This invention relates to head worn computing. More particularly, this invention relates to temple and ear horn assemblies for head worn computers.
Wearable computing systems have been developed and are beginning to be commercialized. Many problems persist in the wearable computing field that need to be resolved to make them meet the demands of the market.
Aspects of the present invention relate to temple and ear horn assemblies for head worn computers.
These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
Aspects of the present invention relate to head-worn computing (“HWC”) systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.
Referring to
We will now describe each of the main elements depicted on
The HWC 102 is a computing platform intended to be worn on a person's head. The HWC 102 may take many different forms to fit many different functional requirements. In some situations, the HWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where the HWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment 114. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In embodiments, lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, the HWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like.
The HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like. The HWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.
The HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102. In another example, the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. The HWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment the HWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly. For example, the HWC 102 may have a button(s), touch capacitive interface, and the like.
As described herein, the HWC 102 may be in communication with external user interfaces 104. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of the HWC 102. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, the external user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD 104.
As described herein, the HWC 102 may control or coordinate with other local devices 108. The external devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the local external device 108 may be another HWC 102, where information may then be exchanged between the separate HWCs 108.
Similar to the way the HWC 102 may control or coordinate with local devices 106, the HWC 102 may control or coordinate with remote devices 112, such as the HWC 102 communicating with the remote devices 112 through a network 110. Again, the form of the remote device 112 may have many forms. Included in these forms is another HWC 102. For example, each HWC 102 may communicate its GPS position such that all the HWCs 102 know where all of HWC 102 are located.
An aspect of the present invention relates to the mechanical and electrical construction of a side arm of a head worn computer. In general, when a head worn computer takes the form of glasses, sun-glasses, certain goggles, or other such forms, two side arms are included for mounting and securing the had worn computer on the ears of a person wearing the head worn computer. In embodiments, the side arms may also contain electronics, batteries, wires, antennas, computer processors, computer boards, etc. In embodiments, the side arm may include two or more sub-assemblies. For example, as will be discussed in more detail below, the side arm may include a temple section and an ear horn section. The two sections may, for example, be mechanically arranged to allow an ear horn section to move such that both side arms can fold into a closed position.
An aspect of the present invention relates to an adjustable nose bridge. An adjustable nose bridge may be important with head worn computers, especially those with computer displays, to ensure comfort and alignment of the displays and/or other portions of the head worn computer.
In embodiments, a side arm of the HWC 102 may include an audio jack (not shown) and the audio jack may be magnetically attachable to the side arm. For example, the temple section 304 or ear horn section 308 may have a magnetically attachable audio jack with audio signal wires associated with an audio system in the HWC 102. The magnetic attachment may include one or more magnets on one end (e.g. on the head phone end or the side arm end) and magnetically conductive material on the other end. In other embodiments, both ends of the attachment may have magnets, of opposite polarization, to create a stronger magnetic bond for the headphone). In embodiments, the audio signal wires or magnetic connection may include a sensor circuit to detect when the headphone is detached from the HWC 102. This may be useful in situations where the wearer is wearing the headphones during a period when there is not constant audio processing (e.g. listening for people to talk with periods of silence). In embodiments, the other side's headphone may play a tone, sound, signal, etc. in the event a headphone is detached. In embodiments, an indication of the detachment may be displayed in the computer display.
In embodiments, the HWC 102 may have a vibration system that vibrates to alert the wearer of certain sensed conditions. In embodiments, the vibration system (e.g. an actuator that moves quickly to cause vibration in the HWC 102) may be mounted in a side arm (e.g. the temple section 304, or ear horn 308), in the top mount 312, etc. In embodiments, the vibration system may be capable of causing different vibration modes that may be indicative of different conditions. For example, the vibration system may include a multi-mode vibration system, piezo-electric vibration system, variable motor, etc, that can be regulated through computer input and a processor in the HWC 102 may send control signals to the vibration system to generate an appropriate vibration mode. In embodiments, the HWC 102 may be associated with other devices (e.g. through Bluetooth, WiFi, etc.) and the vibratory control signals may be associated with sensors associated with the other device. For example, the HWC 102 may be connected to a car through Bluetooth such that sensor(s) in the car can cause activation of a vibration mode for the vibration system. The car, for example, may determine that a risk of accident is present (e.g. risk of the driver falling asleep, car going out of its lane, a car in front of the wearer is stopped or slowing, radar in the car indicates a risk, etc.) and the car's system may then send a command, via the Bluetooth connection, to the HWC 102 to cause a vibratory tone to be initiated in the HWC 102.
Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC.
All documents referenced herein are hereby incorporated by reference.
This application is a continuation of U.S. Non-Provisional application Ser. No. 16/942,726, entitled “TEMPLE AND EAR HORN ASSEMBLY FOR HEADWORN COMPUTER,” filed Jul. 29, 2020, which is a continuation of U.S. Non-Provisional application Ser. No. 15/859,828, entitled “TEMPLE AND EAR HORN ASSEMBLY FOR HEADWORN COMPUTER”, filed Jan. 2, 2018 (now U.S. Pat. No. 10,732,434, issued on Aug. 4, 2020), which is a continuation of U.S. Non-Provisional application Ser. No. 14/820,253, entitled “TEMPLE AND EAR HORN ASSEMBLY FOR HEADWORN COMPUTER”, filed Aug. 6, 2015 (now U.S. Pat. No. 9,897,822, issued on Feb. 20, 2018), which is a continuation of U.S. Non-Provisional application Ser. No. 14/262,615, entitled “TEMPLE AND EAR HORN ASSEMBLY FOR HEADWORN COMPUTER”, filed Apr. 25, 2014 (now U.S. Pat. No. 9,158,116, issued on Oct. 13, 2015). The above-identified applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1897833 | Benway | Feb 1933 | A |
2064604 | Paul | Dec 1936 | A |
3305294 | Alvarez | Feb 1967 | A |
3531190 | Leblanc | Sep 1970 | A |
3671111 | Okner | Jun 1972 | A |
4145125 | Chika | Mar 1979 | A |
4513812 | Papst et al. | Apr 1985 | A |
4695129 | Faessen et al. | Sep 1987 | A |
4852988 | Velez | Aug 1989 | A |
D327674 | Kuo | Jul 1992 | S |
D376790 | Taylor | Dec 1996 | S |
5596451 | Handschy | Jan 1997 | A |
5621424 | Shimada | Apr 1997 | A |
5625372 | Hildebrand | Apr 1997 | A |
5699194 | Takahashi | Dec 1997 | A |
5717422 | Fergason | Feb 1998 | A |
5808800 | Handschy | Sep 1998 | A |
5808802 | Hur | Sep 1998 | A |
5914818 | Tejada | Jun 1999 | A |
5954642 | Johnson | Sep 1999 | A |
5971538 | Heffner | Oct 1999 | A |
6034653 | Robertson | Mar 2000 | A |
6137675 | Perkins | Oct 2000 | A |
6157291 | Kuenster | Dec 2000 | A |
6160666 | Rallison | Dec 2000 | A |
6195136 | Handschy | Feb 2001 | B1 |
6222677 | Budd | Apr 2001 | B1 |
6359723 | Handschy | Mar 2002 | B1 |
6369952 | Rallison | Apr 2002 | B1 |
6421031 | Ronzani | Jul 2002 | B1 |
6433760 | Vaissie | Aug 2002 | B1 |
6456438 | Lee | Sep 2002 | B1 |
6461000 | Magarill | Oct 2002 | B1 |
6478429 | Aritake | Nov 2002 | B1 |
6480174 | Kaufmann | Nov 2002 | B1 |
6491389 | Yaguchi | Dec 2002 | B2 |
6491391 | Blum et al. | Dec 2002 | B1 |
D470144 | Li | Feb 2003 | S |
6535182 | Stanton | Mar 2003 | B2 |
D473871 | Santos | Apr 2003 | S |
6847336 | Lemelson | Jan 2005 | B1 |
6943754 | Aughey | Sep 2005 | B2 |
6977776 | Volkenandt et al. | Dec 2005 | B2 |
6987787 | Mick | Jan 2006 | B1 |
7016116 | Dolgoff | Mar 2006 | B2 |
D521493 | Wai | May 2006 | S |
7088234 | Naito | Aug 2006 | B2 |
7199934 | Yamasaki | Apr 2007 | B2 |
7206134 | Weissman | Apr 2007 | B2 |
7347551 | Fergason et al. | Mar 2008 | B2 |
7417617 | Eichenlaub | Aug 2008 | B2 |
7425065 | Wang | Sep 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7488294 | Torch | Feb 2009 | B2 |
7582828 | Ryan | Sep 2009 | B2 |
7646540 | Dolgoff | Jan 2010 | B2 |
7690799 | Nestorovic | Apr 2010 | B2 |
7758185 | Lewis | Jul 2010 | B2 |
7791889 | Belady | Sep 2010 | B2 |
7830370 | Yamazaki | Nov 2010 | B2 |
7850301 | Dichiara | Dec 2010 | B2 |
7855743 | Sako | Dec 2010 | B2 |
7928926 | Yamamoto | Apr 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
8089568 | Brown | Jan 2012 | B1 |
8092007 | Dichiara | Jan 2012 | B2 |
8212859 | Tang | Jul 2012 | B2 |
8228315 | Starner | Jul 2012 | B1 |
8235529 | Raffle | Aug 2012 | B1 |
D669066 | Olsson | Oct 2012 | S |
8353594 | Lewis | Jan 2013 | B2 |
8378924 | Jacobsen | Feb 2013 | B2 |
D680152 | Olsson | Apr 2013 | S |
8427396 | Kim | Apr 2013 | B1 |
D685019 | Li | Jun 2013 | S |
8494215 | Kimchi | Jul 2013 | B2 |
D689862 | Liu | Sep 2013 | S |
8553910 | Dong | Oct 2013 | B1 |
8564883 | Totani | Oct 2013 | B2 |
8570273 | Smith | Oct 2013 | B1 |
8576276 | Bar-zeev | Nov 2013 | B2 |
8576491 | Takagi | Nov 2013 | B2 |
8587869 | Totani | Nov 2013 | B2 |
8593795 | Chi | Nov 2013 | B1 |
8594467 | Lu | Nov 2013 | B2 |
8611015 | Wheeler | Dec 2013 | B2 |
8638498 | Bohn et al. | Jan 2014 | B2 |
8662686 | Takagi | Mar 2014 | B2 |
8665214 | Forutanpour et al. | Mar 2014 | B2 |
8670183 | Clavin | Mar 2014 | B2 |
8678581 | Blum | Mar 2014 | B2 |
8696113 | Lewis | Apr 2014 | B2 |
8698157 | Hanamura | Apr 2014 | B2 |
8711487 | Takeda | Apr 2014 | B2 |
8733927 | Lewis | May 2014 | B1 |
8733928 | Lewis | May 2014 | B1 |
8743052 | Keller | Jun 2014 | B1 |
8745058 | Garcia-barrio | Jun 2014 | B1 |
8750541 | Dong | Jun 2014 | B1 |
8752963 | Mcculloch | Jun 2014 | B2 |
8787006 | Golko | Jul 2014 | B2 |
8803867 | Oikawa | Aug 2014 | B2 |
8814691 | Haddick | Aug 2014 | B2 |
8823071 | Oyamada | Sep 2014 | B2 |
8837880 | Takeda | Sep 2014 | B2 |
8866702 | Wong | Oct 2014 | B1 |
D716808 | Yeom | Nov 2014 | S |
8878749 | Wu | Nov 2014 | B1 |
D719568 | Heinrich | Dec 2014 | S |
D719569 | Heinrich | Dec 2014 | S |
D719570 | Heinrich | Dec 2014 | S |
8922530 | Pance | Dec 2014 | B2 |
8929589 | Publicover et al. | Jan 2015 | B2 |
8955973 | Raffle | Feb 2015 | B2 |
8957835 | Hoellwarth | Feb 2015 | B2 |
8964298 | Haddick | Feb 2015 | B2 |
D724083 | Olsson | Mar 2015 | S |
8971023 | Olsson | Mar 2015 | B2 |
D727317 | Olsson | Apr 2015 | S |
9010929 | Lewis | Apr 2015 | B2 |
9031273 | Dong | May 2015 | B2 |
D732025 | Heinrich | Jun 2015 | S |
D733709 | Kawai | Jul 2015 | S |
9105261 | Horii | Aug 2015 | B2 |
D738373 | Davies | Sep 2015 | S |
9128281 | Osterhout | Sep 2015 | B2 |
9129295 | Border | Sep 2015 | B2 |
9143693 | Zhou | Sep 2015 | B1 |
9158116 | Osterhout | Oct 2015 | B1 |
D745007 | Cazalet | Dec 2015 | S |
9235064 | Lewis | Jan 2016 | B2 |
9239473 | Lewis | Jan 2016 | B2 |
9244293 | Lewis | Jan 2016 | B2 |
D751551 | Ho | Mar 2016 | S |
D751552 | Osterhout | Mar 2016 | S |
9274338 | Robbins et al. | Mar 2016 | B2 |
9292973 | Bar-zeev et al. | Mar 2016 | B2 |
D757006 | Cazalet | May 2016 | S |
9423842 | Osterhout | Aug 2016 | B2 |
9523856 | Osterhout | Dec 2016 | B2 |
9529195 | Osterhout | Dec 2016 | B2 |
9529199 | Osterhout | Dec 2016 | B2 |
9651787 | Haddick | May 2017 | B2 |
9651788 | Osterhout | May 2017 | B2 |
9651789 | Osterhout | May 2017 | B2 |
9658473 | Lewis | May 2017 | B2 |
9672210 | Osterhout | Jun 2017 | B2 |
9684172 | Border | Jun 2017 | B2 |
D792400 | Osterhout | Jul 2017 | S |
9720505 | Gribetz et al. | Aug 2017 | B2 |
9746676 | Osterhout | Aug 2017 | B2 |
9846308 | Osterhout | Dec 2017 | B2 |
9897822 | Osterhout | Feb 2018 | B2 |
10013053 | Cederlund et al. | Jul 2018 | B2 |
10025379 | Drake et al. | Jul 2018 | B2 |
10151937 | Lewis | Dec 2018 | B2 |
10185147 | Lewis | Jan 2019 | B2 |
10732434 | Osterhout et al. | Aug 2020 | B2 |
11506912 | Osterhout | Nov 2022 | B2 |
20020021498 | Ohtaka | Feb 2002 | A1 |
20020054272 | Ebata | May 2002 | A1 |
20020152425 | Chaiken et al. | Oct 2002 | A1 |
20030030597 | Geist | Feb 2003 | A1 |
20030030912 | Gleckman | Feb 2003 | A1 |
20040008158 | Chi | Jan 2004 | A1 |
20040066363 | Yamano | Apr 2004 | A1 |
20040132509 | Glezerman | Jul 2004 | A1 |
20050264752 | Howell | Dec 2005 | A1 |
20050280772 | Hammock | Dec 2005 | A1 |
20060023158 | Howell et al. | Feb 2006 | A1 |
20060061542 | Stokic | Mar 2006 | A1 |
20060109623 | Harris et al. | May 2006 | A1 |
20060239629 | Qi | Oct 2006 | A1 |
20070046887 | Howell et al. | Mar 2007 | A1 |
20070296684 | Thomas | Dec 2007 | A1 |
20080122736 | Ronzani | May 2008 | A1 |
20080125288 | Case | May 2008 | A1 |
20080143954 | Abreu | Jun 2008 | A1 |
20080291277 | Jacobsen | Nov 2008 | A1 |
20090013204 | Kobayashi | Jan 2009 | A1 |
20090040296 | Moscato | Feb 2009 | A1 |
20090108837 | Johansson | Apr 2009 | A1 |
20090279180 | Amitai | Nov 2009 | A1 |
20100045928 | Levy | Feb 2010 | A1 |
20100079356 | Hoellwarth | Apr 2010 | A1 |
20100079508 | Hodge | Apr 2010 | A1 |
20100149073 | Chaum | Jun 2010 | A1 |
20100259718 | Hardy | Oct 2010 | A1 |
20100309426 | Howell | Dec 2010 | A1 |
20110159931 | Boss | Jun 2011 | A1 |
20110211056 | Publicover et al. | Sep 2011 | A1 |
20110213664 | Osterhout | Sep 2011 | A1 |
20110221672 | Osterhout | Sep 2011 | A1 |
20110234475 | Endo | Sep 2011 | A1 |
20110241975 | Mukawa | Oct 2011 | A1 |
20110285764 | Kimura | Nov 2011 | A1 |
20120021806 | Maltz | Jan 2012 | A1 |
20120050493 | Ernst | Mar 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120075167 | Lahcanski et al. | Mar 2012 | A1 |
20120075168 | Osterhout | Mar 2012 | A1 |
20120113514 | Rodman | May 2012 | A1 |
20120162270 | Fleck | Jun 2012 | A1 |
20120169608 | Forutanpour | Jul 2012 | A1 |
20120212593 | Na | Aug 2012 | A1 |
20120223885 | Perez | Sep 2012 | A1 |
20120242570 | Kobayashi | Sep 2012 | A1 |
20120242698 | Haddick | Sep 2012 | A1 |
20120250152 | Larson | Oct 2012 | A1 |
20120264510 | Wigdor | Oct 2012 | A1 |
20120268449 | Choi | Oct 2012 | A1 |
20120306850 | Balan | Dec 2012 | A1 |
20120307198 | Ifergan | Dec 2012 | A1 |
20120326948 | Crocco | Dec 2012 | A1 |
20120327116 | Liu | Dec 2012 | A1 |
20130009366 | Hannegan | Jan 2013 | A1 |
20130044042 | Olsson | Feb 2013 | A1 |
20130063695 | Hsieh | Mar 2013 | A1 |
20130069985 | Wong | Mar 2013 | A1 |
20130083009 | Geisner | Apr 2013 | A1 |
20130100259 | Ramaswamy | Apr 2013 | A1 |
20130154913 | Genc | Jun 2013 | A1 |
20130196757 | Latta | Aug 2013 | A1 |
20130201080 | Evans | Aug 2013 | A1 |
20130201081 | Evans | Aug 2013 | A1 |
20130235331 | Heinrich | Sep 2013 | A1 |
20130249776 | Olsson et al. | Sep 2013 | A1 |
20130250503 | Olsson | Sep 2013 | A1 |
20130257622 | Davalos | Oct 2013 | A1 |
20130265212 | Kato | Oct 2013 | A1 |
20130293580 | Spivack | Nov 2013 | A1 |
20130342981 | Cox | Dec 2013 | A1 |
20140028704 | Wu | Jan 2014 | A1 |
20140029498 | Kim | Jan 2014 | A1 |
20140043682 | Hussey | Feb 2014 | A1 |
20140062854 | Cho | Mar 2014 | A1 |
20140063473 | Pasolini | Mar 2014 | A1 |
20140111864 | Margulis | Apr 2014 | A1 |
20140129328 | Mathew | May 2014 | A1 |
20140146394 | Tout | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152530 | Venkatesha | Jun 2014 | A1 |
20140152558 | Salter | Jun 2014 | A1 |
20140152676 | Rohn | Jun 2014 | A1 |
20140153173 | Pombo | Jun 2014 | A1 |
20140159995 | Adams | Jun 2014 | A1 |
20140160055 | Margolis | Jun 2014 | A1 |
20140160157 | Poulos | Jun 2014 | A1 |
20140160170 | Lyons | Jun 2014 | A1 |
20140168735 | Yuan | Jun 2014 | A1 |
20140176603 | Kumar | Jun 2014 | A1 |
20140177023 | Gao | Jun 2014 | A1 |
20140183269 | Glaser | Jul 2014 | A1 |
20140195918 | Friedlander | Jul 2014 | A1 |
20140206416 | Aurongzeb | Jul 2014 | A1 |
20140266988 | Fisher | Sep 2014 | A1 |
20140347572 | Liu | Nov 2014 | A1 |
20140375545 | Ackerman | Dec 2014 | A1 |
20150029088 | Kim | Jan 2015 | A1 |
20150042544 | Sugihara | Feb 2015 | A1 |
20150084862 | Sugihara | Mar 2015 | A1 |
20150145839 | Hack | May 2015 | A1 |
20150168730 | Ashkenazi | Jun 2015 | A1 |
20150168731 | Robbins | Jun 2015 | A1 |
20150178932 | Wyatt | Jun 2015 | A1 |
20150198807 | Hirai | Jul 2015 | A1 |
20150205117 | Border | Jul 2015 | A1 |
20150205132 | Osterhout | Jul 2015 | A1 |
20150293587 | Wilairat | Oct 2015 | A1 |
20150294627 | Yoo | Oct 2015 | A1 |
20150309317 | Osterhout | Oct 2015 | A1 |
20150309534 | Osterhout | Oct 2015 | A1 |
20150309995 | Osterhout | Oct 2015 | A1 |
20150346496 | Haddick | Dec 2015 | A1 |
20150346511 | Osterhout | Dec 2015 | A1 |
20150347823 | Monnerat | Dec 2015 | A1 |
20150382305 | Drincic | Dec 2015 | A1 |
20160018646 | Osterhout | Jan 2016 | A1 |
20160018647 | Osterhout | Jan 2016 | A1 |
20160018648 | Osterhout | Jan 2016 | A1 |
20160018649 | Osterhout | Jan 2016 | A1 |
20160078278 | Moore | Mar 2016 | A1 |
20160085278 | Osterhout | Mar 2016 | A1 |
20160103325 | Mirza | Apr 2016 | A1 |
20160131904 | Border | May 2016 | A1 |
20160131911 | Border | May 2016 | A1 |
20160132082 | Border | May 2016 | A1 |
20160133201 | Border | May 2016 | A1 |
20160161743 | Osterhout | Jun 2016 | A1 |
20160161747 | Osterhout | Jun 2016 | A1 |
20160171846 | Brav | Jun 2016 | A1 |
20160178904 | Deleeuw | Jun 2016 | A1 |
20160187658 | Osterhout | Jun 2016 | A1 |
20160209674 | Montalban | Jul 2016 | A1 |
20160246055 | Border | Aug 2016 | A1 |
20160370606 | Huynh | Dec 2016 | A1 |
20170031395 | Osterhout | Feb 2017 | A1 |
20170219831 | Haddick | Aug 2017 | A1 |
20170220865 | Osterhout | Aug 2017 | A1 |
20170227778 | Osterhout | Aug 2017 | A1 |
20170235133 | Border | Aug 2017 | A1 |
20170235134 | Border | Aug 2017 | A1 |
20170337187 | Osterhout | Nov 2017 | A1 |
20170351098 | Osterhout | Dec 2017 | A1 |
20180003988 | Osterhout | Jan 2018 | A1 |
20180059434 | Heisey | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2316473 | Jan 2001 | CA |
2362895 | Dec 2002 | CA |
2388766 | Dec 2003 | CA |
201004122 | Jan 2008 | CN |
368898 | May 1990 | EP |
777867 | Jun 1997 | EP |
2486450 | Aug 2012 | EP |
2502410 | Sep 2012 | EP |
2009171505 | Jul 2009 | JP |
5017989 | Sep 2012 | JP |
2012212990 | Nov 2012 | JP |
1020110101944 | Sep 2011 | KR |
09414152 | Jun 1994 | WO |
03023756 | Mar 2003 | WO |
2011143655 | Nov 2011 | WO |
2012058175 | May 2012 | WO |
2013050650 | Apr 2013 | WO |
2013103825 | Jul 2013 | WO |
2013110846 | Aug 2013 | WO |
2013170073 | Nov 2013 | WO |
2013176079 | Nov 2013 | WO |
2016073734 | May 2016 | WO |
2016205601 | Dec 2016 | WO |
2017100074 | Jun 2017 | WO |
2018044537 | Mar 2018 | WO |
Entry |
---|
European Notice of Allowance dated Apr. 19, 2023, for EP Application No. 15782758.5, 49 pages. |
PCT/US2015/059264, “International Application Serial No. PCT/US2015/059264, International Search Report and Written Opinion dated Feb. 19, 2016”, Osterhout Group, Inc., 11 Pages. |
Genius Ring Mice, http://www.geniusnet.com/Genius/wSite/productComparec/ompare.jsp, Dec. 23, 2014, 1 page. |
Azuma, Ronald T. (Aug. 1997). “A Survey of Augmented Reality,” In Presence: Teleoperators and Virtual Environments 6, 4, Hughes Research Laboratories, Malibu, CA, located at: https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf , retrieved on Oct. 26, 2020. |
Bimber, Oliver et al. (2005). “Spatial Augmented Reality: Merging Real and Virtual Worlds,” A. K. Peters, Ltd., Wellesley, MA. |
Clements-Cortes, et al. “Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer's Disease: An Exploratory Pilot Study,” Journal of Alzheimer's Disease 52 (2016), IOS Press Feb. 9, 2016, pp. 651-660. |
European Office Action dated Jul. 7, 2021, for EP Application No. 15782758.5, eleven pages. |
Final Office Action dated Nov. 29, 2019, for U.S. Appl. No. 15/859,828, filed Jan. 2, 2018, nine pages. |
Jacob, R. “Eye Tracking in Advanced Interface Design”, Virtual Environments and Advanced Interface Design, Oxford University Press, Inc. (Jun. 1995). |
Logbar Inc., “Ring: Shortcut Everything”, https://www.kickstarter.com/projects/1761670738/ring-shortcut-everything, Dec. 2014, 22 pages. |
Non-Final Office Action dated Apr. 12, 2022, for U.S. Appl. No. 16/942,726, filed Jul. 29, 2020, 12 pages. |
Non-Final Office Action dated Dec. 30, 2016, for U.S. Appl. No. 14/820,253, filed Aug. 6, 2015, five pages. |
Non-Final Office Action dated Mar. 19, 2019, for U.S. Appl. No. 15/859,828, filed Jan. 2, 2018, six pages. |
Notice of Allowance dated Jul. 27, 2015, for U.S. Appl. No. 14/262,615, filed Apr. 25, 2014, eight pages. |
Notice of Allowance dated Jun. 27, 2017, for U.S. Appl. No. 14/820,253, filed Aug. 6, 2015, seven pages. |
Notice of Allowance dated Mar. 30, 2020, for U.S. Appl. No. 15/859,828, filed Jan. 2, 2018, eight pages. |
Notice of Allowance dated Oct. 19, 2017, for U.S. Appl. No. 14/820,253, filed Aug. 6, 2015, eight pages. |
Notice of Allowance dated Sep. 23, 2022, for U.S. Appl. No. 16/942,726, filed Jul. 29, 2020, seven pages. |
PCT/2016/064441, Application Serial No. PCT/US2016/064441, International Search Report and Written Opinion dated Feb. 7, 2017, Osterhout Group, Inc., 16 pages. |
PCT/US2015/059264, International Application Serial No. PCT/US2015/059264, International Preliminary report on Patentability and Written Opinion dated May 18, 2017, Osterhout Group, Inc., eight pages. |
PCT/US2016/038008, International Application Serial No. PCT/US2016/038008, International Preliminary Report on Patentability dated Dec. 28, 2017, Osterhout Group, Inc. six pages. |
PCT/US2016/038008, International Application Serial No. PCT/US2016/038008, International Search Report and Written Opinion dated Oct. 27, 2016, Osterhout Group, Inc. eight pages. |
PCTUS2017046701, “Application Serial No. PCTUS2017046701, International Search Report and the Written Opinion dated Nov. 6, 2017”, 7 pages. |
Rolland, J. et al., “High-resolution inset head-mounted display”, Optical Society of America, vol. 37, No. 19, Applied Optics, (Jul. 1, 1998). |
Schedwill, “Bidirectional OLED Microdisplay”, Fraunhofer Research Institution for Organics, Materials and Electronic Device COMEDD, Apr. 11, 2014, 2 pages. |
Tanriverdi, V. et al. (Apr. 2000). “Interacting With Eye Movements in Virtual Environments,” Department of Electrical Engineering and Computer Science, Tufts University, Medford, MA 02155, USA, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, eight pages. |
Vogel, et al., “Data glasses controlled by eye movements”, Information and communication, Fraunhofer-Gesellschaft, Sep. 22, 2013, 2 pages. |
Ye, Hui et al., “High Quality Voice Morphing”, Cambridge University Engineering Department Trumpington Street, Cambridge, England, CB2 1PZ, 2004, I-9-I-12. |
Yoshida, A. et al., “Design and Applications of a High Resolution Insert Head Mounted Display”, (Jun. 1994). |
“Audio Spotlight,” by Holosonics, http://www.holosonics.com, accessed Jul. 3, 2014, three pages. |
“Lightberry,” https://web.archive.org/web/20131201194408/http:1/lightberry.eu/, Dec. 1, 2013, 11 pages. |
“Sound from Ultrasound,” Wikipedia entry, http://en.m.wikipedia.org/wiki/Sound_from_ultrasound, accessed Jul. 3, 2014, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20230055152 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16942726 | Jul 2020 | US |
Child | 18048829 | US | |
Parent | 15859828 | Jan 2018 | US |
Child | 16942726 | US | |
Parent | 14820253 | Aug 2015 | US |
Child | 15859828 | US | |
Parent | 14262615 | Apr 2014 | US |
Child | 14820253 | US |