the decoded prediction residuals and the predicted block, an image block is reconstructed. In-loop filters (265) are applied to the reconstructed picture to perform, for example, deblocking/SAO (Sample Adaptive Offset) filtering to reduce encoding artifacts. The filtered image is stored at a reference picture buffer (280).
In particular, the input of the decoder includes a video bitstream, which can be generated by video encoder 200. The bitstream is first entropy decoded (330) to obtain transform coefficients, motion vectors, and other coded information. The picture partition information indicates how the picture is partitioned. The decoder may therefore divide (335) the picture according to the decoded picture partitioning information. The transform coefficients are de-quantized (340) and inverse transformed (350) to decode the prediction residuals. Combining (355) the decoded prediction residuals and the predicted block, an image block is reconstructed. The predicted block can be obtained (370) from intra prediction (360) or motion-compensated prediction (i.e., inter prediction) (375). In-loop filters (365) are applied to the reconstructed image. The filtered image is stored at a reference picture buffer (380).
The decoded picture can further go through post-decoding processing (385), for example, an inverse color transform (e.g., conversion from YCbCr 4:2:0 to RGB 4:4:4) or an inverse remapping performing the inverse of the remapping process performed in the pre-encoding processing (201). The post-decoding processing can use metadata derived in the pre-encoding processing and signaled in the bitstream.
As described above, intra prediction allows predicting the current block from neighboring reconstructed samples (reference samples). Usually, the Planar and DC prediction modes are used to predict smooth and gradually changing regions, whereas angular prediction modes are used to capture different directional structures. HEVC supports 33 directional prediction modes which are indexed from 2 to 34; VVC supports 65 directional prediction modes which are indexed from 2 to 66. These prediction modes correspond to different prediction directions as illustrated in
The intra prediction process in HEVC and VVC consists of three steps:
The reference sample generation process is illustrated in
The corner pixel at the top-left position is also used to fill up the gap between the top row and the left column references. If some of the samples on top or left are not available, because of the corresponding CUs not being in the same slice, or the current CU being at a frame boundary, etc., then a process of reference sample substitution is performed where the missing samples are copied from the available samples in a clockwise direction. Then, depending on the current CU size and the prediction mode, the reference samples are filtered using a specified filter.
The intra sample prediction consists of predicting the pixels of the target CU based on the reference samples. There exist different prediction modes. Usually, Planar and DC prediction modes are used to predict smooth and gradually changing regions, whereas angular (angle defined from 45 degrees to −135 degree in clockwise direction) prediction modes are used to capture different directional structures. For square blocks, HEVC supports 33 directional prediction modes which are indexed from 2 to 34. These prediction modes correspond to different prediction directions as illustrated in
In VVC, for non-square blocks, the regular directional intra predictions that are not allowed are replaced with additional wide-angle intra prediction modes, as illustrated in
For a given angular prediction mode, the predictor samples on the reference arrays are copied along the corresponding direction inside the target PU. Some predictor samples may have integral locations, in which case they match with the corresponding reference samples; the location of other predictors will have fractional parts indicating that their locations will fall between two reference samples. In the latter case, the predictor samples are interpolated using the nearest reference samples. In HEVC, a linear interpolation of the two nearest reference samples is performed to compute the predictor sample value; in VVC, for interpolating the predictor samples, 4-tap filters fT[] are used which are selected depending on the intra mode direction.
Besides directional modes, the DC mode fills-in the prediction with the average of the samples in the L-shape (except for rectangular CUs that use average of reference samples of the longer side), and the Planar mode interpolates reference samples spatially as depicted in
For better compression, the intra mode may be predicted from a list of six Most Probable Modes (MPMs). In an example as shown in
A decoder-side intra mode derivation (DIMD) method is depicted in
As illustrated in
In a variant, the MPM list is updated with additional neighboring intra modes (if not present in the list) and with other non-angular modes (e.g., DC, Planar). In another variant, a flag is coded in the bitstream to indicate whether the DIMD method is used or the regular method is used for coding the intra prediction mode. In the work described in an article by Y. Wang et al., entitled “EE2-related: Template-based intra mode derivation using MPMs,” document JVET-V0098, 22 nd Meeting, by teleconference, 20-28 Apr. 2021, when the DIMD flag is true, the SAD is computed for the regular MPM modes only and the mode with minimal SAD is selected. If the DIMD flag is false, the regular MPM index coding is used.
The Intra Sub-Partitions (ISP) tool divides an intra-predicted luma block vertically or horizontally into two or four sub-partitions depending on the block size. For each sub-partition, reconstructed samples are obtained by adding the residual signal to the prediction signal. Here, a residual signal is generated by the processes such as entropy decoding, inverse quantization and inverse transform. Therefore, the reconstructed sample values of each sub-partition are available to generate the prediction of the next sub-partition, and each sub-partition is processed repeatedly. In addition, the first sub-partition to be processed is the one containing the top-left sample of the CU and then continuing downwards (horizontal split) or rightwards (vertical split). As a result, reference samples used to generate the sub-partition prediction signals are only located at the left and above sides of the sub-partitions. All sub-partitions share the same intra mode.
There are some drawbacks and limitations with the current DIMD. For example, the reference samples may be relatively far from (distance=L) the current block, which may correspond to regions different from the current block. In addition, the reference samples used by DIMD are not the same as those used for building the final intra prediction for the current block.
In the following, we consider that the DIMD is used with all regular (directional modes, or directional modes plus DC and Planar mode) intra modes or a subset “G” of intra modes. G can be the regular MPMs, a subset/superset of regular MPMs or a set of pre-defined intra modes for example. The K modes (K≤G) with the smallest SAD will allow to build the MPM list and an MPM index is coded to indicate the MPM intra mode to be used for current CU. In an example, K=1 and the MPM index is not coded.
Possibly, a DIMD flag is coded per CU to indicate whether the DIMD method is used or not. Using DIMD with a reduced set of intra modes (e.g., use of DIMD with the regular MPM modes, or with an extended MPM list, or with an arbitrary reduced set of directions) allows reducing the decoder-side complexity.
In an embodiment, if DIMD is enabled, then the MRL refIdx is not coded but inferred to be zero, and the ISP flag is not coded and inferred to zero.
In an embodiment, if DIMD and ISP are enabled together, then the intra mode is determined for the first sub-partition and is the same for the other sub-partitions. In another embodiment, DIMD is used to derive the intra mode for all the ISP sub-partitions successively.
In the existing DIMD, the template is composed of two regions T1 and T2 as shown in
In one embodiment, as illustrated in
In another example, the template is composed of T1, T2 or (T1+T2) depending on the MPM candidate position relatively to the current CU. For example, if the MPM candidate is from the top CU, then T2 is used. If the MPM candidate is from the left CU, then T1 is used. In other case, T1+T2 is used or the previous method based on the predIntraMode value is used.
In another example, the encoder or decoder derives three MPM intra modes corresponding to the three intra prediction modes that minimize SAD with T1, T2 and (T1+T2) templates respectively. The three MPMs are added to the MPM list, while duplicated modes are pruned.
Referring back to
In one embodiment, the process for building the prediction samples of the template is modified as follows:
Two examples are depicted in
In
In another embodiment, two methods for deriving or filling the template prediction samples are used for each intra mode so that (2×G) SADs are computed. One method is the proposed one (see above), and the other method is the regular DIMD method.
In another embodiment, the reference samples for predicting the template correspond to refIdx=0, even if refIdx=0 is not selected by MRL for the current CU. In another embodiment, if refIdx is not equal to zero, the reference samples are built as in VVC but the filling is carried out as if they were located at position refIdx=0, as depicted in
In another embodiment, if refIdx is not equal to zero, the reference samples are built as in
VVC but the filling is carried out with the proposed method, with reference samples located at their actual position, as depicted in
In another embodiment, if the regular equations for building the prediction samples cannot be used (see condition on refMax in the descriptions with respect to the changes to the standard specification), the template prediction samples are set equal to the neighboring reconstructed samples.
In another embodiment, if the regular equations for building the prediction samples cannot be used (see condition on refMax in the descriptions with respect to the changes to the standard specification), the template samples are set to “undefined” and not used in the distortion computation.
In the following text, a portion of the specification “Versatile Video Coding (draft 10)”, by Benjamin Bross, Jianle Chen, Shan Liu, and Ye-Kui Wang (JVET-S2001), 19 th meeting, 22 June-1 Jul. 2020, is modified to include the process for building the template prediction samples. The changes are in italics. Before the modification, this portion of the specification describes the process of predicting the samples of the current CU (regular intra directional prediction mode). After the modification, this specification portion additionally describes the process of building the prediction samples of the template. This is an example of modification of the regular intra mode prediction specification.
First. the values of the template prediction samples predSamples [x][y], with x=0 . . . nTbW−1, y=−1 . . . −L2 and x=−1 . . . −L1, y=0 . . . nTbH−1 are initialized with neighboring reconstructed values p[x][y]. Let's denote the transform block size nTbW×nTbH.
The following process is invoked for deriving the values of the prediction samples predSamples[x][y], with x=0 . . . nTbW−1, y=0 . . . nTbH−1 and for deriving the values of the template prediction samples predSamples [x][y], with x=0 . . . nTbW−1, y=−1 . . . −L2 and x=−1 . . . −L1, y=0 . . . nTbH−1 as follows:
The value refMax is set equal to (Max(1,nTbW/nTbH)*refIdx+1)
The value refMax is set equal to (Max(1,nTbH/nTbW)*refIdx+1)
Various methods are described herein, and each of the methods comprises one or more steps or actions for achieving the described method. Unless a specific order of steps or actions is required for proper operation of the method, the order and/or use of specific steps and/or actions may be modified or combined. Additionally, terms such as “first”, “second”, etc. may be used in various embodiments to modify an element, component, step, operation, etc., for example, a “first decoding” and a “second decoding”. Use of such terms does not imply an ordering to the modified operations unless specifically required. So, in this example, the first decoding need not be performed before the second decoding, and may occur, for example, before, during, or in an overlapping time period with the second decoding.
Various methods and other aspects described in this application can be used to modify modules, for example, the intra prediction modules (260, 360), of a video encoder 200 and decoder 300 as shown in
Various numeric values are used in the present application. The specific values are for example purposes and the aspects described are not limited to these specific values.
Various implementations involve decoding. “Decoding,” as used in this application, may encompass all or part of the processes performed, for example, on a received encoded sequence in order to produce a final output suitable for display. In various embodiments, such processes include one or more of the processes typically performed by a decoder, for example, entropy decoding, inverse quantization, inverse transformation, and differential decoding. Whether the phrase “decoding process” is intended to refer specifically to a subset of operations or generally to the broader decoding process will be clear based on the context of the specific descriptions and is believed to be well understood by those skilled in the art.
Various implementations involve encoding. In an analogous way to the above discussion about “decoding”, “encoding” as used in this application may encompass all or part of the processes performed, for example, on an input video sequence in order to produce an encoded bitstream.
Note that the syntax elements as used herein are descriptive terms. As such, they do not preclude the use of other syntax element names.
The implementations and aspects described herein may be implemented in, for example, a method or a process, an apparatus, a software program, a data stream, or a signal. Even if only discussed in the context of a single form of implementation (for example, discussed only as a method), the implementation of features discussed may also be implemented in other forms (for example, an apparatus or program). An apparatus may be implemented in, for example, appropriate hardware, software, and firmware. The methods may be implemented in, for example, an apparatus, for example, a processor, which refers to processing devices in general, including, for example, a computer, a microprocessor, an integrated circuit, or a programmable logic device. Processors also include communication devices, for example, computers, cell phones, portable/personal digital assistants (“PDAs”), and other devices that facilitate communication of information between end-users.
Reference to “one embodiment” or “an embodiment” or “one implementation” or “an implementation”, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” or “in one implementation” or “in an implementation”, as well any other variations, appearing in various places throughout this application are not necessarily all referring to the same embodiment.
Additionally, this application may refer to “determining” various pieces of information. Determining the information may include one or more of, for example, estimating the information, calculating the information, predicting the information, or retrieving the information from memory.
Further, this application may refer to “accessing” various pieces of information. Accessing the information may include one or more of, for example, receiving the information, retrieving the information (for example, from memory), storing the information, moving the information, copying the information, calculating the information, determining the information, predicting the information, or estimating the information.
Additionally, this application may refer to “receiving” various pieces of information. Receiving is, as with “accessing”, intended to be a broad term. Receiving the information may include one or more of, for example, accessing the information, or retrieving the information (for example, from memory). Further, “receiving” is typically involved, in one way or another, during operations, for example, storing the information, processing the information, transmitting the information, moving the information, copying the information, erasing the information, calculating the information, determining the information, predicting the information, or estimating the information.
It is to be appreciated that the use of any of the following “/”, “and/or”, and “at least one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of both options (A and B). As a further example, in the cases of “A, B, and/or C” and “at least one of A, B, and C”, such phrasing is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of the third listed option (C) only, or the selection of the first and the second listed options (A and B) only, or the selection of the first and third listed options (A and C) only, or the selection of the second and third listed options (B and C) only, or the selection of all three options (A and B and C). This may be extended, as is clear to one of ordinary skill in this and related arts, for as many items as are listed.
Also, as used herein, the word “signal” refers to, among other things, indicating something to a corresponding decoder. For example, in certain embodiments the encoder signals a quantization matrix for de-quantization. In this way, in an embodiment the same parameter is used at both the encoder side and the decoder side. Thus, for example, an encoder can transmit (explicit signaling) a particular parameter to the decoder so that the decoder can use the same particular parameter. Conversely, if the decoder already has the particular parameter as well as others, then signaling can be used without transmitting (implicit signaling) to simply allow the decoder to know and select the particular parameter. By avoiding transmission of any actual functions, a bit savings is realized in various embodiments. It is to be appreciated that signaling can be accomplished in a variety of ways. For example, one or more syntax elements, flags, and so forth are used to signal information to a corresponding decoder in various embodiments. While the preceding relates to the verb form of the word “signal”, the word “signal” can also be used herein as a noun.
As will be evident to one of ordinary skill in the art, implementations may produce a variety of signals formatted to carry information that may be, for example, stored or transmitted. The information may include, for example, instructions for performing a method, or data produced by one of the described implementations. For example, a signal may be formatted to carry the bitstream of a described embodiment. Such a signal may be formatted, for example, as an electromagnetic wave (for example, using a radio frequency portion of spectrum) or as a baseband signal. The formatting may include, for example, encoding a data stream and modulating a carrier with the encoded data stream. The information that the signal carries may be, for example, analog or digital information. The signal may be transmitted over a variety of different wired or wireless links, as is known. The signal may be stored on a processor-readable medium.
Number | Date | Country | Kind |
---|---|---|---|
21305858.9 | Jun 2021 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/066435 | 6/15/2022 | WO |