Carbon fibers have a wide variety of applications. For example, U.S. Pat. Nos. 6,387,479 and 6,277,771 teach their use in composite materials reinforcement. Additionally, U.S. Pat. No. 6,037,400 teaches their use in electric wave prevention. Still further, U.S. Pat. No. 6,162,533 teaches their use in electrode construction. Other uses are also well known as described in the prior art. For example, activated carbon fibers are used as filtration media for gas separations (including removal of gas phase constituents from cigarette smoke), catalyst adsorption, treatment of waste streams or contaminated vapors, and deodorization.
Carbon articles are currently made by carbonizing precursor materials such as petroleum pitches, polyacrylonitrile, cellulose, and phenolic resins. For example, U.S. Pat. No. 4,917,835 to Lear et al. discloses a process for the production of porous shaped phenolic based carbon materials. However, poor rheological and mechanical properties of the carbon precursor materials have limited the production and processing of carbon fibers into desirable shapes. In addition, poor mechanical properties of the precursors or the resulting carbon fibers also limit the formation of suitable media for filtration applications.
Carbon is known for use in cigarette filter elements due to its ability to filter or remove constituents from mainstream smoke. In particular, activated carbon has the propensity to reduce the levels of certain gas phase components present in the mainstream smoke, resulting in a change in the organoleptic and toxicological properties of that smoke.
Examples of filter segments comprising activated carbon are described in U.S. Pat. No. 2,881,770 to Tovey; U.S. Pat. No. 3,353,543 to Sproull et al.; U.S. Pat. No. 3,101,723 to Seligman et al.; and U.S. Pat. No. 4,481,958 to Ranier et al. Certain commercially available filters have particles or granules of carbon, such as an activated carbon material, alone or dispersed within a cellulose acetate tow; other commercially available filters have carbon threads dispersed therein; while still other commercially available filters have so-called “plug-space-plug”, “cavity filter” or “triple filter” designs. Examples of commercially available filters are SCS IV Dual Solid Charcoal Filter and Triple Solid Charcoal Filter from Filtrona International, Ltd.; Triple Cavity Filter from Baumgartner; and ACT from Filtrona International, Ltd. Detailed discussion of the properties and composition of cigarettes and filters is found in U.S. Pat. Nos. 5,404,890 and 5,568,819 to Gentry et al, the disclosures of which are hereby incorporated by reference.
It would be desirable to provide a cigarette filter incorporating carbon fibers and/or other materials capable of absorbing and/or adsorbing gas phase components, while providing favorable, processing, handling, absorption/adsorption, dilution and, in the case of cigarette filters, drawing characteristics, so as to be acceptable to consumers. However, no method currently exists to provide such a filter. Furthermore, commercially available activated carbons and molecular sieves are typically in granular and powdered forms. Materials in these forms do not maintain product cohesion, as granules or grains tend to settle after being packed inside a cigarette filter. It is therefore also desirable to form activated carbon fibers with improved product integrity.
According to an embodiment of the invention, carbon fiber and activated carbon fibers are developed with desirable cross-sectional shapes by developing their shapes from pre-formed templates.
Further according to an embodiment of the invention, shaped carbon fibers are created that have advantages in material reinforcement, electrical and other applications.
Still further according to a preferred embodiment of the invention, templated activated carbon fibers are provided with desired cross-sectional shapes that provide an efficient cigarette filter with higher TPM delivery, lower pressure drop and improved gas phase removal efficiency.
Still further according to a preferred embodiment of the invention, activated carbon fiber media are formed with controlled fiber orientation and packing density, which are critical for achieving premium performance in various applications. Preformed templates are provided with carbonaceous material and can be processed into woven or non-woven forms with desired fiber orientation and packing density. Activated carbon filtration media with controlled fiber orientation and packing density can then be formed by curing, carbonizing and activating the carbon or carbonaceous precursor fibers.
Still further according to a preferred embodiment of the invention, templated carbon fibers with controlled cross-sectional shapes provide cigarette filters that are effective at reducing main stream smoke gas phase components.
Novel features and advantages of the present invention in addition to those mentioned above will become apparent to persons of ordinary skill in the art from a reading of the following detailed description in conjunction with the accompanying drawings wherein similar reference characters refer to similar parts and in which:
Turning to the figures, a preferred embodiment of the invention will now be described.
Other filter arrangements are possible. For example,
According to a preferred embodiment of the invention, templated carbon fibers are prepared by loading carbon precursor materials such as phenolic resins onto shaped fibrous templates made of low carbon yielding materials such as polypropylene that contain longitudinal channels as will be discussed in greater detail below with reference to
Fibrous template 26 may have a cross-section with a shape including, but not limited to, the shapes shown in
The carbon precursor 30 may comprise solid particles, gels, foams, liquids or mixtures thereof, which yield carbon or carbonoid materials upon heating at a carbonization temperature in an inert atmosphere or under vacuum. Suitable materials in these classes include, but are not limited to, phenolic resin, petroleum pitches, polyacrylonitrile, cellulose, cellulose derivatives, polyvinyl acetate (PVA) and their mixtures. Molecular sieves, zeolites, and silicates, or other additional inorganic materials may be included in the mixture to modify the pore-distribution of the final carbonoid products. The phenolic resins proposed can be uncured or partially cured Novolak type with the presence of curing agents, or Resole (self-curing) type or mixtures thereof. In the mixture, comminuted partially cured resin as described in U.S. Pat. No. 4,917,835 to Lear et al. may be used as described or merely for binding components.
Precursor 30 is mixed with fibrous templates according to well known techniques, such as described in U.S. Pat. Nos. 6,584,979 and 5,772,768 both filed by Xue et al.
As shown in
As further shown in
Curing conditions may be selected so that fibrous template 26 maintains structural and/or chemical integrity while the carbon precursor 30 is cured inside the template 26 to form a non-flowing resin. The conditions may be selected based on the components in the carbon precursor, especially the uncured components used as binders. As shown, for example, in Table 1, PP templates and phenolic resin based carbon precursor can be used to practice the invention. The precursor can be cured by heating under atmosphere in a temperature from approximately 120-160° C. for approximately 15-60 minutes. A certain level of acid may be added to phenolic precursors to accelerate the curing.
In the carbonizing step, the cured composite fibrous precursors can be heated in an inert environment and/or under vacuum to decompose the template and allow the carbon precursor to yield templated carbon fibers 32, as shown in
Table 1 lists seven examples conducted using various templates and processing conditions to achieve differing resulting channels. In the examples, carbonization can be accomplished by heating the materials under nitrogen or argon flow at a temperature of approximately 850° C. for approximately one to two hours, where a phenolic-based carbon precursor and PP template are used. Carbon yields are generally in the range of 10-40% by weight depending on the PP content of the composite precursors.
For the examples, a polypropylene template was mixed with a phenolic resin based carbon precursor. For examples 7 and 8, EtOH was used in phenolic precursor formulation to reduce viscosity. Templates of 16 to 24 denier per filament (dpf) were used that comprised channels with inner diameter or inner dimension (ID) of approximately 10-60 micrometers. The templates had a loading factor of between 0.38 and 1.6. Curing took place at approximately 150° C. for approximately 15 to 40 minutes. A certain level of acid may be added to the phenolic precursor to accelerate this curing time. Carbonizinizing was performed at approximately 850° C. for approximately 1-2 hours. Carbon yields were generally in the range of 10-24% by weight depending on the polypropylene content of the composite precursor. The carbon fibers derived their shape and outer diameter or outer dimension (OD) from the shape and ID of the template, respectively. The range given for the OD and ID reflects the pliability of the template and the characteristics of the various voids 28. For example, some of the voids had different dimensions in different directions.
It is noteworthy to point out with respect to Table 1 that the OD of some of the carbon fibers exceeds the ID. This result is obtained due to the fact that the template material was pliable and thus the precursor may have forced the ID, which was measured prior to loading, outward. Furthermore, some amount of precursor may exist between extending portions of the template that were not used in calculating the ID. For example,
The templated carbon fibers can be activated to form high surface area adsorptive materials for filtration applications. Many activation processes are known in the literature such as heating with CO2 or water steam. Activation can be achieved by maintaining a temperature within the range of approximately 800° C. to approximately 950° C. for approximately 30 minutes. For example, templated carbon fiber from Example 5 in Table 1 can be activated with CO2 at a temperature of approximately 950° C. for approximately 30 minutes. At a 25% burn-off rate, a BET surface area of 1557 m2/g and a micro-pore volume (<20 Å) of 0.6415 cm3/g may be obtained. These values are comparable to those of coconut based activated carbon granules, which are often used as adsorbents in cigarette filters.
Modified 1R4F cigarette models containing 66 mg and 150 mg of activated templated carbon fibers were prepared under the configurations shown in
Table 2 compares a standard 1R4F cigarette to a cigarette containing a carbon article according to the present invention with the processing specifications described in Example 5 from Table 1. The 1R4F cigarette is a Kentucky Reference filtered cigarette provided by the Tobacco and Health Research Institute, University of Kentucky for research purposes. The first row of Table 2 lists the characteristics of control sample 1R4F, which are relatively exemplary characteristics of a control cigarette. The second and third rows of Table 2 list the characteristics of modified samples TF-66-1 and TF-66-2, respectively, which were made according to the present invention and which were provided as a percentage difference in characteristics from the control sample 1R4F. Modified samples TF-66-1 and TF-66-2 were cigarettes with the structure shown in
Table 2 provides the TPM values of an 1R4F sample. The standard deviation is given with the 1R4F data. The values reported for modified samples TF-66-1 and TF-66-2 are given as a change from the 1R4F standard. A change of greater than three times the standard deviation of the 1R4F control sample is considered significant. As shown in Table 2, the acetaldehyde (M), methanol (MEOH) and isoprene (ISOP) in the total particulate matter (TPM) all decreased as a result of employing the present invention. Hydrogen cyanide (HCN) increased slightly, but not significantly.
For example,
As shown in
Table 3 further illustrates the benefits of the present invention. The first column lists characteristics and components common to cigarettes and cigarette smoke. The second column, labeled “1R4F Standard Deviation,” lists the standard deviation of certain gas phase components present in a control 1R4F cigarette. Columns labeled TF-66 and TF-150 list the changes in component gas levels as a result of using filters made in accordance with the present invention, and more particularly Example 5 from Table 1.
The foregoing description of the invention illustrates and describes the present invention. Additionally, the disclosure shows and describes only the preferred embodiments of the invention, but it is to be understood that the invention is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings, and/or the skill or knowledge in the art of filter preparation and, more particularly cigarette filter preparation.
The embodiments described hereinabove are further intended to explain the best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with the various modifications required by the particular applications or uses of the invention. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended that the appended claims be construed to include alternative embodiments.