The invention relates to a metal end comprising an opening system for containers, such as beverage cans, which, in a closed state, are under one of overpressure and low pressure, and to a method of manufacturing said end. Such cans, particularly beverage cans having a carbonized content, may have an inner pressure of about 3.0 to 5.8 bar before the can end is opened (with said opening system), said pressure depending on the content, the filling ratio, the storage temperature and the treatment during transport. When initially opening an openable segment, a score line for opening the container, which score line breaks due to shearing forces, firstly breaks open close to one of a pull and a pressure portion of a gripping tab. The opening process causes an openable area segment defined by a score line and located on the central panel to burst out uncontrolledly or abruptly as a result of a spontaneous dynamic effect of the very high inner pressure. A danger of injury for hands, face and eyes arises therefrom.
To avoid said danger and to control said spontaneous opening process, known can ends are provided in a predetermined limited section of the score line with a larger, i.e. less weakened, remaining wall thickness under said score line, compared to the adjacent sections of said score line. By correspondingly selecting a relative position of said short section of the score line in relation to a section of the score line at which the opening process starts, the score line is adapted to initially break only up to said predetermined blocking position at which breaking is stopped, so that a pressure compensation between the inside and the outside of the container may take place, following which the opening process may be terminated without risk. Thereby it is avoided that the opening segment opened manually by a gripping tab, bursts out uncontrolledly due to the high inner pressure or even tears out and flies out of said can end or spontaneously bursts out of said opening.
Opening stoppages of the above mentioned type have been used successfully with the different types of openable can ends, thus with can ends, where the opening segment together with the gripping tab is completely detached from said can end, as well as with can ends, where the tab and the opening segment remain at said can end also after opening, the opening segment being for example turned into the inside of the container (SOT can end).
To avoid a risk of injury, the usual test guarantee for beverage cans is at minimum 6.2 bar (90 psi or 620 kPa). A score line, firstly limiting or blocking (shortly: stopping) an initial opening process, may also be used with other containers, e.g. low pressure containers. When used with tennis ball cans, it provides burst stoppages also in a pressure range between 1.5 bar (150 kPa) to 2.5 bar (250 kPa).
The known system has proved successful in practice, however, it is subject to different critical problems in manufacturing, said problems requiring a high expenditure of control. Due to the increased remaining wall thickness in the stopping portion, an increased wear of a scoring rib which provides the embossment, is disadvantageous for an exact control of the subsequent opening process. This may cause the separating process not (no longer) to be continued exactly along said score line, when further tearing out said opening portion after a temporary stoppage. A further problem is that in said stopping portion uncontrollable or too high opening forces are necessary, which in case of a too large remaining wall thickness may have the effect that the opening process cannot be continued and terminated. On the contrary, when the remaining wall thickness is too small, the protective effect may be missing since a temporary stoppage of the opening process does not take place at all or not securely enough. Particularly, when the score line is adapted to have a pointed end and two burst stoppages are required on both sides of a rounded point, from which also two score line sections originate, the known conception has not proved successful.
It is an object of the invention to avoid the mentioned difficulties with simple means and to propose a metal end comprising a temporary burst stoppage which has a more versatile field of application, as well as a method of manufacturing such an end.
In a predetermined limited (short) length or section of a score line, a remaining wall thickness substantially corresponds to a remaining wall thickness in adjacent, particularly remaining sections of said score line and does not markedly differ therefrom. A temporary stoppage of an opening process is obtained by providing a metal structure in said selected, i.e. predetermined and limited length of said score line, which metal structure in said wall remainder substantially differs from the structure in the adjacent sections of said score line.
After manufacturing said score line, said metal structure is modified by being compacted. A relief of embossed tensile stresses is obtained by said compaction. Whereas, in the remaining score line section, following its purpose sheet metal is weakened and, below said score line, tensile stresses are more or less programmed by providing said score line, said tensile stresses resulting from a lateral displacement of the material and thus favoring bursting, said programmed tensile stress is reduced to completely compensated in said short section serving as a temporary stoppage at the moment of pressure compensation. Said compensation provides a reduction of the disposition for shearing or transverse elasticity, thus strengthening a transverse resistance of the metal in relation to its tensile strength, said transverse resistance in any case being 20% smaller. It is true that it would also be possible to reduce the disposition for transverse elasticity by reducing the embossment depth in the stopping section, but in this case, only a theoretic optimum may be achieved between the height of the remaining wall—causing the stoppage—and the suitability of the remaining wall for shearing off, when the user causes a continuation of the opening process. Possibly, the optimum may be detected theoretically, however, in the course of the manufacturing process, said optimum is continuously changed to provide score lines of an inferior quality, the remaining embossing rib or scoring rib being subject to wear and the differences between score line and reduced embossing depth are no longer absolutely correct or change. Consequently, when opening, the shearing-off line leaves the trace of the score line when the temporary opening stoppage was too intensive, i.e. the remaining wall required a too high transverse force to be opened. When, however, the remaining wall is to weak, its temporary stopping effect does not develop, but it tears out immediately and completely, when pressure escapes spontaneously.
Surprisingly, it turned out that said metal structure temporarily stops an initial opening process reliably and at a predetermined position of the score line, so that the required and desired protective effect against the above described risks is reliably achieved. On the other hand, it came out that the scoring tool or a corresponding scoring rib have longer service lives. Said longer service lives may also be favored by positioning an additional embossing tool with laterally embossed line pieces outside of the real score line. Thus, a control of the opening process is not obtained by the tool providing the score line, but by another tool, providing additional score pieces which may be controlled better and also adapted more easily with regard to their depth, length and distance from the real score line. Thus, it is possible for example to exchange said additional tool, to modify said score pieces with respect to their width, length or distance from the real score line in order to program different opening processes and to predetermine them in the can end. With usual embossing tools, having an embossing tool with a portion of reduced height, such control methods are only possible when modifying the entire tool with its complete embossing tool. This is substantially more expensive, substantially more ineffective and substantially more complicated than a simple control of two additional embossed beads on the left side and on the right side of the real controlling path. Even the position of the short embossed pieces on both sides of the score line may be modified to obtain a modified bursting behavior of the initial opening process, to test it on a larger scale and to lead it to an optimum, than this is the case with a multitude of specifically produced embossing tools.
By embossing compacted line sections on both sides of the score line, the real score line for opening is reduced in width. The walls determining said width and being located on the left and on the right of the embossed indentation with the bottom positioned below, change after a second engagement of said embossing tool. Preferred values are a reduction to 30% to 70% of the original width, particularly at least 50% (claim 16). When a greater reduction is effected by a stronger compaction of the material from outside towards the score line, also the score line bottom may disappear completely, being reduced to a circular form open on the top. In any case, the walls are adapted to have a somewhat steeper slope and to closer approach each other, the change in slope and the reduction of width being depended on the depth and the width of the embossed line sections on both sides of the score line.
Also, the tools necessary for manufacturing the structural modification obtained by a score line section reduced in width are substantially more stable and not as susceptible to wear as a usual scoring rib (also embossing rib) non-uniform or irregular with respect to its engagement height (or depth).
A structural modification is effected by acting on the can end sheet metal from outside of the score line.
Said action on the sheet metal outside of said score line may be effected from any convenient direction, i.e. from the sides or from below, in any case the effect is directed such that the can end material and the material structure below the score line serving for opening is compacted, particularly a material structure free from tensile stresses being obtained by a strong lateral action. Such a neutral, stress-free zone is substantially more stable from a mechanical point of view and provides a temporary opening stoppage or blockage at a constant score line depth along the entire starting section of the score line serving for opening and also beyond it, said stoppage or blockage being able to compensate a spontaneous escape of the pressure resulting from a pressure difference with respect to the environment. After pressure compensation, said temporary stoppage may be overcome by the user of the gripping tab by continuing the opening process, so that the openable segment is opened up exactly keeping the track of the score line. Therefore, said temporary stoppage is not a permanent stoppage, when the user overcomes a mechanically compacted or hardened wall remainder shortly after the beginning of an opening process by a mechanically increased force.
A modification of the material structure is easily conceivable when two short score line pieces are embossed directly adjacent to the score line serving for opening. In prior art, the blocking section usually was a section which was less compacted or which had a looser structure, since the wall remainder was adapted to be stronger, and thus an initial opening process was temporarily interrupted. According to the invention, the thickness of said section is substantially equal to the section of the score line located in front of and behind said portion. Nevertheless, a mechanical compaction is provided by a lateral pressing-in of material by embossing lateral pieces, said compaction providing a controlled opening after a spontaneous escape of an overpressure or a spontaneous compensation of a low pressure.
The score line according to the invention may have a substantially uniform depth. The mentioned reduction of tensile stresses below the score line may be provided from one side or from both sides of the openable score line. When the temporary blockage is intended not to be mechanically too strong, a very short length or longitudinal section is recommended as unilaterally or bilaterally offset score line sections which, however, are located very closely to the starting portion, i.e. closely adjacent to the initial break-in section of the score line.
The depth of the two short score line sections adjacent to the main score line may be controlled. By controlling said depth, the material compaction below said main score line may be controlled with respect to its shape and relief of tensile stresses. The greater the depth, the stronger the relief of tensile stresses below the groove bottom of the main score line and the stronger the burst stoppage when opening the limited opening segment. For a sheet metal thickness in the range of 0.22 mm to 0.24 mm, the depth of the additionally embossed line sections may be between 0.17 mm and 0.08 mm, thus particularly having a greater depth than the main score line serving for opening.
An increased depth of the laterally offset and longitudinally limited compressed sections permits a stronger and controlled relief of the material structure below the openable score line. Said controlled relief by said additional score line sections (pieces) results in a steeper slope of the flow or structure lines below the stopping section of the score line in relation to the remaining section, said slope being obtained by compressing the sheet metal in said section. Simultaneously, the wall sections of the score line are designed to be steeper, said wall sections anyhow being less distant from each other in said stopping section than in at least the adjacent section of the score line, (up) to the entire remaining section of the main score line.
A rounded profile at the bottom of the lateral compacted section has a preferred effect on the stopping section located below said openable score line, throughout a greater depth range in direction of a compaction of the structure lines or flow lines, said score line having a smaller width, its walls closer approaching each other.
As far as the term “score line” has been used, the expert thereby also understands an embossed line or a scored line or a weakened line which has been provided by other means and is adapted to separate a tear-out segment for opening from a remaining central panel of a can end by shearing forces; terms like tear-out or break-out shall be regarded as technically equivalent. An interlocking is a compaction of the structure lines/flow lines of the metal.
In the following, the invention is described more in detail on the basis of embodiments.
a is a selective enlargement of
a is a selective enlargement at a scale enlarged by the factor 2, only showing the area of the score line section 24 between the two embossments Q1,Q2 which are not illustrated here.
a shows an openable can end 1 being provided with a seamed edge 2 at a central panel 3. In said central panel, an opening portion or segment 4 adapted to be broken out by tearing is defined by a score line 8, said portion, for opening the container, being designed to be separated or detached completely from said can end with the help of an annular gripping tab 6 which is fixed with a rivet 5 at said opening portion 4. Said score line is caused to initially break open in the area of said rivet 5 by tilting said gripping tab 6 in upward direction with respect to said central panel. By raising or pulling said gripping tab 6 in upward direction, the opening process may then be continued by tearing further along said score line 8 until said opening portion 4 is completely detached.
In
a shows the same situation for a sheet metal can end of another type.
b also illustrates an opening portion 12 at an enlarged scale. The fixing position for the gripping tab is located at 13a, thus outside of the opening portion. In this case, too, a lever-type gripping tab 14 is moved in upward direction for opening. It turns over its fixing position 13 and presses said opening portion 12 into the inside of the container. The opening process starts close to said fixing point 13a. Close thereto, again similar means 7a are arranged for temporarily stopping the initial opening process.
In
The score line 21 is provided by a uniform embossing tool to continuously have a constant depth. Further, it has the same remaining wall thickness d2 at said section 24, than at the adjacent, particularly the entire remaining score line section.
The higher density of the metal structure is not achieved by a modified effect of the embossing tool, but by substantially modifying the metal structure with regard to its flow or structure lines by a longitudinally limited squeezing or stamping method 27a;27b and Q1,Q2, respectively, from one side or from both sides of said score line 21.
It has been found, that already a unilateral squeezing provides a sufficient relief of tension of said metal structure 38. However, a bilateral squeezing is preferred, as shown in
The score line pieces 27a,27b may be embossed simultaneously with the manufacturing of the score line. They may also be embossed subsequently in a separate manufacturing step. In the latter case, the slope of the walls of the openable score line changes at section 24, as illustrated by an unbroken wall 37 compared to a broken wall 36 according to FIG. 6.
Preferably, the score line pieces Q1,Q2 have a slightly deeper extension than said score line 21 serving for opening, as can be seen on FIG. 7. It may be useful to round the bottom contour 39 of the score line pieces in contrast to a trapezoidal cross-section of the score line. Thus, the wall remainder 42 having a thickness d2 below the score line at said section 24, is somewhat larger than a thickness d1 of the wall remainder 41 below said score line pieces Q1,Q2. A flank angle 40 of the additional score line pieces should substantially be 5°≦α≦15°.
The shaping of the limited section 24 of the score line, which is schematically illustrated on
Basically, said section 24, which extends in perpendicular direction with respect to the paper plane, is provided with a score line shape 8, having a width b1, as illustrated in
Flow lines 38y and 38x, which in an area 38 below said score line are particularly accentuated, have a steeper slope below said score line 21 than in
Said state 19x is maintained in an area of the score line outside of said short section 24 for the new shaping of said score line 21 of
Due to the geometry of the embossed score line pieces Q1,Q2 of
The enlarged illustration of
The design of another embodiment of an opening portion 33 according to
The degree of relief of tensions of the metal structure and thus, the extent of the stopping effect after the initial opening are dependent on the shape, size and position of the score line pieces 27a,27b,Q1,Q2, as well as on the remaining wall thickness d1 below said pieces. Said stopping effect may be controlled by the modification of the score line pieces outside (actually adjacent to) the openable score line.
List of Reference Numerals
Number | Date | Country | Kind |
---|---|---|---|
198 46 243 | Oct 1998 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP99/07564 | 10/8/1999 | WO | 00 | 10/24/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/21846 | 4/20/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3303959 | Brown | Feb 1967 | A |
3315837 | Boik et al. | Apr 1967 | A |
3406866 | Jasper | Oct 1968 | A |
3762598 | Gayner et al. | Oct 1973 | A |
3968899 | Jordan | Jul 1976 | A |
4348464 | Khoury | Sep 1982 | A |
4928845 | Doyle | May 1990 | A |
5375729 | Schubert | Dec 1994 | A |
5860553 | Schubert | Jan 1999 | A |
Number | Date | Country |
---|---|---|
0 820 409 | Mar 2000 | EP |
1164179 | Sep 1969 | GB |