This invention relates generally to a template grid system for positioning medical implants, and more particularly to a template grid system for use with transrectal ultrasound imaging probes for cancerous prostate and related surgeries. The present invention also relates to an anchor for fixing a thermocouple probe with respect to the template grid system.
Brachytherapy (radioactive seeds), thermotherapy (heating), and cryotherapy (freezing) are proven therapies for tumors, both benign and malignant. Although the effectiveness of these treatments has been established, the risks associated with these treatments prevent or at least inhibit the wide application that they night otherwise achieve. The risks in each instance are related to the difficulties in achieving full control and accurate monitoring of the treatment. The risks of damaging surrounding tissues are present in every case, potentially catastrophic and require great care and experience to control.
In this regard, these therapies are frequently performed in conjunction with an ultrasound imaging probe placed in the rectum to monitor treatment. Although there are many variations of technique for placement of the treatment needles into the prostate under transrectal ultrasound guidance, in essence these can be categorized into two basic approaches. First is the “freehand” technique in which an experienced practitioner makes an estimation of a good entry point on the perineal skin and with ultrasound visualization, guides the treatment needles into their ideal location. The advantage of this approach is the flexibility to angle the needles so that they align with the contour of the prostate.
The second approach is the “direct access” approach which is done using a template grid. The template grid arrangement, which is kept in precise linear orientation with the ultrasound probe, must be accurately oriented adjacent the perineum in relation to the prostate, and locked in position throughout the procedure to achieve optimum results. This technique is easier for the novice because it provides a guide to the perineal entry points and a predictable endpoint for the treatment needles. A disadvantage of this approach is that all of the treatment needles are fixed in a parallel relationship to the transrectal ultrasound probe and to each other, and following the prostate contour to more easily create the ideal treatment field is not possible.
One commonly available template grid used to guide placement of the needles is a block of plastic or metal with multiple machined parallel channels arranged in a matrix and spaced at 5 mm intervals. Although these template grids do allow for controlled placement of the treatment needle, there is no provision for ancillary monitoring or treatment instrumentation. For example, it would be advantageous to have a mechanism in which one or more temperature probes, such as thermocouples, could be placed in the tissue being treated during cryotherapy or thermotherapy. With prior art template grids, the template grid must be removed or, the temperature probes, which are typically much smaller in diameter that the machined parallel holes of the grid, can only be placed in one of the machined parallel channels. Given the relative diameters, the temperature probes are unstable in the template grid.
Furthermore and as previously noted, because the posterior surface of the prostate and the anterior wall of the rectum are very close anatomically, treatment (such as freezing or heating) of the prostate risks injury to the rectum. One method for dealing with this possible complication is to inject fluid, such as saline, into Denonvilliers space, the potential space between two layers of fascia that lay between the rectum and the prostate. To approach and enter this space reliably with a needle, it must be done transperineal at a steep angle to the normal alignment of the parallel channels in the template grid. Also, the fluid-containing needle must be placed centrally, so that the template grid obstructs the desired position.
As the previous discussion illustrates, a need for an improved template grid system exists.
The present invention discloses a template grid for use in positioning a medical implant. The template grid includes a plurality of apertures defining a plurality of passages extending through the template grid. The passages are sized to accommodate a medical implant such as needles. In one embodiment, the template grid further includes an elongated slot. The elongated slot allows a needle to be placed in Denonvilliers space at a desired angle so that the injection of fluid can be accomplished. The elongated slot also allows at least one posteriorly angled treatment probe to be placed below the urethra into the prostate to treat otherwise difficult to reach areas.
In other embodiments the template grid is made of multiple components so that the template grid can be used in different configuration to suit the user's needs.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
Referring now to the drawing figures in which like reference designators refer to like elements, there is shown in
Template grid 10 has at least one mating element for connection to a grid supporting member. Generally, at least two mating elements are used. Preferably, a pair of prongs 18 operatively associated with a pair of grooves on the grid supporting member, are used for this connection. A preferred arrangement is shown, but the number and location of prongs 18 can be varied as desired to suit the configuration of the grid supporting member.
In order to help the user distinguish the passages 12 from each other, front 14 and/or back 16 have letters 20 identifying the various columns of passages 12 and numbers 22 identifying the various rows of passages 12. As users have different preferences for the manner in which passages 12 are identified, the configuration of the letters 20 and numbers 22 on front 14 need not be identical to the configuration on back 16. Letters 20 and numbers 22 can be made on front 14 and back 16 by a number of methods including silk screening, molding, engraving, or chemical etching. Any other method which provides a permanent placement of these indicia on the template can be used.
Template grid 10 is provided with a slot 24 that has a length substantially larger than its width. Slot 24 extends from front 14 through back 16. As shown, slot 24 is centrally located on template grid 10 and runs vertically. Thus, slot 24 is placed in a position that replaces a column of normally unused passages. However, slot 24 can be made to run horizontal or at any desired orientation. Additionally, slot 24 can be placed anywhere on template grid 10.
Slot 24 allows a needle to be placed in Denonvilliers space at a desired angle so that the injection of fluid can be accomplished. Slot 24 also allows at least one posteriorly angled treatment probe to be placed below the urethra into the prostate to treat otherwise difficult to reach areas.
Template grid 10 can be made of any suitable material. Template grid 10 can be made to be reusable or disposable. In this regard, U.S. Pat. No. 6,036,632, the contents of which are incorporated herein by reference, discloses disposable template grid systems. Template grid 10 can be sterilized by steam sterilization, gas sterilization, or irradiation.
Referring to
The at least one element 30 further includes an elongated slot 34 extending through the at least one element 30, and has a length substantially larger than its width. As shown, the elongated slot 34 is centrally located on template grid 10 and runs vertically. Thus, the slot 34 is placed in a position that replaces a column of normally unused passages. However, the slot 34 can be made to run horizontal or at any desired orientation. Additionally, the slot 34 can be placed anywhere on template grid.
In accordance with the present invention, as shown in
The present invention can further include a support frame 40. The first element 36 is removable attachable to a first side 42 of the support frame 40 and the second element 38 is removable attachable to a second side 44 of the support frame 40. The first element 36 and the second element 38 are positioned on the support frame 40 such that apertures 32 are aligned defining the plurality of passages therethrough and the elongated slots 34 are aligned theretirough.
Like template grid 10, anchors 50 and 62 can be made of any suitable material and can be made to be reusable or disposable. Anchors 50 and 62 can be sterilized by steam sterilization, gas sterilization, or irradiation.
Distal plate 78 has a series of passages 12 sized to accommodate a medical implant such as needles. As best seen in
Angulation of needles 80 is possible only when proximal member 74 is removed or proximal member 74 is configured to allow angulation. In particular, distal member 72 and proximal member 74 are each provided with recesses 82 and/or snap-in fasteners 84 so that proximal member 74 can be removably coupled to distal member 72. Other known mechanisms of removably connecting two components can be used.
In summary, template grid 70 has three separate configurations. If proximal member 74 is removed, free angulation of needles 80 is possible. This is likely to be the configuration preferred by experienced users as it gives the most flexibility for needle placement. In contrast, the use of fixed plate 86 is likely to be preferred by the inexperienced user as this configuration provides the most guidance in terms of needle placement. The use of slotted plate 88, the third configuration, is a hybrid that provides some guidance, yet still provides angulation of needles.
Distal and proximal plates 114 and 116 are provided with a series of passages 12 sized to accommodate a medical implant such as needles. As was the case with the passages for the other template grids, passages 12 are configured and dimensioned to allow angulation of the needles. Thus, when proximal plate 116 is removed from frame 112, full angulation of the needles is possible. When proximal plate 116 is connected to frame 112, the passages on proximal plate 116 line up with the passages on distal plate 114. This permits only parallel placement of the needles. Distal and proximal plates 114 and 116 are provided with indicia (such as numbers and/or letters) identifying passages 12. These indicia can be located on both the front and back of plates 114 and 116. As a result, the indicia are viewable regardless of whether proximal plate 116 is used.
While various embodiments of the present invention are described above, it should be understood that the various features could be used singly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein.
Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.
This application claims the benefit under 35 U.S.C § 119 (e) of U.S. Provisional Patent Application No. 60/401,829, filed Aug. 7, 2002 and entitled TEMPLATE GRID SYSTEM, and to U.S. Provisional Patent Application No. 60/450,785, filed Feb. 28, 2003 and also entitled TEMPLATE GRID SYSTEM, the entirety of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60401829 | Aug 2002 | US | |
60450785 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10636457 | Aug 2003 | US |
Child | 11739091 | Apr 2007 | US |