This disclosure relates to an optical imaging sensor aimed at characterizing objects and events with distinct signatures in temporal and spectral domains. The sensor virtually simultaneously produces (1) two-dimensional spatial polychromatic images of the scene, (2) temporally resolved images, where each pixel is associated with its corresponding temporal frequency (vibration) spectrum, and (3) spectrally resolved images, where each pixel is associated with its corresponding optical spectrum. The sensor is based on Hypertemporal imaging (HTI) together with hyperspectral (HSI) or multispectral (MSI) imaging techniques described below. The sensor co-process the two data streams to provide spectral data free of temporal artifacts.
In the case of a spectrograph based on a spatial light modulator (SLM), the SLM provides the ability to spectrally encode the image by applying a pattern which binary-modulates the spectral content of each spatial element of the SLM. A set of hyperspectral images (i.e., a hypercube) is generated by first dispersing the light from a distant scene, encoding the light spectrally by using a SLM that selects specific combinations of bands, and then recombining the light on a two-dimensional detector (focal plane array) that records the spectrally encoded polychromatic signal. The full optical spectrum of each element (pixel) of the image can then be obtained by cycling the system through a sequence of spectral band passes generated on the SLM. It is well known to those skilled in the art to preferably use a sequence of spectral band passes based on Hadamard transform encoding, typically practically achieved by using Simplex (S) matrices for the binary transform applied to the SLM. This approach provides a sequence of orthogonal spectral bands for encoding, followed by decoding in a post-processing computer. The concept and sensor for spectral imaging based on dispersive optics and transform encoding is described in detail in Goldstein et al., U.S. Pat. No. 7,324,196; and Goldstein et al., U.S. Pat. No. 8,305,575, and references cited therein.
Goldstein et al., U.S. Pat. No. 7,324,196 teaches the construction and method of an imaging spectrograph containing a first optical path that produces a spectrally dispersed image of the input radiation field comprising multiple spectral components displaced along a dispersion direction. Spectral pass bands are encoded on the dispersed image by a spatial light modulator using one or more spatial masks. The imaging spectrograph further defines a second optical path that reverses the spectral dispersion of the first path and produces a spectrally-encoded polychromatic output image containing spectral components encoded by the spatial light modulator. The first and second optical paths share a common dispersing/de-dispersing optical element, while a detector records at least one spatial region of the spectrally encoded image.
Goldstein et al., U.S. Pat. No. 8,305,575 teaches the construction and method of an adaptive spectral sensor which uses a programmable band pass transmission filter to produce contrast signals, which discriminate specific target materials from background materials by comparing spectral signatures in hardware. The adaptive spectral sensor measures one or more spectra contained in a spectral image. The sensor automatically adjusts to changing spectral, spatial and temporal conditions in the environment being monitored, by changing sensor resolution in those dimensions and by changing the detection band pass. The programmable band pass can be changed on-the-fly in real time to implement a variety of detection techniques in hardware or measure the spatial or spectral signatures of specific materials and scenes.
Hypertemporal imaging (HTI) is used for object or event detection based on the temporal information contained in the optical field emanating from the object/field. Clark, U.S. Pat. Nos. 8,284,405 and 8,488,123 teaches a method that uses HTI technique to create a sensor based on a panchromatic (spectrally unresolved) optical detector which senses the intensity of time varying signals, from flickering sources, or from scattered light reflected by a vibrating surface. The detector produces an electrical signal as a temporal function of the detected light intensity. A digital signal processor converts the digital signal into a function of frequency using Fourier transform and power spectral density (PSD). The vibration signature of the source, if present, is discerned from a graphical display of the foregoing function. Villanucci et al. (U.S. Pat. No. 7,938,010) teach a passive remote sensor responding to spectrally unresolved electromagnetic radiation to generate a composite signal comprising a DC current component and an AC current component, followed by a filter that extracts the DC current component from the composite signal. At least a portion of the DC component is subtracted to produce a modified signal which detects vibrations of the surface to be detected, including by using Fourier transform. Slater (U.S. Pat. No. 7,551,519) teaches a passive long range acoustical sensor based on a method which uses natural broadband illumination to sense acoustical sources such as various types of sounds, vibrations, flutter, turbulence, and the like. Signal processing is based on various types of filtering and correlator functions.
Adler-Golden et al., 2008 teaches an approach to HTI analysis which improves event detection performance by several orders of magnitude compared to traditional power spectral density (PSD), AC power, and filtering methods described in Clark (U.S. Pat. No. 8,284,405 B1 and U.S. Pat. No. 8,488,123 B1), Villanucci et al. (U.S. Pat. No. 7,938,010 B2) and Slater (U.S. Pat. No. 7,551,519 B2). The basis of this approach is Principal Components Analysis (PCA), which defines a temporal whitening transform that converts the data covariance to unit variance. The whitened amplitude identifies weak events buried in a cluttered background. Strong signals therefore may appear in individual components of the whitened data (i.e., in the corresponding principal component images). Adler-Golden, S. M., S. C. Richtsmeier, and R. Shroll, “Suppression of subpixel sensor jitter fluctuations using temporal whitening,” Proc. SPIE, vol. 6969, p. 69691D, (2008) further show how this approach can be applied to the analysis of data collected during a specific field experiment. Adler-Golden, S. M., et al, “Improved Analysis of Plume Hypertemporal Imagery Using Principal Components,” Proceedings of the 2nd Short Wavelength Phenomenology and Applications Workshop, Johns Hopkins University/Applied Physics Laboratory, Laurel, Md., (2007) also teach an application of HTI analysis based on temporal whitening method to suppress the effects of sensor jitter which introduces non-white noise fluctuations in imagery of cluttered scenes. While standard frame-to-frame registration methods are known to have limited ability to model and remove fluctuations due to sensor jitter, the method demonstrated in Adler-Golden, S. M., et al., “Improved Analysis of Plume Hypertemporal Imagery Using Principal Components,” Proceedings of the 2nd Short Wavelength Phenomenology and Applications Workshop, Johns Hopkins University/Applied Physics Laboratory, Laurel, Md., (2007) shows that a simple temporal whitening approach, applicable to a wide variety of imaging systems, is highly effective for suppressing subpixel jitter effects, leading to an improvement in event detection ability of the sensor.
The temporal-spectral multiplexing sensor of this invention produces both panchromatic time series data and spectrally resolved imagery based on the collection of a sequence of spectrally encoded images. The panchromatic time series data is used for Hypertemporal Imaging (HTI) of the time varying signal in the scene. The spectrally encoded images can be created using either a set of fixed spectral band pass filters or a spectrograph based on a programmable spatial light modulator (SLM). In either case the processing of the spectral imagery is aided by periodic construction of full panchromatic images, which may be used to normalize the spectrally encoded images, thereby reducing spectral artifacts due to intensity fluctuations during the image collection event. The panchromatic images may be generated either by excluding spectral encoding for individual frames or by using a complementary spectral encoding on frames that combine with the spectrally encoded image frames to cancel the encoding.
This invention is not limited to spectrographs based on SLMs, but can also be used with fixed spectral bandpass filters. In that case, spectral multiplexing and programmable spectral resolution does not apply. Band-specific images are instead created by successively applying narrow band filters to the entire two-dimensional image. These narrow bandpass filters may be interspersed with spectrally flat filters to produce full panchromatic images for use in HTI processing and normalizing intensity fluctuations in an analogous manner to the SLM-based spectral imagers.
The temporal-spectral multiplexing sensor and method described in this invention unites HTI and HSI sensing in a single instrument using data encoding and signal processing to recover the temporal signal without HSI encoding artifacts, and to recover the HSI signal free from artifacts due to fluctuating target intensity. The later artifacts are a common problem for all spectral sensors, such as Fourier Transform Infrared Spectrometers (FTIR) or dispersive transform spectrometers, which rely on temporal stability of the collected signal. Any variation in the overall intensity of the return signal during the data collection process results in spurious spectral signals that distort the apparent spectrum of the object under interrogation. This invention reduces or removes such artifacts by continuous monitoring of the overall signal intensity and normalizing the spectrally encoded images as part of the decoding process.
The invention also allows the extraction of HTI data from spectrally encoded signals generated by a dispersive transform imaging spectrometer of the type described in Goldstein et al., U.S. Pat. No. 7,324,196 and Goldstein et al., U.S. Pat. No. 8,305,575. Such a spectrometer generates encoded polychromatic images that are decoded by an inverse transform to produce optical spectrum for each pixel of the image. These encoded polychromatic images generated by the dispersive transform imaging spectrometry method naturally contain signal intensity variations as a consequence of the encoding process itself because the spectral information is encoded in the time domain. For the purpose of HTI analysis, these variations translate into unwanted temporal oscillations added to the images that interfere with temporal analysis aimed at detecting the true temporal signature of the target at high fidelity. In this invention, we describe a method to use the encoded output of a dispersive transform imager to generate input data for HTI analysis that are free from encoding artifacts, and therefore equivalent to panchromatic images containing true spatial-temporal content, as described in the “Detailed Description of the Invention” section. The data processing approach for HTI sensing may include both Power Spectral Density (PSD) of the signal (based on the Fourier transform) and/or on Principal Component Analysis (PCA). PCA makes it possible to separate the target from unwanted background as described above in Adler-Golden, S. M., et al., “Improved Analysis of Plume Hypertemporal Imagery Using Principal Components,” Proceedings of the 2nd Short Wavelength Phenomenology and Applications Workshop, Johns Hopkins University/Applied Physics Laboratory, Laurel, M D, (2007); Adler-Golden, S. M., S. C. Richtsmeier, and R. Shroll, “Suppression of subpixel sensor jitter fluctuations using temporal whitening,” Proc. SPIE, vol. 6969, p. 69691D, (2008); Shroll, R., R. Sundberg, N. Goldstein, S. Richtsmeier, R. Kennett L. Jeong, W. Pereira, T. Cooley B. Noyes H. Scott, F. Iannarilli, S. Jones, Detecting Rocket Plume Radiance through Cloud Layers from Spaced-Based Infrared Imaging Platforms, MSS MD-SEA Symposium 22-25 Oct. (2012); resulting in the sensor's ability to distinguish a faint signal buried in brightly illuminated complex background. Several orders of magnitude improvement in the ability to detect target vs. background has been demonstrated with our approach relative to other approaches in Adler-Golden, S. M., et al., “Improved Analysis of Plume Hypertemporal Imagery Using Principal Components,” Proceedings of the 2nd Short Wavelength Phenomenology and Applications Workshop, Johns Hopkins University/Applied Physics Laboratory, Laurel, M D, (2007); Adler-Golden, S. M., S. C. Richtsmeier, and R. Shroll, “Suppression of subpixel sensor jitter fluctuations using temporal whitening,” Proc. SPIE, vol. 6969, p. 69691D, (2008).
The temporal-spectral multiplexing sensor described in this invention is aimed at the detection of an object or event displaying (1) a temporal frequency signature, such as mechanical vibration of the target or variation in target emission intensity, as in combustion or explosion processes, and (2) a distinct spectral signature. Both of these information domains are contained in the optical field emanating from the object/event surrounded by a background scene and captured within the field of view (FOV) of the sensor. The application of the sensor can be in the area of object or event characterization based on concurrent temporal and spectral analysis. The invention employs a fusion of Hypertemporal Imaging (HTI) detection in the temporal domain and Hyperspectral imaging (HSI) characterization in the spectral domain. While HTI and HSI monitoring with separate sensors is well known to those skilled in the art, this invention discloses an integrated multifunctional sensor that accomplishes both HTI and HSI sensing with a single optical system within a single instrument. The instrument simultaneously or near-simultaneously produces polychromatic (spectral band integrated grayscale), spectrally resolved, and temporally resolved images in real time. This capability makes the sensor advantageous for applications where there is a need to monitor an event or object which is distinguished by its signatures in those two domains. An example common in practical use of staring 2D sensors is related to the need to generate an early warning signal as soon as possible when a sudden change in the monitored scene occurs. The sudden change may be a transient event associated with an object within the scene. The event can be quickly captured in the temporal domain first, followed immediately by analyzing its optical signature in the spectral domain in order to spectrally characterize or classify the event. Alternatively the spectral and Hypertemporal data may be analyzed concurrently. Another notable capability of the sensor disclosed here is the ability to capture high fidelity spectral signatures from targets with temporally unstable radiance by using temporal correction as described below.
The simultaneous collection of both HTI and HSI data enables enhanced processing methods that improve detection and reduce clutter based on the simultaneous co-processing of the two data streams. This enables the collection of spectra from transient events and unstable sources with a spectral fidelity that cannot be matched by time-multiplexing spectral sensors alone.
Below we describe three techniques used to perform HTI analysis on the data captured by an imaging spectrometer. Two of the techniques describe the process for encoded polychromatic images produced by a dispersive transform HSI spectrometer. These images contain artifacts (temporal modulations) due to Hadamard encoding for spectral analysis. The encoding artifacts pollute the spatial and temporal content of collected images and need to be removed for HTI analysis to work. The third technique is related to combined spectral and temporal imaging with an apparatus based on spectral band filters. In this case, multispectral imaging (MSI) is typically performed with lesser number of spectral bands than used in HSI.
Other objects, features and advantages will occur to those skilled in the art from the following description of the preferred and alternative embodiments of the invention, and the accompanying drawings, in which:
The dispersive transform embodiments of
The hardware of
The basic software structure and method of operations is common to all hardware embodiments. In each case, software running on a processor takes a sequence of images each encoded with a different spectral bandpass, and decodes the images to produce HSI and HTI data. It then combines the data to detect, characterize and classify the objects in the image.
The software block diagram shown on
For the hardware of
The second method that may be used for generation and capturing artifact-free spatial and temporal images with a dispersive transform spectral imager is illustrated in the software block diagram shown on
The third method to perform spectral/temporal data acquisition applies to a spectrometer that uses fixed spectral bandpass filters instead of transform-based encoding. See
One of the most stressing cases for a spectrometer is recovering a spectrum with intensity variations during the sampling interval. For example, intensity variations may result from changes in source emittance, illumination conditions, reflectance properties, turbulence, or sensor motion. The effect on the measured spectrum is an additional signal, termed clutter, that obscures the spectrum. The sampling rate of a standard spectrometer is the reciprocal of the time required to generate a spectrum, and it sets a limit on the sample stability required to avoid unacceptable clutter levels.
In standard time-multiplexed spectrometers, accurate measurement of a spectrum requires it to be stable, while intensity versus wavelength is measured by taking a series of N samples. Herein we disclose a technique that reduces the stability requirement from the time required to take the full spectrum to the time required to take one sample (embodiment
A brief outline of the mathematics behind the procedure is presented here using integral transformation notation with a specific example presented afterwards in matrix notation. The description is general to spectrometers using any encoding transform including, the Hadamard Transform and Fourier Transform.
In standard spectrometers applicable to a stable signal, a spectrum ƒ(λ) is encoded into a function of time g(t) by applying a transformation kernel, which is a series of masks M (t, λ),
g(t)=∫M(t,λ)ƒ(λ)dλ
Note that g(t) is the measured quantity and we would like to recover ƒ(λ). g(t) is a temporal measurement with variations due to the kernel. The spectrum does not depend on time; therefore, g(t) does not contain HTI information about the source being measured. In Hadamard spectroscopy M (t, λ) is known as an S-matrix and in scanning or filter-based instruments M(t, λ) is a series of band passes. The process is inverted to recover the spectrum,
{circumflex over (ƒ)}(λ)=∫M−1(t,λ)g(t)dt
where {circumflex over (ƒ)}(λ) is the recovered value of ƒ(λ).
This procedure is applicable when the spectrum ƒ(λ) is only a function of λ. It does not work well for time varying signals, because in such cases the spectrum s(t, λ) is a function of both time and wavelength. The time dependence passes through the transformation and corrupts the result. For the time dependent case, we employ the product solution,
s(t,λ)=I(t)ƒ(λ)
g(t)I(t)=∫M(t,λ)s(t,λ)dλ=∫M(t,λ)I(t)ƒ(λ)dλ
The measured quantity now varies with time. We see that s(t, λ) is the product of two data dimension of interest, {circumflex over (ƒ)}(λ) for HSI analysis and Î(t) for HTI analysis. To separate these data dimensions, we introduce the innovation of the method of complementary matrices. When complementary matrices are measured, we can recover the integral over wavelength versus time Î(t). This results in the three fundamental equations of the combined HTI/HSI method. The first two provide the decoupled HTI data dimension Î(t) and the equation defining the complementary matrix,
Î(t)=I(t)∫ƒ(λ)dλ=∫(M(t,λ)+Mc(t,λ))I(t)ƒ(λ)dλ=g(t)+gc(t)
{circumflex over (ƒ)}(λ)=∫M−1(t,λ)g(t)I(t)I(t)−1dt=∫M−1(t,λ)g(t)dt
where I(t)−1=∫ƒ(λ)dλ/Î(t) and I(t)Î(t)−1=1. When g(t)+gc(t) are obtained at slightly different times then these equalities are approximate. For the embodiment represented on FIGS. 1 and 3 and the methods shown in
Finally, decoupling the dimensions requires the solution of the second equation defining the complementary matrix, which may be done when any of the two terms are measured. For instance, the instrument may measure g(t) and 1 where 1 corresponds to a measurement excluding the transformation kernel. An example of using 1, is embodied in
A mathematical embodiment of the invention consistent with the methods represented in the embodiment of
We start with a standard Hadamard Imager, which does not take advantage of the combined HTI/HSI processing of this invention. For an imaging sensor pixel over n integration time periods, we may define the vectors of gt (polychromatic, discrete time), ƒλ (discrete wavelength), and e (error) having dimensions of wavelengths×1. A matrix equation relates them through the S-matrix transformation (specific embodiment derived from the Hadamard transformation),
g
t
=S
tλƒλ+e
which is a matrix representation of the integral transformation equation with S being a specific example of the more general transformation M(t, λ). In the
{circumflex over (ƒ)}λ=Sλt−1gt
Combining the two equations gives,
{circumflex over (ƒ)}λ=ƒλ+Sλt−1e
where the error in the spectrum is,
S
λt
−1
e={circumflex over (ƒ)}
λ−ƒλ
The matrix S−1 is composed of 0 and 1, scaled by 2/(n+1). Thus, the mean square error for a spectral band is the variance multiplied by the 2/(n+1) or 2σ−2/(n+1). For n bands, the mean square error improvement factor over a single slit spectrometer is n/4 or the signal-to-noise ratio is increased by a factor of
For the embodiment shown in
g
22
=S
22
λƒλ and g2t
tj is the start of an integration time period, Δt is the integration time, Nλ is the number of wavelengths, and 1 is a matrix of all 1's (not the unit matrix). The error terms have been neglected to simplify the discussion. As before, the spectra are obtained by inversion. What makes this process uniquely beneficial is the summation of the two sets of equations,
g
22
+g
2t
=S
2t
λƒλ+(1−S2t
yields a set of Nλ images Î{acute over (t)}
The new transformation enables novel subspace hyperspectral/hypertemporal imaging techniques. For example, the topic of subspace hyperspectral imaging typically involves techniques that use hyperspectral images to define a vector space basis (via PCA or endmembers). The subspace is then a projection of reduced dimensionality in this basis (i.e. there are more pixels in the scene image than unique materials). Here we use a projection operator, which is generated from the summed complementary images (or a transformation free image), to generate a subspace in a vector space determined from temporal variances. The operator effectively describes temporal artifacts caused by line-of-sight motion “jitter clutter” and sensor noise, without being required to capture spectral variability or variability due to the multiplexing encoding.
Here we demonstrate how to use the vector space derived from temporal variance to improve the recovery of spectra with a method only applicable to the unique data generated by the hardware described herein. A set of clutter mitigated images L is generated by applying the projection operator to G matrices created from vectors g2t
L=G
e
S
−1
P+G
o(1−S)−1P, where P=aaT
a is any subset of the eigenvectors of the covariance matrix (the choice is application dependent). P and the decoding matrices do not commute. The projector has row-column-dimensions of the number of summed complementary images and the encoded images have row-column-dimensions of the number of wavelengths. By design these dimensions are equivalent. L is the projection of the original set of encoded images in the reduced subspace defined by the projector.
To demonstrate how HSI analysis is performed with this novel clutter rejection we will use a standard projection method known as ACE (Adaptive Cosine Estimator). The technique gets is name because detections are based on the cosine of the angle between the background and target in the detection hyperspace. ACE usually refers to using the squared cosine. Here, without loss of generality, we will use the cosine.
To use ACE we need two vectors, the background and the target. These vectors can be written in terms of reflectance or radiance. L is an ordered set of background vectors, defined above, which are projections into a clutter mitigation subspace (defined above). They have been mean subtracted but still require whitening. The whitened background is,
{tilde over (L)}=LC
L
−1/2 and CL−1/2=AC
where CL is the covariance matrix, CL−1/2 is the whitening operator AC
{tilde over (s)}=sPC
−1/2
A known target vector (with ground reflectance, atmospheric transmittance, etc.) is projected into the clutter mitigation subspace (P) and then transformed with the whitening operator (C−1/2).
The ACE detector is,
which is the cosine of the angle between the vectors. Ĩ is a single vector taken from {tilde over (L)}.
The result is a Hyperspectral-based detection, with reduced clutter due to temporal variations in the scene. Clutter induced-biasing of the spectral signal is either eliminated (embodiment 2, method 4) or effectively limited to a frequency range of 1/Δ{acute over (t)}=2Δt for the embodiment of
The sensor technology described herein may utilize Dispersive Transform Imaging Spectrometer (DTIS) technology as described in Vujkovic-Cvijin, P., N. Goldstein, M. J. Fox, S. D. Higbee, S. Latika, L. C. Becker, K. Teng, and T. K. Ooi, “Adaptive Spectral Imager for Space-Based Sensing,” Proc. SPIE Vol. 6206, paper 6206-33 (2006); Vujkovic-Cvijin, P., Jamin Lee, Brian Gregor, Neil Goldstein, Raphael Panfili and Marsha Fox, Infrared transform spectral imager, SPIE Optics+Photonics, 12-16 Aug. 2012, San Diego Calif., SPIE Proceedings Vol. 8520, paper 8520-19 (2012); Goldstein, N., P. Vujkovic-Cvijin, M. Fox, B. Gregor, J. Lee, J. Cline, and S. Adler-Golden “DMD-based adaptive spectral imagers for hyperspectral imagery and direct detection of spectral signatures,” SPIE Vol. 7210, 721008-1-721008-8 (2009); and U.S. Pat. No. 7,324,196, for example, to produce images with spatial, temporal and spectral content suitable for analysis by HTI/HSI algorithms described in this invention.
In another embodiment shown in
In the case of DTIS-based transform-encoding imaging, alternative implementations may be used in the invention. These can include systems with all transmissive or all reflective optics, and systems that use a combination of transmissive and reflective elements. Such systems may include spectrometers of both Offner and Dyson relay type, which both use nearly-concentric optical elements to achieve imaging with low optical aberrations. Several alternative embodiments that may be used for the optical system of the HTI/HSI sensor are described in U.S. Pat. Nos. 7,324,196 and 8,305,575.
In the case of complementary encoding, images may be acquired either by using a single focal plane array that sequentially captures two complementary encoded images created by a DMA (the preferred embodiment described above and in
The processing techniques of this invention can also be applied to Fourier Transform Spectrometers, provided that the spectrometers include means of measuring either the complement of the encoding transform, or the time-varying panchromatic intensity from the source.
Other embodiments will occur to those skilled in the art and are within the following claims.