Temple and ear horn assembly for headworn computer

Information

  • Patent Grant
  • 9897822
  • Patent Number
    9,897,822
  • Date Filed
    Thursday, August 6, 2015
    9 years ago
  • Date Issued
    Tuesday, February 20, 2018
    6 years ago
Abstract
Aspects of the present invention relate to temple and ear horn assemblies for head worn computers.
Description
BACKGROUND

Field of the Invention


This invention relates to head worn computing. More particularly, this invention relates to temple and ear horn assemblies for head worn computers.


Description of Related Art


Wearable computing systems have been developed and are beginning to be commercialized. Many problems persist in the wearable computing field that need to be resolved to make them meet the demands of the market.


SUMMARY

Aspects of the present invention relate to temple and ear horn assemblies for head worn computers.


These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:



FIG. 1 illustrates a head worn computing system in accordance with the principles of the present invention.



FIG. 2 illustrates a head worn computing system with optical system in accordance with the principles of the present invention.



FIGS. 3A, 3B, and 3C illustrate three views of a head worn computer in accordance with the principles of the present invention.



FIGS. 4A and 4B illustrate a temple and ear horn in accordance with the principles of the present invention.



FIGS. 5A, 5B, 5C, 5D, 5E, and 5F illustrate a temple and ear horn assembly in various states in accordance with the principles of the present invention.



FIG. 6 illustrates an adjustable nose bridge assembly in accordance with the principles of the present invention.



FIG. 7 illustrates an adjustable nose bridge assembly in accordance with the principles of the present invention.





While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Aspects of the present invention relate to head-worn computing (“HWC”) systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).


HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.


Referring to FIG. 1, an overview of the HWC system 100 is presented. As shown, the HWC system 100 comprises a HWC 102, which in this instance is configured as glasses to be worn on the head with sensors such that the HWC 102 is aware of the objects and conditions in the environment 114. In this instance, the HWC 102 also receives and interprets control inputs such as gestures and movements 116 of a body part of a user. The HWC 102 may communicate with external user interfaces 104. The external user interfaces 104 may provide a physical user interface to take control instructions from a user of the HWC 102 and the external user interfaces 104 and the HWC 102 may communicate bi-directionally to affect the user's command and provide feedback to the external device 108. The HWC 102 may also communicate bi-directionally with externally controlled or coordinated local devices 108. For example, an external user interface 104 may be used in connection with the HWC 102 to control an externally controlled or coordinated local device 108. The externally controlled or coordinated local device 108 may provide feedback to the HWC 102 and a customized GUI may be presented in the HWC 102 based on the type of device or specifically identified device 108. The HWC 102 may also interact with remote devices and information sources 112 through a network connection 110. Again, the external user interface 104 may be used in connection with the HWC 102 to control or otherwise interact with any of the remote devices 108 and information sources 112 in a similar way as when the external user interfaces 104 are used to control or otherwise interact with the externally controlled or coordinated local devices 108. Similarly, HWC 102 may interpret gestures 116 (e.g captured from forward, downward, upward, rearward facing sensors such as camera(s), range finders, IR sensors, etc.) or environmental conditions sensed in the environment 114 to control either local or remote devices 108 or 112.


We will now describe each of the main elements depicted on FIG. 1 in more detail; however, these descriptions are intended to provide general guidance and should not be construed as limiting. Additional description of each element may also be further described herein.


The HWC 102 is a computing platform intended to be worn on a person's head. The HWC 102 may take many different forms to fit many different functional requirements. In some situations, the HWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where the HWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment 114. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In embodiments, lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, the HWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like.


The HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like. The HWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.


The HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102. In another example, the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. The HWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment the HWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly. For example, the HWC 102 may have a button(s), touch capacitive interface, and the like.


As described herein, the HWC 102 may be in communication with external user interfaces 104. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of the HWC 102. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, the external user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD 104.


As described herein, the HWC 102 may control or coordinate with other local devices 108. The external devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the local external device 108 may be another HWC 102, where information may then be exchanged between the separate HWCs 108.


Similar to the way the HWC 102 may control or coordinate with local devices 106, the HWC 102 may control or coordinate with remote devices 112, such as the HWC 102 communicating with the remote devices 112 through a network 110. Again, the form of the remote device 112 may have many forms. Included in these forms is another HWC 102. For example, each HWC 102 may communicate its GPS position such that all the HWCs 102 know where all of HWC 102 are located.



FIG. 2 illustrates a HWC 102 with an optical system that includes an upper optical module 202 and a lower optical module 204. While the upper and lower optical modules 202 and 204 will generally be described as separate modules, it should be understood that this is illustrative only and the present invention includes other physical configurations, such as that when the two modules are combined into a single module or where the elements making up the two modules are configured into more than two modules. In embodiments, the upper module 202 includes a computer controlled display (e.g. LCoS, DLP, OLED, etc.) and image light delivery optics. In embodiments, the lower module includes eye delivery optics that are configured to receive the upper module's image light and deliver the image light to the eye of a wearer of the HWC. In FIG. 2, it should be noted that while the upper and lower optical modules 202 and 204 are illustrated in one side of the HWC such that image light can be delivered to one eye of the wearer, that it is envisioned by the present invention that embodiments will contain two image light delivery systems, one for each eye. It should also be noted that while many embodiments refer to the optical modules as “upper” and “lower” it should be understood that this convention is being used to make it easier for the reader and that the modules are not necessarily located in an upper-lower relationship. For example, the image generation module may be located above the eye delivery optics, below the eye delivery optics, on a side of the eye delivery optics, or otherwise positioned to satisfy the needs of the situation and/or the HWC 102 mechanical and optical requirements.


An aspect of the present invention relates to the mechanical and electrical construction of a side arm of a head worn computer. In general, when a head worn computer takes the form of glasses, sun-glasses, certain goggles, or other such forms, two side arms are included for mounting and securing the had worn computer on the ears of a person wearing the head worn computer. In embodiments, the side arms may also contain electronics, batteries, wires, antennas, computer processors, computer boards, etc. In embodiments, the side arm may include two or more sub assemblies. For example, as will be discussed in more detail below, the side arm may include a temple section and an ear horn section. The two sections may, for example, be mechanically arranged to allow an ear horn section to move such that both side arms can fold into a closed position.



FIGS. 3A, 3B, and 3C illustrate three separate views 102A, 102B and 102C of a head worn computer 102 according to the principles of the present invention. Turning to the head worn computer illustrated as 102A in FIG. 3A, one side arm of the HWC 102 is folded into its closed position. The ear horn section 308 of the side arm is rotated relative to its temple section 304 to create space relative to the other side arm 310 so when the other side arm is moved into its closed position it can fully close. In a situation where the ear horn did not rotate to create the space (not illustrated) the ear horn would physically interfere with the other side arm 310, when the side arm was in the closed position, and prevent the other side arm 310 from fully closing. The HWC 102B view in FIG. 3B illustrates the HWC 102B with both side arms folded into a fully closed position. Note that the ear horn 308 is in the rotated position with respect to its temple section 304 such that the other arm 310 closed without interfering with the ear horn 308. The HWC 102C view in FIG. 3C also illustrates both arms in closed positions with the ear horn 308 rotated to create the space for the other arm 310 to fully close. FIG. 3C also illustrates a portion of the HWC 102 where electronics may be housed in a top mount 312. The top mount may contain electronics, sensors, optics, processors, memory, radios, antennas, etc.



FIG. 4A and FIG. 4B illustrate a side arm configuration in accordance with the principles of the present invention. In this embodiment, the side arm includes two sub assemblies: the temple section 304 and the ear horn 308. FIG. 4 A and FIG. 4B illustrate two views of the side arm assembly, one from an outer perspective in FIG. 4A and one from a sectioned perspective in FIG. 4B. The ear horn includes a pin 402 that is designed to fit into a hole 404 and to be secured by connector 408. The connector 408 is rotatable and in one position locks the pin 402 in place and in another position unsecures the pin 402 such that the ear horn 308 can be removed and re-attached to the temple section 304. This allows the detachment and re-attachment of the ear horn 308 from the temple section 304. This also allows for the sale of different ear horns 308 for replacement, of which a variety of colors and patterns may be offered. In embodiments, the temple section 304 may include a battery compartment 410 and other electronics, wires, sensors, processors, etc.



FIG. 5A, FIG. 5B, FIG. 5C, FIG. 5D, FIG. 5E, and FIG. 5F illustrate several views of a HWC side arm with temple 304 and ear horn 308 sections. The views include outer perspectives and cross sections as well as various states of the security of the ear horn 308 with the temple section 304. FIGS. 5C and 5D illustrates the ear horn 308 and the temple section 304 in a secure un-rotated position. The same pin 402 and connector 408 system described in connection with FIG. 4A and FIG. 4B is illustrated in the cross sections of FIG. 5B, FIG. 5D, and FIG. 5F. In the secured un-rotated position the pin is pulled internally within the temple section firmly such that it stays in place. FIG. 5C and FIG. 5D illustrates a state where the ear horn 308 is separated from the temple section 304. This state is achieved when pressure is used to pull on the ear horn 308. In embodiments, the pressure is exerted by a user pulling on the ear horn 308, which compresses a spring 510B that is mechanically associated with the pin 402 in the ear horn 308. The mechanism uses the spring to maintain pressure on the pin 402 to maintain connection with the connector 408 when the connector 408 is in a position to lock the pin 402 in position. FIGS. 5E and 5F illustrate a state where, after the ear horn 308 has been pulled into the state described in connection with FIGS. 5C and 5D, the ear horn 308 is rotated about the pin 402. This puts the ear horn 308 in a rotated position as described herein such that the first arm, with this rotated ear horn 308, does not interfere with the closure of the other arm 310 when the two arms are folded into the closed position.


An aspect of the present invention relates to an adjustable nose bridge. An adjustable nose bridge may be important with head worn computers, especially those with computer displays, to ensure comfort and alignment of the displays and/or other portions of the head worn computer. FIG. 6 illustrates a HWC 102 with an adjustable nose bridge 602. The nose bridge is adjustable through a mechanism in the HWC 102. In embodiments, the mechanism includes a fixed notched attachment 604, a movable pin 608 adapted to fit into the notches of the notched attachment 604, and a selection device 610 that is attached to the movable pin 608. The movable pin 608 and nose bridge 602 are connected such that the as the movable pin 608 shifts in position the nose bridge 602 moves in position as well. The selection device 610 causes the movable pin 608 to engage and disengage with the fixed notched attachment 604 when presses and allowed to retract. As illustrated in FIG. 6, the selection device 610 is not in a pressed position so the movable pin 608 is engaged with the notched attachment 604 such that the nose bridge is securely attached in a stable position. FIG. 7 illustrates a scenario where the selection device is pressed, or activated, such that the moveable pin 608 is no longer engaged with the fixed notched attachment 604. This allows the nose bridge 602 to move up and down with respect to the rest of the HWC 102. Once the movable pin 608 aligns with a notch of the notched attachment 604, the two parts may engage to re-secure the nose bridge in the HWC 102.


In embodiments, a side arm of the HWC 102 may include an audio jack (not shown) and the audio jack may be magnetically attachable to the side arm. For example, the temple section 304 or ear horn section 308 may have a magnetically attachable audio jack with audio signal wires associated with an audio system in the HWC 102. The magnetic attachment may include one or more magnets on one end (e.g. on the head phone end or the side arm end) and magnetically conductive material on the other end. In other embodiments, both ends of the attachment may have magnets, of opposite polarization, to create a stronger magnetic bond for the headphone). In embodiments, the audio signal wires or magnetic connection may include a sensor circuit to detect when the headphone is detached from the HWC 102. This may be useful in situations where the wearer is wearing the headphones during a period when there is not constant audio processing (e.g. listening for people to talk with periods of silence). In embodiments, the other side's headphone may play a tone, sound, signal, etc. in the event a headphone is detached. In embodiments, an indication of the detachment may be displayed in the computer display.


In embodiments, the HWC 102 may have a vibration system that vibrates to alert the wearer of certain sensed conditions. In embodiments, the vibration system (e.g. an actuator that moves quickly to cause vibration in the HWC 102) may be mounted in a side arm (e.g. the temple section 304, or ear horn 308), in the top mount 312, etc. In embodiments, the vibration system may be capable of causing different vibration modes that may be indicative of different conditions. For example, the vibration system may include a multi-mode vibration system, piezo-electric vibration system, variable motor, etc, that can be regulated through computer input and a processor in the HWC 102 may send control signals to the vibration system to generate an appropriate vibration mode. In embodiments, the HWC 102 may be associated with other devices (e.g. through Bluetooth, WiFi, etc.) and the vibratory control signals may be associated with sensors associated with the other device. For example, the HWC 102 may be connected to a car through Bluetooth such that sensor(s) in the car can cause activation of a vibration mode for the vibration system. The car, for example, may determine that a risk of accident is present (e.g. risk of the driver falling asleep, car going out of its lane, a car in front of the wearer is stopped or slowing, radar in the car indicates a risk, etc.) and the car's system may then send a command, via the Bluetooth connection, to the HWC 102 to cause a vibratory tone to be initiated in the HWC 102.


Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC. All documents referenced herein are hereby incorporated by reference.

Claims
  • 1. A head-worn computer, comprising: a see-through computer display, wherein the see-through computer display comprises an emissive display;a frame mechanically adapted to hold the see-through computer display;a first side arm pivotally attached to the frame and adapted to hold the head-worn computer in place on a user's head, wherein the first side arm comprises a temple section and an ear horn section, wherein the ear horn section is removably mounted, with a locking assembly, to the temple section to allow changing of the ear horn section to a different ear horn section; andthe temple section further comprising a compartment adapted to contain a battery, wherein the battery powers the see-through computer display.
  • 2. The head-worn computer of claim 1, wherein the different ear horn section is a different size from the ear horn section to accommodate a user preference.
  • 3. The head-worn computer of claim 1, wherein the emissive display is an organic light emitting diode (OLED) display.
  • 4. The head-worn computer of claim 1, further comprising a vertically adjustable nose bridge assembly.
  • 5. The head-worn computer of claim 4, wherein the vertically adjustable nose bridge assembly comprises a plurality of discrete vertical positions.
  • 6. The head-worn computer of claim 5, wherein the vertically adjustable nose bridge assembly comprises a user actuation device that secures a vertical position of the vertically adjustable nose bridge assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Non-Provisional application Ser. No. 14/262,615, entitled “TEMPLE AND EAR HORN ASSEMBLY FOR HEADWORN COMPUTER”, filed Apr. 25, 2014 (ODGP-4001-U01). The above-identified application is incorporated herein by reference in its entirety.

US Referenced Citations (231)
Number Name Date Kind
1897833 Benway Feb 1933 A
2064604 Paul Dec 1936 A
3531190 LeBlanc Sep 1970 A
3671111 Okner Jun 1972 A
4145125 Chika Mar 1979 A
4513812 Papst et al. Apr 1985 A
D327674 Kuo Jul 1992 S
D376790 Goulet et al. Dec 1996 S
5596451 Handschy et al. Jan 1997 A
5625372 Hildebrand et al. Apr 1997 A
5717422 Fergason et al. Feb 1998 A
5808800 Handschy et al. Sep 1998 A
5808802 Hur Sep 1998 A
5954642 Johnson et al. Sep 1999 A
6034653 Robertson et al. Mar 2000 A
6137675 Perkins Oct 2000 A
6195136 Handschy et al. Feb 2001 B1
6359723 Handschy et al. Mar 2002 B1
6369952 Rallison et al. Apr 2002 B1
6421031 Ronzani et al. Jul 2002 B1
6456438 Lee et al. Sep 2002 B1
6480174 Kaufmann et al. Nov 2002 B1
6491389 Yaguchi et al. Dec 2002 B2
D470144 Li Feb 2003 S
6535182 Stanton Mar 2003 B2
D473871 Santos Apr 2003 S
6847336 Lemelson et al. Jan 2005 B1
6987787 Mick Jan 2006 B1
D521493 Wai May 2006 S
7088234 Naito et al. Aug 2006 B2
7199934 Yamasaki Apr 2007 B2
7206134 Weissman et al. Apr 2007 B2
7582828 Ryan Sep 2009 B2
7791889 Belady et al. Sep 2010 B2
7830370 Yamazaki et al. Nov 2010 B2
7850301 DiChiara et al. Dec 2010 B2
7855743 Sako et al. Dec 2010 B2
7928926 Yamamoto et al. Apr 2011 B2
8004765 Amitai Aug 2011 B2
8089568 Brown et al. Jan 2012 B1
8092007 DiChiara et al. Jan 2012 B2
8228315 Starner et al. Jul 2012 B1
D669066 Olsson et al. Oct 2012 S
8378924 Jacobsen et al. Feb 2013 B2
D680152 Olsson et al. Apr 2013 S
8427396 Kim Apr 2013 B1
D685019 Li Jun 2013 S
8494215 Kimchi et al. Jul 2013 B2
8553910 Dong et al. Oct 2013 B1
8564883 Totani et al. Oct 2013 B2
8570273 Smith Oct 2013 B1
8576276 Bar-Zeev et al. Nov 2013 B2
8576491 Takagi et al. Nov 2013 B2
8587869 Totani et al. Nov 2013 B2
8593795 Chi et al. Nov 2013 B1
8594467 Lu et al. Nov 2013 B2
8662686 Takagi et al. Mar 2014 B2
8665214 Forutanpour et al. Mar 2014 B2
8670183 Clavin et al. Mar 2014 B2
8678581 Blum et al. Mar 2014 B2
8698157 Hanamura Apr 2014 B2
8711487 Takeda et al. Apr 2014 B2
8743052 Keller et al. Jun 2014 B1
8745058 Garcia-Barrio Jun 2014 B1
8750541 Dong et al. Jun 2014 B1
8752963 McCulloch et al. Jun 2014 B2
8787006 Golko et al. Jul 2014 B2
8803867 Oikawa Aug 2014 B2
8814691 Osterhout et al. Aug 2014 B2
8823071 Oyamada Sep 2014 B2
8837880 Takeda et al. Sep 2014 B2
8866702 Mirov et al. Oct 2014 B1
D716808 Yeom et al. Nov 2014 S
8878749 Wu et al. Nov 2014 B1
D719568 Heinrich et al. Dec 2014 S
D719569 Heinrich et al. Dec 2014 S
D719570 Heinrich et al. Dec 2014 S
8922530 Pance Dec 2014 B2
8955973 Raffle et al. Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
D724083 Olsson et al. Mar 2015 S
8971023 Olsson et al. Mar 2015 B2
D727317 Olsson et al. Apr 2015 S
9031273 Dong et al. May 2015 B2
D732025 Heinrich et al. Jun 2015 S
D733709 Kawai Jul 2015 S
9105261 Horii Aug 2015 B2
D738373 Davies et al. Sep 2015 S
9128281 Osterhout et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9143693 Zhou et al. Sep 2015 B1
9158116 Osterhout et al. Oct 2015 B1
D745007 Cazalet et al. Dec 2015 S
D751551 Ho et al. Mar 2016 S
D751552 Osterhout Mar 2016 S
D757006 Cazalet et al. May 2016 S
9423842 Osterhout et al. Aug 2016 B2
9523856 Osterhout et al. Dec 2016 B2
9529195 Osterhout et al. Dec 2016 B2
9529199 Osterhout et al. Dec 2016 B2
9651787 Haddick et al. May 2017 B2
9651788 Osterhout et al. May 2017 B2
9651789 Osterhout et al. May 2017 B2
9672210 Osterhout et al. Jun 2017 B2
9684172 Border et al. Jun 2017 B2
D792400 Osterhout Jul 2017 S
9746676 Osterhout et al. Aug 2017 B2
20020021498 Ohtaka et al. Feb 2002 A1
20020054272 Ebata et al. May 2002 A1
20030030912 Gleckman et al. Feb 2003 A1
20040008158 Chi et al. Jan 2004 A1
20040066363 Yamano et al. Apr 2004 A1
20040132509 Glezerman Jul 2004 A1
20050264752 Howell Dec 2005 A1
20060061542 Stokic et al. Mar 2006 A1
20060239629 Qi et al. Oct 2006 A1
20070296684 Thomas et al. Dec 2007 A1
20080122736 Ronzani et al. May 2008 A1
20080125288 Case et al. May 2008 A1
20080143954 Abreu et al. Jun 2008 A1
20080291277 Jacobsen et al. Nov 2008 A1
20090013204 Kobayashi et al. Jan 2009 A1
20090040296 Moscato et al. Feb 2009 A1
20090108837 Johansson et al. Apr 2009 A1
20090279180 Amitai et al. Nov 2009 A1
20100045928 Levy et al. Feb 2010 A1
20100079356 Hoellwarth Apr 2010 A1
20100079508 Hodge et al. Apr 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100309426 Howell et al. Dec 2010 A1
20110159931 Boss et al. Jun 2011 A1
20110213664 Osterhout et al. Sep 2011 A1
20110221672 Osterhout et al. Sep 2011 A1
20110234475 Endo et al. Sep 2011 A1
20110285764 Kimura et al. Nov 2011 A1
20120050493 Ernst et al. Mar 2012 A1
20120062850 Travis Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120113514 Rodman May 2012 A1
20120162270 Fleck et al. Jun 2012 A1
20120169608 Forutanpour et al. Jul 2012 A1
20120212593 Na'aman et al. Aug 2012 A1
20120223885 Perez Sep 2012 A1
20120242570 Kobayashi et al. Sep 2012 A1
20120242698 Haddick et al. Sep 2012 A1
20120250152 Larson et al. Oct 2012 A1
20120264510 Wigdor et al. Oct 2012 A1
20120268449 Choi et al. Oct 2012 A1
20120306850 Balan et al. Dec 2012 A1
20120307198 Ifergan Dec 2012 A1
20120326948 Crocco et al. Dec 2012 A1
20120327116 Liu et al. Dec 2012 A1
20130009366 Hannegan et al. Jan 2013 A1
20130044042 Olsson et al. Feb 2013 A1
20130063695 Hsieh Mar 2013 A1
20130069985 Wong et al. Mar 2013 A1
20130083009 Geisner et al. Apr 2013 A1
20130100259 Ramaswamy Apr 2013 A1
20130154913 Genc et al. Jun 2013 A1
20130196757 Latta et al. Aug 2013 A1
20130201080 Evans et al. Aug 2013 A1
20130201081 Evans et al. Aug 2013 A1
20130235331 Heinrich et al. Sep 2013 A1
20130250503 Olsson et al. Sep 2013 A1
20130257622 Davalos et al. Oct 2013 A1
20130265212 Kato et al. Oct 2013 A1
20130293580 Spivack et al. Nov 2013 A1
20130342981 Cox et al. Dec 2013 A1
20140028704 Wu et al. Jan 2014 A1
20140029498 Kim et al. Jan 2014 A1
20140043682 Hussey et al. Feb 2014 A1
20140062854 Cho Mar 2014 A1
20140063473 Pasolini Mar 2014 A1
20140111864 Margulis et al. Apr 2014 A1
20140129328 Mathew May 2014 A1
20140146394 Tout et al. May 2014 A1
20140147829 Jerauld May 2014 A1
20140152530 Venkatesha et al. Jun 2014 A1
20140152558 Salter et al. Jun 2014 A1
20140152676 Rohn et al. Jun 2014 A1
20140153173 Pombo et al. Jun 2014 A1
20140159995 Adams et al. Jun 2014 A1
20140160055 Margolis et al. Jun 2014 A1
20140160157 Poulos et al. Jun 2014 A1
20140160170 Lyons Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140176603 Kumar et al. Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140183269 Glaser et al. Jul 2014 A1
20140206416 Aurongzeb et al. Jul 2014 A1
20140347572 Liu et al. Nov 2014 A1
20140375545 Finocchio et al. Dec 2014 A1
20150029088 Kim et al. Jan 2015 A1
20150042544 Sugihara et al. Feb 2015 A1
20150084862 Sugihara et al. Mar 2015 A1
20150145839 Hack et al. May 2015 A1
20150168730 Ashkenazi et al. Jun 2015 A1
20150178932 Wyatt et al. Jun 2015 A1
20150198807 Hirai Jul 2015 A1
20150205117 Border et al. Jul 2015 A1
20150205132 Osterhout et al. Jul 2015 A1
20150293587 Wilairat et al. Oct 2015 A1
20150294627 Yoo et al. Oct 2015 A1
20150309317 Osterhout et al. Oct 2015 A1
20150309534 Osterhout Oct 2015 A1
20150309995 Osterhout Oct 2015 A1
20150346496 Haddick et al. Dec 2015 A1
20150347823 Monnerat et al. Dec 2015 A1
20150382305 Drincic Dec 2015 A1
20160018646 Osterhout et al. Jan 2016 A1
20160018647 Osterhout et al. Jan 2016 A1
20160018648 Osterhout et al. Jan 2016 A1
20160018649 Osterhout et al. Jan 2016 A1
20160085278 Osterhout et al. Mar 2016 A1
20160131904 Border et al. May 2016 A1
20160131911 Border et al. May 2016 A1
20160132082 Border et al. May 2016 A1
20160133201 Border et al. May 2016 A1
20160161743 Osterhout et al. Jun 2016 A1
20160161747 Osterhout Jun 2016 A1
20160171846 Brav et al. Jun 2016 A1
20160178904 Deleeuw et al. Jun 2016 A1
20160187658 Osterhout et al. Jun 2016 A1
20160246055 Border et al. Aug 2016 A1
20160370606 Huynh Dec 2016 A1
20170031395 Osterhout et al. Feb 2017 A1
20170219831 Haddick et al. Aug 2017 A1
20170220865 Osterhout et al. Aug 2017 A1
20170227778 Osterhout Aug 2017 A1
20170235133 Border et al. Aug 2017 A1
20170235134 Border et al. Aug 2017 A1
Foreign Referenced Citations (18)
Number Date Country
368898 May 1990 EP
777867 Jun 1997 EP
2486450 Aug 2012 EP
2502410 Sep 2012 EP
2009171505 Jul 2009 JP
5017989 Sep 2012 JP
2012212990 Nov 2012 JP
1020110101944 Sep 2011 KR
2011143655 Nov 2011 WO
2012058175 May 2012 WO
2013050650 Apr 2013 WO
2013103825 Jul 2013 WO
2013110846 Aug 2013 WO
2013170073 Nov 2013 WO
2013176079 Nov 2013 WO
2016073734 May 2016 WO
2016205601 Dec 2016 WO
2017100074 Jun 2017 WO
Non-Patent Literature Citations (10)
Entry
US 8,743,465, 06/2014, Totani et al. (withdrawn)
US 8,792,178, 07/2014, Totani et al. (withdrawn)
“Audio Spotlight”, by Holosonics, http://www.holosonics.com, accessed Jul. 3, 2014, 3 pages.
“Genius Ring Mice”, http://www.geniusnet.com/Genius/wSite/productCompare/compare.jsp, dated Dec. 23, 2014, 1 page.
“Sound from Ultrasound”, Wikipedia entry, http://en.m.wikipedia.org/wiki/Sound_from_ultrasound, accessed Jul. 3, 2014, 13 pages.
Logbar Inc., “Ring: Shortcut Everything”, https://www.kickstarter.com/projects/1761670738/ring-shortcut-everything, Jun. 2012, 22 pages.
PCT/US2015/059264, “International Application Serial No. PCT/US2015/059264, International Search Report and Written Opinion dated Feb. 19, 2016”, Osterhout Group, Inc., 11 Pages.
Schedwill, “Bidirectional OLED Microdisplay”, Fraunhofer Research Institution for Organics, Materials and Electronic Device Comedd, dated Apr. 11, 2014, 2 pages.
Vogel, et al., “Data glasses controlled by eye movements”, Information and communication, Fraunhofer-Gesellschaft, Sep. 22, 2013, 2 pages.
Ye, et al., “High Quality Voice Morphing”, 2004, pp. I-9-I-11.
Related Publications (1)
Number Date Country
20150346511 A1 Dec 2015 US
Continuations (1)
Number Date Country
Parent 14262615 Apr 2014 US
Child 14820253 US