The present disclosure relates generally to developing a final dental prosthesis. More particularly, the present disclosure relates to using a temporary dental prosthesis in developing a final dental prosthesis.
The dental restoration of a partially or wholly edentulous patient with artificial dentition is typically done in two stages. In the first stage, an incision is made through the gingiva to expose the underlying bone. An artificial tooth root, in the form of a dental implant, is placed in the jawbone for osseointegration. The dental implant generally includes a threaded bore to receive a retaining screw for holding mating components thereon. During the first stage, the gum tissue overlying the implant is sutured and heals as the osseointegration process continues.
Once the osseointegration process is complete, the second stage is initiated. Here, the gingival tissue is re-opened to expose an end of the dental implant. A healing component or healing abutment is fastened to the exposed end of the dental implant to allow the gingival tissue to heal therearound. It should be noted that the healing abutment can be placed on the dental implant immediately after the implant has been installed and before osseointegration, thereby, for some situations, combining the osseointegration step and gingival healing step into a one-step process.
Prior healing abutments were generally round in profile, but the artificial teeth or prostheses that eventually replaced the healing abutments were not. Thus, the gingival tissue would heal around the healing abutments creating a gingival emergence profile that approximated the size and contour of the healing abutment and not the size and contour of the final prosthesis that was eventually attached to the implant. The resulting discrepancies between the emergence profile of the patient's gingiva and the installed final prosthesis could sometimes require additional visits with the dentist or clinician to finalize the installation process and/or compromise the aesthetic outcome of the installed final prosthesis (e.g., the visual look of the patient's gingival tissue abutting the final prosthesis). Thus, in recent years, standard healing abutments have been replaced with temporary prosthetic abutments.
Further, implant dentistry restorative methods have advanced beyond requiring a fixture-level (e.g., dental implant level) impression as the starting point for developing a final dental prosthesis. In some such cases pre-defined scan bodies (e.g., Encode Healing Abutments available from Biomet 3i, LLC) are assembled to the dental implants during the gingival healing stage. The pre-defined scan bodies include scannable features (e.g., markers) that, when scanned and interpreted, provide information about the location and orientation of the underlying dental implant that is used in developing the final dental prosthesis.
Although such methods using pre-defined scan bodies provide many benefits (e.g., improved aesthetics, reduced complexity, and potentially accelerated treatment times), such methods are reliant on scanning technology. A need exists for a patient-specific restorative solution that does not require dedicated pre-defined scan bodies as to further reduce the treatment complexity and improve restorative flexibility. The present disclosure is directed to solving these and other needs.
The present disclosure provides methods for developing and fabricating permanent patient-specific prostheses without needing pre-defined scan bodies. Thus, the methods of the present disclosure can reduce treatment complexity and enhance restorative flexibility, and thereby improve the dental restoration process. In particular, a patient-specific temporary prosthesis (PSTP) is fabricated and then scanned to generate scan data and/or a virtual three-dimensional model of the PSTP that captures all of the contours and details of the PSTP. The PSTP is attached to the implant in the patient's mouth and the gingival tissue is permitted to heal therearound. Subsequently, a clinician determines if the gingival tissue has healed around the PSTP in a desired manner (e.g., aesthetically pleasing manner). If so, a permanent patient-specific prosthesis is created as an exact replica of the PSTP using the scan data and/or the virtual three-dimensional model of the PSTP. If not, depending on the necessary modifications, (i) the PSTP is physically modified and rescanned or (ii) the scan data and/or the virtual three-dimensional model of the PSTP are virtually modified. Then, a permanent patient-specific prosthesis is created as an exact replica of (i) the modified PSTP using scan data and/or a virtual three-dimensional model generated from the rescanning of the modified PSTP or (ii) the virtually modified virtual three-dimensional model of the PSTP. Either way, by scanning the entire PSTP and generating scan data and/or the virtual three-dimensional model of the PSTP: (i) pre-defined scan bodies are not necessary to develop and fabricate the permanent patient-specific prosthesis and (ii) nor are pre-defined scan bodies necessary to determine the location of the implant with respect to the adjacent and/or opposing dentition.
A method of manufacturing a permanent prosthesis for attachment to a dental implant installed in a mouth of a patient includes scanning a patient specific temporary prosthesis (PSTP) to obtain scan data. The PSTP is attached to the dental implant in the mouth of the patient. Gingival tissue surrounding the PSTP is permitted to heal in the mouth of the patient. In response to the aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient being acceptable, the permanent prosthesis is manufactured as a replica of the PSTP using the obtained scan data.
A method of manufacturing a permanent prosthesis for attachment to a dental implant installed in a mouth of a patient includes scanning a patient specific temporary prosthesis (PSTP) to obtain scan data. The PSTP is attached to the dental implant in the mouth of the patient. Gingival tissue surrounding the PSTP is permitted to heal in the mouth of the patient. In response to the aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient not being acceptable, the PSTP is physically modified by (i) removing material from the PSTP, (ii) adding material to the PSTP, or (iii) both.
A method of manufacturing a permanent prosthesis for attachment to a dental implant installed in a mouth of a patient includes generating scan data from a scan of a patient specific temporary prosthesis (PSTP). Subsequent to the PSTP being attached to the dental implant in the mouth of the patient and gingival tissue surrounding the PSTP being permitted to heal in the mouth of the patient, modified scan data is generated from a scan of a physically modified PSTP. The PSTP is physically modified in response to the aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient not being acceptable.
A method of manufacturing a permanent prosthesis includes acquiring scan data including computed tomography (CT) data, intraoral scan (IOS) data, or both, of a mouth of patient. Using the scan data, a location in the mouth of the patient is determined to install a dental implant. Using the scan data and the determined location in the mouth of the patient to install the dental implant, a patient specific temporary prosthesis (PSTP) is virtually designed and virtual PSTP data is generated. Using the virtual PSTP data, the PSTP is manufactured. The dental implant is installed in the mouth of the patient substantially at the determined location. The manufactured PSTP is attached to the dental implant installed in the mouth of the patient. Gingival tissue surrounding the PSTP is permitted to heal in the mouth of the patient. In response to the aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient being acceptable, the permanent prosthesis is manufactured as a replica of the PSTP using the virtual PSTP data.
A method of manufacturing a permanent prosthesis includes acquiring scan data including computed tomography (CT) data, intraoral scan (IOS) data, or both, of a mouth of patient. Using the scan data, a location in the mouth of the patient is determined to install a dental implant. Using the scan data and the determined location in the mouth of the patient to install the dental implant, a patient specific temporary prosthesis (PSTP) is virtually designed and virtual PSTP data is generated. Using the virtual PSTP data, the PSTP is manufactured. The dental implant is installed in the mouth of the patient substantially at the determined location. The manufactured PSTP is attached to the dental implant installed in the mouth of the patient. Gingival tissue surrounding the PSTP is permitted to heal in the mouth of the patient. In response to the aesthetics of the healed gingival tissue surrounding the PSTP in the mouth of the patient not being acceptable, the PSTP is physically modified by (i) removing material from the PSTP, (ii) adding material to the PSTP, or (iii) both.
Additional aspects of the present disclosure will be apparent to those of ordinary skill in the art in view of the detailed description of various implementations, which is made with reference to the drawings, a brief description of which is provided below.
The foregoing and other advantages of the disclosure will become apparent upon reading the following detailed description and upon reference to the drawings.
While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.
Referring to
Referring specifically to
The subgingival region 12b includes an anti-rotational feature 14 (e.g., a hexagonal section) for mating with a corresponding anti-rotational feature of an implant (e.g., implant 60 in
Referring specifically to
The temporary abutment 21a has a supragingival region 22a and a subgingival region 22b, which are separated by a flange 23. The subgingival region 22b includes an anti-rotational feature 24 (the same as, or similar to, the anti-rotational feature 14) for mating with a corresponding anti-rotational feature of the implant 60. The supragingival region 22a of the temporary abutment 21a includes one or more retention grooves or structures 26 and an anti-rotational structure (e.g., a flat wall or surface) that is not shown. The retention grooves 26 are configured to mate in a snap-type axial holding engagement with corresponding male circumferential features or structures 27 of the temporary abutment cap 21b. Alternatively to the temporary abutment 21a including retention grooves 26 and the temporary abutment cap 21b including corresponding male circumferential features, dental cement, or the like, can be used to mate (e.g., hold together) the temporary abutment 21a with the temporary abutment cap 21b.
The anti-rotational structure (not shown) of the temporary abutment 21a is configured to mate in a slideable engagement with a corresponding anti-rotational structure 28 to prevent relative rotation of the temporary abutment cap 21b and the temporary abutment 21a. In the illustrated implementation, the anti-rotational structure (not shown) generally extends from a top surface of the temporary abutment 21a to the flange 23. Details on and examples of anti-rotational structures for dental posts (e.g., supragingival regions of temporary abutments) are shown in U.S. Pat. Nos. 6,120,293, 6,159,010, and 8,002,547, each of which is commonly owned by the assignee of the present application and is hereby incorporated by reference herein in its entirety.
Referring specifically to
The temporary abutment 31a has a supragingival region 32a and a subgingival region 32b, which are separated by a flange 33. The subgingival region 32b includes an anti-rotational feature 34 (the same as, or similar to, the anti-rotational features 14, 24) for mating with a corresponding anti-rotational feature of the implant 60. The supragingival region 32a of the temporary abutment 31a includes one or more retention grooves or structures 36a and an anti-rotational structure 36b (e.g., a flat wall or surface). The retention grooves 36a are configured to mate in a snap-type axial holding engagement with corresponding male circumferential features or structures 37 of the temporary abutment cap 31b.
The anti-rotational structure 36b of the temporary abutment 31a is configured to mate in a slideable engagement with a corresponding anti-rotational structure 38 to prevent relative rotation of the temporary abutment cap 31b and the temporary abutment 31a. In the illustrated implementation, the anti-rotational structure 36b generally extends from a top surface of the temporary abutment 31a to the flange 33.
Additional details on, and examples of, temporary abutments and/or PSTPs are shown and described in U.S. patent application Ser. No. 13/473,219, filed on May 16, 2012, which is commonly owned by the assignee of the present application and is hereby incorporated by reference herein in its entirety.
Referring to
In some implementations of the present concepts, a kit or package of PSTPs can be supplied to the clinician, where each of the PSTPs in the kit has a preformed anatomical tooth shape of a predetermined size and shape. The clinician can select the appropriate PSTP and begin modifications as necessary for the particular patient. Thus, in such implementations, the clinician is supplied with a variety of preformed PSTPs having different anatomical teeth shapes that can be modified/customized as necessary and attached to the implant 60.
Alternatively to the manual method described in reference to
Whether the PSTP is manually modified (
Now referring to
After the PSTP is scanned and the scan data is obtained (102), the PSTP is attached to the dental implant (104). In some implementations, the PSTP is attached to the dental implant in a non-rotational fashion (e.g., using complementary non-rotational features) and held in place using a screw fastener (e.g., screw 15, 25, 35). After the PSTP is attached to the implant (104), the patient's gingival tissue is permitted to heal around the PSTP (105). The gingival tissue generally heals in a shape with an emergence contour profile that corresponds to the external contours of the PSTP abutting the gingival tissue.
After the gingival tissue is permitted to heal (105) for a predetermined amount of time (e.g., a day, two weeks, a month, three months, six months, a year, etc.), the aesthetics of the gingival tissue surrounding the PSTP are checked to determine if the aesthetics of the gingival tissue surrounding the PSTP are acceptable (106). By acceptable, it is meant that the gingival tissue is hugging the PSTP in an aesthetically pleasing manner as determined by, for example, a clinician treating the patient. It is also contemplated that in an alternative implementation, the aesthetics can be determined to be acceptable by a computer executing software that analyzes scan data and/or a virtual three-dimensional model generated from a scan of the patient's mouth including the gingival tissue surrounding the PSTP after healing has occurred. Additionally, the aesthetics of the PSTP itself can be checked to determine, for example, if the aesthetics of the supragingival portion of the PSTP are acceptable (e.g., match the size, shape, and/or color of a natural tooth in view of the surrounding teeth).
If the aesthetics of the gingival tissue and/or of the PSTP itself are determined to be acceptable (106), a final prosthesis is manufactured as a replica of the PSTP based on the scan data (107) and/or the virtual three-dimensional model of the PSTP. That is, the scan data from the scan of the PSTP (102) is used to create an actual and physical replica of the PSTP using, for example, a milling machine and/or a rapid-prototype machine. Thus, the outer contours of the final prosthesis are the same as, or substantially the same as, the outer contours of the PSTP. The final prosthesis can be made of gold, titanium, plastic, ceramic, acrylic, porcelain, or other similar metals or composites, or any combination thereof.
Essentially, the difference between the PSTP and the final prosthesis are the materials that are used and/or the mechanical configuration which is employed to make the PSTP and the final prosthesis. Generally, in some implementations, the PSTP is made of plastic and the final prosthesis is made of a titanium insert with a ceramic crown having a porcelain coating thereon. Thus, in some implementations, the PSTP is physically softer (e.g., easier to modify and relatively less durable) and the final prosthesis is physically harder (harder to modify and relatively more durable) and more aesthetically pleasing (including color and/or shading). By different mechanical configuration it is meant that while the outer contours of the final prosthesis match the outer contours of the PSTP, the final prosthesis can be formed by a different number of subparts or portions as compared to the PSTP. For example, the PSTP can be formed as a unitary piece of plastic and the final prosthesis can be formed by a metal abutment and a ceramic crown attached thereto.
If the aesthetics are determined to not be acceptable (106), the PSTP is physically modified to achieve better results (108). That is, after additional healing of the gingival tissue is permitted about the physically modified PSTP, better aesthetic results are expected due to the modifications of the PSTP. The PSTP can be manually modified by the clinician treating the patient. Alternatively, the PSTP can be modified using a milling machine and/or a rapid prototype machine. The modifications can be made to the PSTP with the PSTP installed in the patient's mouth and/or with the PSTP removed therefrom. The modifications can include removal of material from the PSTP, additional material being added to the PSTP, material of the PSTP being moved/deformed (e.g., bent, twisted, etc.), or any combinations thereof.
After the PSTP is physically modified (108), the modified PSTP is scanned to obtain scan data of the modified PSTP (109) and/or a virtual three-dimensional model of the modified PSTP. The scan data obtained from the modified PSTP essentially replaces the scan data obtained from the unmodified PSTP described above. The modified PSTP can be scanned (109) in the same, or similar, manner that the unmodified PSTP was scanned (102) described above. After the modified PSTP is scanned (109), the PSTP is reattached to the implant (104) and acts (105), (108), and (109) are repeated until the aesthetics are found to be acceptable (106) and then the final prosthesis is manufactured (107) based on the latest scan data from a scan of the latest modified PSTP.
Now referring to
Now referring to
If the aesthetics are determined to not be acceptable (306), the patient's mouth (or a portion of the patient's mouth) is scanned to obtain additional scan data (308) and/or a virtual three-dimensional model of at least a portion of the patient's mouth. In some implementations, the installed PSTP, the adjacent gingival tissue healing therearound, and adjacent and/or opposing teeth are scanned to generate scan data and/or a virtual three-dimensional model of the PSTP, the adjacent gingival tissue, and the adjacent and/or opposing teeth. Then, the originally obtained scan data and/or the virtual three-dimensional model of the PSTP are virtually modified (309). Specifically, the scan data and/or the virtual three-dimensional model of the PSTP are virtually modified by the clinician treating the patient and/or another designer. The virtual modifications can be made to the scan data and/or the virtual three-dimensional model of the PSTP with the PSTP remaining in the patient's mouth (e.g., the PSTP does not need to be removed for the virtual modification). The virtual modifications can include virtually removing material from the virtual three-dimensional model of the PSTP and/or virtually adding material to the virtual three-dimensional model of the PSTP. A clinician might virtually modify the scan data of the PSTP (instead of physically modifying the PSTP) when the modifications to the PSTP are minor (e.g., the modifications will not significantly impact the healing of the gingival tissue) and/or supragingival (e.g., modifications are made to the portion of the PSTP not abutting or blocked by the gingival tissue).
After the scan data and/or the virtual three-dimensional model of the PSTP are virtually modified (309), the final prosthesis is manufactured as a replica of the virtually modified virtual three-dimensional model of the PSTP (310). Specifically, the final prosthesis is manufactured based on the virtually modified scan data of the PSTP (310) without rechecking the aesthetics as in the method 100 and without physically modifying the PSTP installed in the mouth of the patient as in the method 200. That is, in the method 300, the aesthetics are not rechecked after the virtual modifications to the scan data of the PSTP (309) and the PSTP installed in the mouth of the patient is not physically modified. As described above, foregoing the rechecking of the aesthetics in the method 300 may accelerate the treatment time for the patient as compared to the method 100. Additionally, foregoing the physical modification to the PSTP avoids and/or reduces potential discomfort and tissue remodeling of the patient resulting from having to endure removal of and replacement of the PSTP during such physical modifications.
Several alternative implementations which are similar to the methods 100, 200, and 300 are described below. According to a first alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is attached to the implant installed in the patient's mouth. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If no modification(s) are necessary, the final prosthesis is designed and fabricated as a replica of the PSTP (e.g., a copymill) using the scan data and/or the virtual three-dimensional model of the PSTP from the scan of the PSTP (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The PSTP is removed and the final prosthesis is attached to the implant.
According to a second alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is attached to the implant installed in the patient's mouth. Then the final prosthesis is designed and fabricated as a replica of the PSTP (e.g., a copymill) using the scan data and/or the virtual three-dimensional model of the PSTP from the scan of the PSTP (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The gingival tissue is permitted to heal and then the PSTP is removed and the final prosthesis is attached to the implant. In such an implementation, the clinician does not assess the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design as the final prosthesis is designed and fabricated without waiting for the gingival tissue to heal.
According to a third alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated and attached to the implant installed in the patient's mouth. The gingival tissue is permitted to heal. After healing, the PSTP is removed and the PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is reattached to the implant. The final prosthesis is designed and fabricated as a replica of the PSTP (e.g., a copymill) using the scan data and/or the virtual three-dimensional model of the PSTP from the scan of the PSTP (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The PSTP is removed and the final prosthesis is attached to the implant. Thus, in such an alternative, the PSTP is scanned after gingival tissue healing has occurred and is not scanned prior to the PSTP being initially attached to the implant.
According to a fourth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is attached to the implant installed in the patient's mouth. After the PSTP is attached to the implant, the mouth of the patient is scanned. Specifically, the attached PSTP and the adjacent and/or opposing teeth are scanned generating additional scan data and/or a virtual three-dimensional model of the attached PSTP and the adjacent and/or opposing teeth of the patient. The additional scan data and the scan data generated from the scan of the entire PSTP can be merged into a merged dataset and/or a merged virtual three-dimensional model. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If a modification(s) is necessary, the PSTP is removed from the patient's mouth and physically modified (e.g., material is removed from the PSTP, material is added to the PSTP, or both). The modified PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the modified PSTP. The modified PSTP is then reattached to the implant. Alternatively to removing the PSTP from the patient's mouth and modifying the PSTP outside of the patient's mouth, if the necessary modification(s) is supragingival, the physical modification(s) can be made to the PSTP without removing the PSTP from the patient's mouth and the PSTP can be scanned while still installed in the patient's mouth (e.g., only the viewable portion of the PSTP is scanned). The merged dataset and/or the merged virtual three-dimensional model are updated to include the scan data of the modified PSTP and/or the virtual three-dimensional model of the modified PSTP. The final prosthesis is then designed and fabricated as a replica of the modified PSTP (e.g., a copymill) using the updated merged dataset and/or the updated merged virtual three-dimensional model (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The modified PSTP is removed and the final prosthesis is attached to the implant.
According to a fifth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is attached to the implant installed in the patient's mouth. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If a modification(s) is necessary, the PSTP is removed from the patient's mouth and physically modified (e.g., material is removed from the PSTP, material is added to the PSTP, or both). The modified PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the modified PSTP. The modified PSTP is then reattached to the implant. The final prosthesis is then designed and fabricated as a replica of the modified PSTP (e.g., a copymill) using the scan data of the modified PSTP and/or the virtual three-dimensional model of the modified PSTP (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The modified PSTP is removed and the final prosthesis is attached to the implant.
According to a sixth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is attached to the implant installed in the patient's mouth. After the PSTP is attached to the implant, the mouth of the patient is scanned. Specifically, the attached PSTP and the adjacent and/or opposing teeth are scanned generating additional scan data and/or a virtual three-dimensional model of the attached PSTP and the adjacent and/or opposing teeth of the patient. The additional scan data and the scan data generated from the scan of the entire PSTP are merged into a merged dataset and/or a merged virtual three-dimensional model. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If a modification(s) is necessary, the scan data and/or the virtual three-dimensional model of the PSTP is virtually modified (e.g., material is virtually removed from the virtual three-dimensional model of the PSTP, material is virtually added to the virtual three-dimensional model of the PSTP, or both). The merged dataset and/or the merged virtual three-dimensional model are updated to include the virtually modified scan data of the PSTP and/or the virtually modified virtual three-dimensional model of the PSTP. The final prosthesis is then designed and manufactured as a replica of the virtually modified virtual three-dimensional model of the PSTP using the updated merged dataset and/or the updated merged virtual three-dimensional model (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The PSTP is removed and the final prosthesis is attached to the implant.
According to a seventh alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the PSTP. Then the PSTP is attached to the implant installed in the patient's mouth. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If a modification(s) is necessary, the scan data and/or the virtual three-dimensional model of the PSTP is virtually modified (e.g., material is virtually removed from the virtual three-dimensional model of the PSTP, material is virtually added to the virtual three-dimensional model of the PSTP, or both). The final prosthesis is then designed and manufactured as a replica of the virtually modified virtual three-dimensional model of the PSTP using the virtually modified scan data of the PSTP (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The PSTP is removed and the final prosthesis is attached to the implant.
According to an eighth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is virtually designed using, for example, design software (examples of such software are described herein) to create virtual PSTP data and/or a virtual three-dimensional model of a virtual PSTP. Instructions based on the virtual PSTP data and/or the virtual three-dimensional model of the virtual PSTP are sent to a milling machine and/or a rapid-prototype machine to manufacture an actual PSTP (e.g., the PSTP 10a, 10b, and 10c, or a different PSTP). Then the actual PSTP is fabricated. Then the actual PSTP is attached to the dental implant installed in the patient's mouth. After the actual PSTP is attached to the implant, the mouth of the patient is scanned. Specifically, the attached actual PSTP and the adjacent and/or opposing teeth are scanned generating scan data and/or a virtual three-dimensional model of the attached actual PSTP and the adjacent and/or opposing teeth of the patient. The scan data and the virtual PSTP data from the virtual designing of the PSTP are merged into a merged dataset and/or a merged virtual three-dimensional model. Then the location of the dental implant installed in the mouth of the patient is determined, using, for example, software configured to analyze the merged dataset and/or the merged virtual three-dimensional model. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the actual PSTP and/or the final prosthesis design. If a modification(s) is necessary, the virtual PSTP data and/or the virtual three-dimensional model of the virtual PSTP is virtually modified (e.g., material is virtually removed from the virtual three-dimensional model of the virtual PSTP, material is virtually added to the virtual three-dimensional model of the virtual PSTP, or both). The merged dataset and/or the merged virtual three-dimensional model are updated to include the virtually modified virtual PSTP data of the virtual PSTP and/or the virtually modified virtual three-dimensional model of the virtual PSTP. The final prosthesis is then designed and manufactured as a replica of the virtually modified virtual three-dimensional model of the virtual PSTP using the updated merged dataset and/or the updated merged virtual three-dimensional model (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The actual PSTP is removed and the final prosthesis is attached to the implant.
According to a ninth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is virtually designed using, for example, design software (examples of such software are described herein) to create virtual PSTP data and/or a virtual three-dimensional model of a virtual PSTP. Instructions based on the virtual PSTP data and/or the virtual three-dimensional model of the virtual PSTP are sent to a milling machine and/or a rapid-prototype machine to manufacture an actual PSTP (e.g., the PSTP 10a, 10b, and 10c, or a different PSTP). Then the actual PSTP is fabricated. Then the actual PSTP is attached to the dental implant installed in the patient's mouth. After the actual PSTP is attached to the implant, the mouth of the patient is scanned. Specifically, the attached actual PSTP and the adjacent and/or opposing teeth are scanned generating scan data and/or a virtual three-dimensional model of the attached actual PSTP and the adjacent and/or opposing teeth of the patient. The scan data and the virtual PSTP data from the virtual designing of the PSTP are merged into a merged dataset and/or a merged virtual three-dimensional model. Then the location of the dental implant installed in the mouth of the patient is determined, using, for example, software configured to analyze the merged dataset and/or the merged virtual three-dimensional model. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the actual PSTP and/or the final prosthesis design. Assuming that the clinician determines that no modifications are necessary, the final prosthesis is designed and manufactured as a replica of the virtual three-dimensional model of the virtual PSTP (e.g., the final prosthesis includes a titanium abutment with a porcelain coated ceramic crown). The actual PSTP is removed and the final prosthesis is attached to the implant.
Now referring to
Specifically, after acquiring the scan data (401), a desired location and/or orientation (e.g., pitch, yaw, and depth) to install an implant in the mouth of the patient is determined (402). The determined location can be selected or determined based on a number of different variables, such as, for example, the location, position, and orientation of the teeth adjacent to the proposed implant site, the location of where the PSTP and/or final prosthesis is proposed, the location of nerves or the sinus cavity, and/or the composition and structure of the patient's jawbone.
A PSTP is virtually designed (403) using design software to create a virtual three-dimensional model of a virtual PSTP. Examples of such software used to create a virtual three-dimensional model of a virtual PSTP include CAD Design Software available from 3Shape A/S located in Copenhagen, Denmark; DentalCAD available from exocad GmbH in Darmstadt, Germany; and DentCAD available from Delcam plc in Birmingham, United Kingdom.
Virtual PSTP data is generated (404) from the virtually designed PSTP. The virtual PSTP data can be sent as a set of instructions to a milling machine and/or a rapid-prototype machine to manufacture an actual PSTP (405). The actual PSTP can be one of the PSTPs 10a, 10b, and 10c, or a different PSTP. The actual PSTP is substantially an exact replica of the virtual three-dimensional model of the virtual PSTP designed using the design software.
The implant (e.g., implant 60) is installed into the mouth of the patient (406) at substantially the desired location as determined above (402). The implant is installed after the actual PSTP is manufactured such that the actual PSTP is ready to be installed in the patient's mouth when the implant is first installed. Alternatively, the implant can be installed prior to the actual PSTP being manufactured.
The implant can be installed using a surgical guide system for installing the dental implant at substantially the desired location in a patient's mouth. An example of such a system is the Navigator® Surgical Guide System available from Biomet 3i, LLC. Additional details on the Navigator® Surgical Guide System can be found in U.S. Patent Application Publication No. 2009/0130630, which is commonly owned by the assignee of the present application and is hereby incorporated by reference herein in its entirety.
After the implant is installed (406), the actual PSTP is attached to the implant (407). In some implementations, the PSTP is attached to the dental implant in a non-rotational fashion (e.g., using complementary non-rotational features) and held in place using a screw fastener (e.g., screw 15, 25, 35). After the PSTP is attached to the implant (407), the patient's gingival tissue is permitted to heal around the PSTP (408). The gingival tissue generally heals in a shape with an emergence contour profile that corresponds to the external contours of the PSTP abutting the gingival tissue.
After the gingival tissue is permitted to heal (408) for a predetermined amount of time (e.g., a day, two weeks, a month, three months, six months, a year, etc.), the aesthetics of the gingival tissue surrounding the PSTP are checked to determine if the aesthetics of the gingival tissue surrounding the PSTP are acceptable (409). The aesthetics check (409) is the same as the aesthetic check (106) described above in reference to the method 100.
If the aesthetics of the gingival tissue and/or of the PSTP itself are determined to be acceptable (409), a final prosthesis is manufactured as a replica of the PSTP using the virtual PSTP data (410). That is, the virtual PSTP data generated from the virtually designed PSTP (403) is used to create a physical replica of the PSTP using, for example, a milling machine and/or a rapid-prototype machine. Thus, the outer contours of the final prosthesis are the same as, or substantially the same as, the outer contours of the PSTP as both were manufactured using the same virtual PSTP data. As described above in reference to the method 100, essentially, the difference between the PSTP and the final prosthesis is the material(s) that are used to make the PSTP and the final prosthesis.
If the aesthetics are determined to not be acceptable (409), the PSTP is physically modified to achieve better results (411) and the modified PSTP is scanned to obtain scan data of the modified PSTP (412) and/or a virtual three-dimensional model of the modified PSTP. The physical modification (411) and the scanning of the modified PSTP (412) are the same as the physical modification (108) and the scanning of the modified PSTP (109) described above in reference to the method 100. After the modified PSTP is scanned (412), the PSTP is reattached to the implant (407) and acts (408), (411), and (412) are repeated until the aesthetics are found to be acceptable (409) and then the final prosthesis is manufactured (410) based on the latest scan data from a scan of the latest modified PSTP.
Now referring to
Now referring to
If the aesthetics are determined to not be acceptable (609), the patient's mouth is scanned to obtain additional scan data (611) and/or a virtual three-dimensional model of at least a portion of the patient's mouth. In some implementations, the installed actual PSTP, the adjacent gingival tissue healing therearound, and adjacent and/or opposing teeth are scanned to generate scan data and/or a virtual three-dimensional model of the actual PSTP, the adjacent gingival tissue, and the adjacent and/or opposing teeth. Then, the originally generated virtual PSTP data (604) is virtually modified (612). Specifically, the virtual PSTP data and/or the virtual three-dimensional model of the virtual PSTP are virtually modified by the clinician treating the patient and/or another designer. The virtual modifications can be made to the virtual PSTP data and/or the virtual three-dimensional model of the virtual PSTP with the actual PSTP remaining in the patient's mouth (e.g., the actual PSTP does not need to be removed for the virtual modification). The virtual modifications can include virtually removing material from the virtual three-dimensional model of the virtual PSTP and/or virtually adding material to the virtual three-dimensional model of the virtual PSTP. A clinician might virtually modify the virtual PSTP data of the virtual PSTP (instead of physically modifying the actual PSTP) when the modifications to the PSTP are minor (e.g., the modifications will not significantly impact the healing of the gingival tissue) and/or supragingival (e.g., modifications are made to the portion of the PSTP not abutting or blocked by the gingival tissue).
After the virtual PSTP data and/or the virtual three-dimensional model of the virtual PSTP are virtually modified (612), the final prosthesis is manufactured as a replica of the virtually modified virtual three-dimensional model of the virtual PSTP (613). Specifically, the final prosthesis is manufactured based on the virtually modified virtual PSTP data without rechecking the aesthetics as in the method 400 and without physically modifying the actual PSTP installed in the mouth of the patient as in the method 500. That is, in the method 600, the aesthetics are not rechecked after the virtual modifications to the virtual PSTP data (612) and the PSTP installed in the mouth of the patient is not physically modified. As described above, foregoing the rechecking of the aesthetics in the method 600 may accelerate the treatment time for the patient as compared to the method 400. Additionally, foregoing the physical modification to the PSTP avoids and/or reduces potential discomfort and tissue remodeling of the patient resulting from having to endure removal of and replacement of the PSTP during such physical modifications.
Several alternative implementations which are similar to the methods 400, 500, and 600 are described below. According to a first alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes acquiring scan data and/or virtual three-dimensional models of a patient's dental conditions (e.g., CT data and/or IOS data). Then a desired location and/or orientation of an implant in the patient's mouth are determined. A three-dimensional model of a virtual PSTP is designed. An actual PSTP is fabricated (e.g., using a milling machine and/or a rapid-prototype machine) as an actual replica of the three-dimensional model of the virtual PSTP. After the PSTP is fabricated, the implant is installed in the mouth of the patient using a surgical guide system (e.g., Navigator Surgical Guide System) and the actual PSTP is attached to the installed implant. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If no modification(s) are necessary, the final prosthesis is designed and fabricated as an actual replica of the three-dimensional model of the virtual PSTP (which is also a replica of the actual PSTP). The PSTP is removed and the final prosthesis is attached to the implant.
According to a second alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes acquiring scan data and/or virtual three-dimensional models of a patient's dental conditions (e.g., CT data and/or IOS data). Then a desired location and/or orientation of an implant in the patient's mouth are determined. A three-dimensional model of a virtual PSTP is designed. An actual PSTP is fabricated (e.g., using a milling machine and/or a rapid-prototype machine) as an actual replica of the three-dimensional model of the virtual PSTP. After the PSTP is fabricated, the implant is installed in the mouth of the patient using a surgical guide system (e.g., Navigator Surgical Guide System) and the actual PSTP is attached to the installed implant. Then the final prosthesis is designed and fabricated as an actual replica of the three-dimensional model of the virtual PSTP (which is also a replica of the actual PSTP). The gingival tissue is permitted to heal and then the PSTP is removed and the final prosthesis is attached to the implant. In such an implementation, the clinician does not assess the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design as the final prosthesis is designed and fabricated without waiting for the gingival tissue to heal.
According to a third alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes acquiring scan data and/or virtual three-dimensional models of a patient's dental conditions (e.g., CT data and/or IOS data). Then a desired location and/or orientation of an implant in the patient's mouth are determined. A three-dimensional model of a virtual PSTP is designed. An actual PSTP is fabricated (e.g., using a milling machine and/or a rapid-prototype machine) as an actual replica of the three-dimensional model of the virtual PSTP. After the PSTP is fabricated, the implant is installed in the mouth of the patient using a surgical guide system (e.g., Navigator Surgical Guide System) and the actual PSTP is attached to the installed implant. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If modification(s) are necessary, the PSTP is removed from the patient's mouth and physically modified (e.g., material is removed from the PSTP, material is added to the PSTP, or both). The modified PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the modified PSTP. The modified PSTP is then reattached to the implant. Alternatively to removing the PSTP from the patient's mouth and modifying the PSTP outside of the patient's mouth, if the necessary modification(s) is supragingival, the physical modification(s) can be made to the PSTP without removing the PSTP from the patient's mouth and the PSTP can be scanned while still installed in the patient's mouth (e.g., only the viewable portion of the PSTP is scanned). In some implementations, the scan data and/or the virtual three-dimensional models of a patient's dental conditions is updated to include the scan data and/or the virtual three-dimensional model of the modified PSTP. The final prosthesis is then designed and fabricated as a replica of the modified PSTP (e.g., a copymill) using the scan data of the modified PSTP and/or the virtual three-dimensional model of the modified PSTP. The modified PSTP is removed and the final prosthesis is attached to the implant.
According to a fourth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes acquiring scan data and/or virtual three-dimensional models of a patient's dental conditions (e.g., CT data and/or IOS data). Then a desired location and/or orientation of an implant in the patient's mouth are determined. A three-dimensional model of a virtual PSTP is designed. An actual PSTP is fabricated (e.g., using a milling machine and/or a rapid-prototype machine) as an actual replica of the three-dimensional model of the virtual PSTP. After the PSTP is fabricated, the implant is installed in the mouth of the patient using a surgical guide system (e.g., Navigator Surgical Guide System) and the actual PSTP is attached to the installed implant. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If modification(s) are necessary, the three-dimensional model of the virtual PSTP is virtually modified (e.g., material is virtually removed from the three-dimensional model of the virtual PSTP, material is virtually added to the three-dimensional model of the virtual PSTP, or both). The scan data and/or the virtual three-dimensional models of a patient's dental conditions are updated to include the virtually modified three-dimensional model of the virtual PSTP. The final prosthesis is then designed and fabricated as a replica of the virtually modified three-dimensional model of the virtual PSTP using the updated scan data and/or the updated virtual three-dimensional models of a patient's dental conditions. The PSTP is removed and the final prosthesis is attached to the implant.
According to a fifth alternative, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes acquiring scan data and/or virtual three-dimensional models of a patient's dental conditions (e.g., CT data and/or IOS data). Then a desired location and/or orientation of an implant in the patient's mouth are determined. A three-dimensional model of a virtual PSTP is designed. An actual PSTP is fabricated (e.g., using a milling machine and/or a rapid-prototype machine) as an actual replica of the three-dimensional model of the virtual PSTP. After the PSTP is fabricated, the implant is installed in the mouth of the patient using a surgical guide system (e.g., Navigator Surgical Guide System) and the actual PSTP is attached to the installed implant. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If modification(s) are necessary, the three-dimensional model of the virtual PSTP is virtually modified (e.g., material is virtually removed from the three-dimensional model of the virtual PSTP, material is virtually added to the three-dimensional model of the virtual PSTP, or both). The final prosthesis is then designed and fabricated as a replica of the virtually modified three-dimensional model of the virtual PSTP. The PSTP is removed and the final prosthesis is attached to the implant.
Regardless of which one of the methods 100, 200, 300, 400, 500, 600 (or one of the alternative methods described herein) that is implemented, a permanent patient-specific prosthesis is manufactured to replace a PSTP. As shown in
The permanent abutment 721a has a supragingival region 722a and a subgingival region 722b, which are separated by a flange 723. The subgingival region 722b includes an anti-rotational feature 724 (the same as, or similar to, the anti-rotational feature 14) for mating with a corresponding anti-rotational feature of the implant 60. The permanent abutment 721a can be made of titanium, gold, ceramic, PEEK, acrylic, or other metals, plastics, and/or composites, or any combination thereof. The permanent crown 721b can be made of ceramic, porcelain, gold, titanium, PEEK, acrylic, or other metals, plastics, and/or composites, or any combination thereof.
While the final prosthesis 700 is shown as being a two piece solution, the final prosthesis can be made of any number of parts. For example, the final prosthesis can be one-piece made entirely of ceramic. For another example, the final prosthesis can be one piece made of ceramic with a coating of porcelain on the supragingival portion. For another example, the final prosthesis can include a titanium permanent abutment with a permanent crown attached thereto made of ceramic with a coating of porcelain thereon. Thus, while the scan data (or modified scan data) is generated from scans of monolithic PSTPs, the scan data (or modified scan data)—used to manufacture the final prostheses described herein—can be partitioned and/or modified to support fabrication of multi-piece final prostheses therefrom.
While the PSTP 10a, the temporary abutments 21a and 31a, and the permanent abutment 721a are shown and described herein as having a subgingival region, a supragingival region, and a flange therebetween, any portion of the flange and/or of the supragingival region can be placed subgingival (e.g., below the gingival tissue) for a given installation. Similarly, any portion of the flange and/or of the subgingival region can be placed supragingival (e.g., above the gingival tissue) for a given installation. Moreover, the supragingival regions described herein can be referred to as a post region that is partially subgingival and/or partially supragingival. That is, in some instances, the terms supragingival and post can be used interchangeably when referring to the various portions of the temporary abutments described herein.
As described in reference to
While the illustrated implementations have been primarily described with reference to the development of a permanent patient-specific prosthesis for a single tooth application, it should be understood that the present invention is also useful in multiple-tooth applications, such as bridges and bars for supporting full or partial dentures. In those situations, the permanent patient-specific prosthesis would not necessarily need a non-rotational feature for engaging the underlying implant(s) because the final prosthesis would also be supported by another structure in the mouth (e.g., one or more additional underlying implants), which would inherently achieve a non-rotational aspect to the design. In any event, using scan data generated from scanning a multiple-tooth PSTP to obtain the necessary information to fabricate a permanent multiple-tooth permanent patient-specific prosthesis can lead to the development of an aesthetically pleasing multiple-tooth system.
The above disclosure focuses on using PSTPs to develop permanent patient-specific prostheses. As discussed above, the exemplary PSTPs 10a, 10b, 10c serve as gingival healing abutments as their exterior surfaces are contoured to aid in the healing of a patient's gingival tissue. Alternatively to using a PSTP as described in any of the above implementations, a patient-specific gingival healing abutment (“PSHA”) can be used instead. A PSHA is similar to a PSTP, however, a PSHA does not function as a temporary tooth. Rather a PSHA only functions to aid in healing gingival tissue therearound in an anatomical shape. Thus, the PSHA does not protrude a significant amount from a patient's gingival tissue to be used as a temporary tooth (e.g., for chewing food). A clinician might desire using a PSHA instead of a PSTP if a temporary tooth solution is not necessary for the patient, or if the design and fabrication of the PSTP would be overly complex (e.g., adjacent and/or opposing teeth are in less than ideal positions), or to reduce treatment time (e.g., it takes more time to develop and fabricate a PSTP than a PSHA). In such a solution using a PSHA, the clinician still goes through essentially the same acts as described herein to develop and fabricate the permanent patient-specific prosthesis. The main difference is that the PSTP would be replaced with a PSHA and the permanent patient-specific prosthesis would be fabricated following methods similar to those described herein. Specifically, in some implementations, the PSHA is scanned and then attached to the implant in the patient's mouth. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSHA and/or the final prosthesis design. If no modification(s) are necessary, the final prosthesis is digitally designed and fabricated using the scan data and/or the virtual three-dimensional model of the PSHA from the scan of the PSHA.
Throughout the disclosure reference is made to scanning a PSTP to generate scan data and/or a virtual three-dimensional model of the PSTP that captures all of the contours and details of the PSTP. In addition to capturing the physical contours (e.g., size, shape, dimensions, etc.), the color of the PSTP can be captured for use in designing and fabricating a permanent patient-specific prosthesis. Further, any of the scanning operations described herein can include obtaining color information. For example, scans of the installed PSTP and adjacent and/or opposing teeth can be scanned to generate scan data and/or a virtual three-dimensional model of the PSTP and the adjacent and/or opposing teeth that includes color information.
Alternatively to designing and fabricating a permanent patient-specific prosthesis as a replica of a PSTP as described herein, the permanent patient-specific prosthesis can be designed and fabricated (e.g., at least in part) using a fixture-level (e.g., implant level) model of a patient's mouth. The fixture-level model can be either a virtual model and/or a physical model (e.g., a rapid prototype model) of the patient's mouth. In the case of using a virtual fixture-level model, the permanent patient-specific prosthesis can be virtually designed (e.g., there is no need to fabricate a physical model) and in the case of using a physical fixture-level model, the permanent patient-specific prosthesis can be manually designed. The rapid prototype model of the patient's mouth can be created using a rapid prototype machine that fabricates the rapid prototype model from a fixture-level virtual three-dimensional model of the patient's mouth. To generate such a fixture-level virtual three-dimensional model of the patient's mouth, two scans are taken. First, the PSTP is scanned in its entirety to generate scan data and/or a virtual three-dimensional model of the entire PSTP. Second, the installed PSTP and adjacent and/or opposing teeth are scanned to generate scan data and/or a virtual three-dimensional model of the PSTP and the adjacent and/or opposing teeth. Then using Boolean operations (e.g., subtractive operations), the virtual three-dimensional model of the PSTP is subtracted from the virtual three-dimensional model of the PSTP and the adjacent and/or opposing teeth, which results in the fixture-level virtual three-dimensional model of the patient's mouth. Rapid prototype instructions can be generated from the fixture-level virtual three-dimensional model of the patient's mouth and sent to the rapid prototype machine to fabricate the rapid-prototype model for use in creating the permanent patient-specific prosthesis. According to some further alternatives, in the case that the PSTP is modified (physically or virtually as described above), the fixture-level virtual three-dimensional model of the patient's mouth can be updated and/or modified accordingly prior to being fabricated as the rapid prototype model used in creating the permanent patient-specific prosthesis.
According to some implementations of the disclosed concepts herein, a PSTP is scanned to obtain scan data and/or a virtual three-dimensional model of the PSTP. Such implementations are typically carried out by a clinician that has use of a scanner (e.g., a desktop scanner and/or an intraoral scanner). In some instances, the PSTP cannot be scanned directly because the clinician does not have access to an appropriate scanner. Thus, instead of scanning the PSTP as described herein, an impression is made of the PSTP. The impression can be sent to a laboratory that does have access to an appropriate scanner that can scan the impression of the PSTP to generate a virtual three-dimensional model of the PSTP therefrom. The generated virtual three-dimensional model of the PSTP from the impression is the same as, or substantially the same as, the virtual three-dimensional model of the PSTP generated from a direct scan of the PSTP described herein.
Further, a physical model (e.g., stone die cast model) of the PSTP can be created from the impression of the PSTP that can be scanned in lieu of the impression being scanned. That is, the impression can be used to create a physical model of the PSTP and the physical model of the PSTP can be scanned using an appropriate scanner (e.g., desktop and/or intraoral scanner). The scanning of the physical model of the PSTP generates scan data and/or a virtual three-dimensional model of the physical model of the PSTP, which is the same as, or substantially the same as, the virtual three-dimensional model of the PSTP generated from a direct scan of the PSTP described herein. No matter how the scan data and/or the virtual three-dimensional model of the PSTP is acquired (directly scanning the PSTP, scanning an impression of the PSTP, or scanning a physical model of the PSTP), such scan data and/or such virtual three-dimensional model of the PSTP can be used in accordance with any of the methods and implementations described throughout this disclosure.
In addition to taking an impression of the PSTP and/or creating a physical model of the PSTP, an impression of the patient's mouth with the PSTP installed therein can be taken. A physical model of the patient's mouth including the PSTP can be made from the impression. The impression and/or the physical model of the patient's mouth can then be scanned to generate scan data and/or a virtual three-dimensional model of the patient's mouth. Such a virtual three-dimensional model of the patient's mouth can be used in accordance with any of the methods and implementations described throughout this disclosure. For example, using Boolean operations (e.g., subtractive operations), the virtual three-dimensional model of the PSTP (obtained from a scan of the impression or physical model of the PSTP) can be removed from the virtual three-dimensional model of the patient's mouth (obtained from a scan of the impression or physical model of the patient's mouth) to develop a fixture level virtual three-dimensional model. In some implementations, a rapid prototype model of the developed fixture level virtual three-dimensional model can be made for use in designing and/or fabricating a permanent patient-specific prosthesis.
According to the above alternative implementations using impressions of a PSTP, a method of manufacturing a permanent patient-specific prosthesis (e.g., a final prosthesis) for attachment to a dental implant (e.g., implant 60) installed in a mouth of a patient includes installing a dental implant into the mouth of the patient. Then a PSTP is fabricated. The fabricated PSTP is entirely impressed with impression material. In some implementations, a first box is filled with impression material and approximately half of the PSTP is submerged into the material. Then, a second box is mated with the first box and impression material is then injected into the assembled boxes. The boxes are then separated, leaving a negative impression or image of two halves of the PSTP. In some implementations, the two impression halves are scanned generating scan data and/or a virtual three-dimensional model of the impressed PSTP. Such scan data and such a virtual three-dimensional model of the impressed PSTP can be processed into a virtual three-dimensional model of the PSTP. In some other implementations, a physical model of the PSTP is created using the two impression halves and the physical model is scanned in its entirety generating scan data and/or a virtual three-dimensional model of the physical model of the PSTP. After the PSTP is impressed, the PSTP is attached to the implant installed in the patient's mouth. After the PSTP is attached to the implant, the mouth of the patient can be impressed to create an impression of the patient's mouth. Specifically, the attached PSTP and the adjacent and/or opposing teeth are impressed. The impression of the patient's mouth and/or a physical model of the patient's mouth made from the impression is scanned to generate additional scan data and/or a virtual three-dimensional model of the attached PSTP and the adjacent and/or opposing teeth of the patient. The additional scan data and the scan data generated from the scan of the impression of the PSTP or from the scan of the physical model of the PSTP can be merged into a merged dataset and/or a merged virtual three-dimensional model. The gingival tissue is permitted to heal and then a clinician assesses the site (e.g., visually inspects the site) to determine if any modifications are necessary to the PSTP and/or the final prosthesis design. If a modification(s) is necessary, the PSTP is removed from the patient's mouth and physically modified (e.g., material is removed from the PSTP, material is added to the PSTP, or both). The modified PSTP can be impressed and a modified physical model of the modified PSTP can be created therefrom. The impression of the modified PSTP or the physical model of the modified PSTP is scanned in its entirety generating scan data and/or a virtual three-dimensional model representative of the modified PSTP. The modified PSTP is then reattached to the implant. Alternatively to removing the PSTP from the patient's mouth and modifying the PSTP outside of the patient's mouth, if the necessary modification(s) is supragingival, the physical modification(s) can be made to the PSTP without removing the PSTP from the patient's mouth and the PSTP can be impressed while still installed in the patient's mouth (e.g., only the viewable portion of the PSTP is impressed). The merged dataset and/or the merged virtual three-dimensional model can be updated to include the scan data representative of the modified PSTP and/or the virtual three-dimensional model representative of the modified PSTP. The final prosthesis is then designed and fabricated as a replica of the modified PSTP (e.g., a copymill) using the updated merged dataset and/or the updated merged virtual three-dimensional model. The modified PSTP is removed and the final prosthesis is attached to the implant. In the above alternative implementation, the impressions can be taken at a first location (e.g., clinician's office) and the scanning of the impressions and/or physical models can occur at a second remote location (e.g., laboratory). In addition to creating the physical model of the patient's mouth described above, a fixture-level rapid prototype model of the patient's mouth can be created from the obtained scan data for use in designing and/or fabricating the final prosthesis.
Throughout the present disclosure reference is made to scanning a PSTP to generate scan data and/or a virtual three-dimensional model of the PSTP that captures all of the contours and details of the PSTP. According to some implementations of the disclosed concepts herein, the scanning of the PSTP includes positioning the PSTP within and/or attaching the PSTP to a fixture (not shown). The fixture can be, for example, a base (e.g., a block of material) that includes a non-rotational feature (e.g., a hexagonal boss, etc.) with a central axis, where the non-rotational feature is configured to mate with a corresponding non-rotational feature (e.g., a hexagonal socket, etc.) of the PSTP. Thus, attachment of the PSTP to the fixture automatically orients the PSTP (1) such that the non-rotational feature of the PSTP corresponds with the orientation of the non-rotational feature of the fixture; (2) such that a central axis of the PSTP corresponds with (e.g., is coincident with) the central axis of the non-rotational feature of the fixture; and (3) such that a seating surface of the PSTP corresponds with a top surface feature of the fixture. The fixture (and its non-rotational feature) is positioned at a known location (e.g., position and orientation) with respect to the scanner used to scan the PSTP. Thus, attachment of the PSTP to the fixture automatically provides the scanner (and/or scanning software) with (1) the orientation of the non-rotational feature of the PSTP; (2) the location of the central axis of the PSTP; (3) the location of the seating surface of the PSTP; and (4) the location of the screw access hole of the PSTP. As such, the accuracy of the scan (e.g., the acquisition of the scan data associated with the PSTP) of the PSTP can be improved by reducing the amount of scan data (e.g., image data) that needs to be stitched together to develop the virtual three-dimensional model of the PSTP. For example, knowledge of the orientation of the non-rotational feature of the PSTP permits the scanning software to automatically include interface geometry (e.g., the non-rotational feature) of the PSTP (e.g., using stock data associated with known PSTP interfaces that mate with the fixture). That is, the portion of the scan data associated with the non-rotational feature of the PSTP is not needed and can be replaced with stock known data that is stitched with the rest of the scan data. Similarly, for another example, knowledge of the central axis of the PSTP permits the scanning software to automatically include a screw access hole of the PSTP (e.g., a bore for receiving the screw therethrough to attach the PSTP to the dental implant) in the same, or similar, manner described above in reference to the interface geometry.
Throughout the present disclosure reference is made to scanning a PSTP to generate scan data and/or a virtual three-dimensional model of the PSTP that captures all of the contours and details of the PSTP. According to some implementations of the disclosed concepts herein, the scanning of the PSTP 810 includes temporarily attaching a scanning aid 800 to the PSTP 810 prior to scanning the PSTP 810. The scanning aid 800 is designed to be coupled with the screw access hole 802 of the PSTP 810 (e.g., the bore for receiving the screw therethrough to attach the PSTP to the dental implant) and to extend therefrom such that a portion of the scanning aid protrudes from the PSTP 810 and is visible relative to the PSTP 810. The scanning aid 800 can include a first portion for engaging with the screw access hole 802 of the PSTP (e.g., in a press-fit type slideable engagement) and a protrusion 806 for protruding from the screw access hole 802 of the PSTP 810, The protrusion 806 includes a known feature 808 (e.g., a marking, a dot, a divot, a pimple, a dimple, a character, a line, a notch, etc.) on an external surface thereof that can be identified by the scanning software and used to magnify the details of the screw access hole 802 (e.g., the diameter of the screw access hole, the length of the screw access hole, etc), which are difficult to obtain by directly scanning the screw access hole 802 of the PSTP. By magnify the details, it is meant that knowledge of the orientation of the scanning aid (specifically, the protrusion and known feature thereon) relative to the rest of the scanned PSTP permits the scanning software to automatically include the screw access hole of the PSTP (e.g., using stock data associated with known PSTP screw access holes). That is, the portion of the scan data associated with the screw access hole of the PSTP is not needed and can be replaced with stock known data that is stitched with the scan data.
Further, according to some implementations of the disclosed concepts herein, the scanning of the PSTP includes temporarily attaching a scanning aid (not shown) to an implant connection and/or seating surface of the PSTP prior to scanning the PSTP. In particular, the scanning aid is designed to be coupled with the implant connection (e.g., external hexagonal boss) and to abut the seating surface of the PSTP. As such, the scanning aid extends from the seating surface of the PSTP such that the scanning aid is visible relative to the PSTP. The scanning aid can include a first portion for engaging with the implant connection of the PSTP (e.g., in a press-fit type slideable engagement where the scanning aid slides over the implant connection of the PSTP) and a second portion for extending from the implant connection of the PSTP. The second portion (and/or the first portion) includes a known feature (e.g., a marking, a dot, a divot, a pimple, a dimple, a character, a line, a notch, etc.) on an external surface thereof that can be identified by the scanning software and used to magnify the details of the implant connection and/or the seating surface (e.g., the type of implant connection, the size/diameter of the implant connection, the length/height of the implant connection, etc.), which are difficult to obtain by directly scanning the implant connection and/or the seating surface of the PSTP. By magnify the details, it is meant that knowledge of the orientation of the scanning aid (specifically, the second portion and known feature thereon) relative to the rest of the scanned PSTP permits the scanning software to automatically include the implant connection and/or seating surface of the PSTP (e.g., using stock data associated with known PSTP implant connections and/or seating surfaces). That is, the portion of the scan data associated with the implant connection and/or seating surface of the PSTP is not needed and can be replaced with stock known data that is stitched with the scan data. Further, once the knowledge of the orientation of the scanning aid permits the scanning software to automatically include the implant connection and/or seating surface of the PSTP, the screw access hole of the PSTP can also be determined and automatically included. That is, the portion of the scan data associated with the screw access hole of the PSTP is not needed and can be replaced with stock known data that is stitched with the scan data.
While the present disclosure has been described with reference to one or more particular embodiments and implementations, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present disclosure. Each of these embodiments and implementations and obvious variations thereof is contemplated as falling within the spirit and scope of the present invention, which is set forth in the claims that follow.
This application claims the benefit of U.S. Provisional Application No. 61/701,416, filed Sep. 14, 2012; this application is related to U.S. Application Ser. No. 13/797,385, filed Mar. 12, 2013, entitled “Temporary Dental Prosthesis For Use in Developing Final Dental Prosthesis”, each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3906634 | Aspel | Sep 1975 | A |
3919772 | Lenczycki | Nov 1975 | A |
3958471 | Muller | May 1976 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4056585 | Waltke | Nov 1977 | A |
4086701 | Kawahara et al. | May 1978 | A |
4177562 | Miller et al. | Dec 1979 | A |
4294544 | Altschuler et al. | Oct 1981 | A |
4306862 | Knox | Dec 1981 | A |
4325373 | Slivenko et al. | Apr 1982 | A |
4341312 | Scholer | Jul 1982 | A |
4364381 | Sher et al. | Dec 1982 | A |
4439152 | Small | Mar 1984 | A |
4543953 | Slocum et al. | Oct 1985 | A |
4547157 | Driskell | Oct 1985 | A |
4571180 | Kulick | Feb 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4624673 | Meyer | Nov 1986 | A |
4663720 | Duret et al. | May 1987 | A |
4713004 | Linkow et al. | Dec 1987 | A |
4756689 | Lundgren | Jul 1988 | A |
4758161 | Niznick | Jul 1988 | A |
4767331 | Hoe | Aug 1988 | A |
4772204 | Soderberg | Sep 1988 | A |
4821200 | Öberg | Apr 1989 | A |
4842518 | Linkow et al. | Jun 1989 | A |
4850870 | Lazzara et al. | Jul 1989 | A |
4850873 | Lazzara et al. | Jul 1989 | A |
4854872 | Detsch | Aug 1989 | A |
4856994 | Lazzara et al. | Aug 1989 | A |
4872839 | Brajnovic | Oct 1989 | A |
4906191 | Soderberg | Mar 1990 | A |
4906420 | Brajnovic | Mar 1990 | A |
4931016 | Sillard | Jun 1990 | A |
4935635 | O'Harra | Jun 1990 | A |
4955811 | Lazzara et al. | Sep 1990 | A |
4961674 | Wang et al. | Oct 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4986753 | Sellers | Jan 1991 | A |
4988297 | Lazzara et al. | Jan 1991 | A |
4988298 | Lazzara et al. | Jan 1991 | A |
4998881 | Lauks | Mar 1991 | A |
5000685 | Brajnovic | Mar 1991 | A |
5006069 | Lazzara et al. | Apr 1991 | A |
5015183 | Fenick | May 1991 | A |
5015186 | Detsch | May 1991 | A |
5030096 | Hurson et al. | Jul 1991 | A |
5035619 | Daftary | Jul 1991 | A |
5040982 | Stefan-Dogar | Aug 1991 | A |
5040983 | Binon | Aug 1991 | A |
5064375 | Jörnéus | Nov 1991 | A |
5071351 | Green, Jr. et al. | Dec 1991 | A |
5073111 | Daftary | Dec 1991 | A |
5087200 | Brajnovic et al. | Feb 1992 | A |
5100323 | Friedman et al. | Mar 1992 | A |
5104318 | Piche et al. | Apr 1992 | A |
5106300 | Voitik | Apr 1992 | A |
5122059 | Dürr et al. | Jun 1992 | A |
5125839 | Ingber et al. | Jun 1992 | A |
5125841 | Carlsson et al. | Jun 1992 | A |
5133660 | Fenick | Jul 1992 | A |
5135395 | Marlin | Aug 1992 | A |
5145371 | Jörnëus | Sep 1992 | A |
5145372 | Daftary et al. | Sep 1992 | A |
5176516 | Koizumi | Jan 1993 | A |
5188800 | Green, Jr. et al. | Feb 1993 | A |
5195892 | Gersberg | Mar 1993 | A |
5205745 | Kamiya et al. | Apr 1993 | A |
5209659 | Friedman et al. | May 1993 | A |
5209666 | Balfour et al. | May 1993 | A |
5213502 | Daftary | May 1993 | A |
5221204 | Kruger et al. | Jun 1993 | A |
5237998 | Duret et al. | Aug 1993 | A |
5246370 | Coatoam | Sep 1993 | A |
5257184 | Mushabac | Oct 1993 | A |
5281140 | Niznick | Jan 1994 | A |
5286195 | Clostermann | Feb 1994 | A |
5286196 | Brajnovic et al. | Feb 1994 | A |
5292252 | Nickerson et al. | Mar 1994 | A |
5297963 | Dafatry | Mar 1994 | A |
5302125 | Kownacki et al. | Apr 1994 | A |
5312254 | Rosenlicht | May 1994 | A |
5312409 | McLaughlin et al. | May 1994 | A |
5316476 | Krauser | May 1994 | A |
5320529 | Pompa | Jun 1994 | A |
5328371 | Hund et al. | Jul 1994 | A |
5333898 | Stutz | Aug 1994 | A |
5334024 | Niznick | Aug 1994 | A |
5336090 | Wilson, Jr. et al. | Aug 1994 | A |
5338196 | Beaty et al. | Aug 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5344457 | Pilliar et al. | Sep 1994 | A |
5350297 | Cohen | Sep 1994 | A |
5359511 | Schroeder et al. | Oct 1994 | A |
5362234 | Salazar et al. | Nov 1994 | A |
5362235 | Daftary | Nov 1994 | A |
5368483 | Sutter et al. | Nov 1994 | A |
5370692 | Fink | Dec 1994 | A |
5372502 | Massen et al. | Dec 1994 | A |
5386292 | Massen et al. | Jan 1995 | A |
5413481 | Göppel et al. | May 1995 | A |
5417569 | Perisse | May 1995 | A |
5417570 | Zuest et al. | May 1995 | A |
5419702 | Beaty et al. | May 1995 | A |
5431567 | Datary | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5440393 | Wenz | Aug 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5458488 | Chalifoux | Oct 1995 | A |
5476382 | Daftary | Dec 1995 | A |
5476383 | Beaty et al. | Dec 1995 | A |
5492471 | Singer | Feb 1996 | A |
5516288 | Sichler et al. | May 1996 | A |
5527182 | Willoughby | Jun 1996 | A |
5533898 | Mena | Jul 1996 | A |
5538426 | Harding et al. | Jul 1996 | A |
5547377 | Daftary | Aug 1996 | A |
5556278 | Meitner | Sep 1996 | A |
5561675 | Bayon et al. | Oct 1996 | A |
5564921 | Marlin | Oct 1996 | A |
5564924 | Kwan | Oct 1996 | A |
5569578 | Mushabac | Oct 1996 | A |
5575656 | Hajjar | Nov 1996 | A |
5580244 | White | Dec 1996 | A |
5580246 | Fried | Dec 1996 | A |
5595703 | Swaelens et al. | Jan 1997 | A |
5613832 | Su | Mar 1997 | A |
5613852 | Bavitz | Mar 1997 | A |
5630717 | Zuest | May 1997 | A |
5636986 | Prezeshkian | Jun 1997 | A |
5651675 | Singer | Jul 1997 | A |
5652709 | Andersson et al. | Jul 1997 | A |
5658147 | Phimmasone | Aug 1997 | A |
5662476 | Ingber et al. | Sep 1997 | A |
5674069 | Osorio | Oct 1997 | A |
5674071 | Beaty et al. | Oct 1997 | A |
5674073 | Ingber et al. | Oct 1997 | A |
5681167 | Lazarof | Oct 1997 | A |
5685715 | Beaty et al. | Nov 1997 | A |
5688283 | Knapp | Nov 1997 | A |
5704936 | Mazel | Jan 1998 | A |
5718579 | Kennedy | Feb 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5733124 | Kwan | Mar 1998 | A |
5741215 | Fink | Apr 1998 | A |
5743916 | Greenberg | Apr 1998 | A |
5759036 | Hinds | Jun 1998 | A |
5762125 | Mastrorio | Jun 1998 | A |
5762500 | Lazarof | Jun 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769636 | Di Sario | Jun 1998 | A |
5791902 | Lauks | Aug 1998 | A |
5800168 | Cascione et al. | Sep 1998 | A |
5813858 | Singer | Sep 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5842859 | Palacci | Dec 1998 | A |
5846079 | Knode | Dec 1998 | A |
5851115 | Carlsson et al. | Dec 1998 | A |
5857853 | Van Nifterick et al. | Jan 1999 | A |
5871358 | Ingber et al. | Feb 1999 | A |
5873722 | Lazzara et al. | Feb 1999 | A |
5876204 | Day et al. | Mar 1999 | A |
5885078 | Cagna et al. | Mar 1999 | A |
5888034 | Greenberg | Mar 1999 | A |
5904483 | Wade | May 1999 | A |
5915962 | Rosenlicht | Jun 1999 | A |
5927982 | Kruger | Jul 1999 | A |
5938443 | Lazzara et al. | Aug 1999 | A |
5954769 | Rosenlicht | Sep 1999 | A |
5964591 | Beaty et al. | Oct 1999 | A |
5967777 | Klein et al. | Oct 1999 | A |
5984681 | Huang | Nov 1999 | A |
5989025 | Conley | Nov 1999 | A |
5989029 | Osorlo | Nov 1999 | A |
5989258 | Hattori | Nov 1999 | A |
5997681 | Kinzie | Dec 1999 | A |
6000939 | Ray et al. | Dec 1999 | A |
6008905 | Breton et al. | Dec 1999 | A |
6068479 | Kwan | May 2000 | A |
6099311 | Wagner et al. | Aug 2000 | A |
6099313 | Dorken et al. | Aug 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6120293 | Lazzara et al. | Sep 2000 | A |
6129548 | Lazzara et al. | Oct 2000 | A |
6135773 | Lazzara | Oct 2000 | A |
6142782 | Lazarof | Nov 2000 | A |
6174168 | Dehoff et al. | Jan 2001 | B1 |
6175413 | Lucas | Jan 2001 | B1 |
6190169 | Bluemli et al. | Feb 2001 | B1 |
6296483 | Champleboux | Feb 2001 | B1 |
6197410 | Vallittu et al. | Mar 2001 | B1 |
6200125 | Akutagawa | Mar 2001 | B1 |
6206693 | Hultgren | Mar 2001 | B1 |
6210162 | Chishti | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6227859 | Sutter | May 2001 | B1 |
6283753 | Willoughby | Sep 2001 | B1 |
6287119 | van Nifterick | Sep 2001 | B1 |
6305939 | Dawood | Oct 2001 | B1 |
6319000 | Branemark | Nov 2001 | B1 |
6322728 | Brodkin | Nov 2001 | B1 |
6382975 | Poirier | May 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6431866 | Hurson | Aug 2002 | B2 |
6431867 | Gittelson et al. | Aug 2002 | B1 |
6488503 | Lichkus et al. | Dec 2002 | B1 |
6497574 | Miller | Dec 2002 | B1 |
6540784 | Barlow | Apr 2003 | B2 |
6558162 | Porter et al. | May 2003 | B1 |
6568936 | MacDougald | May 2003 | B2 |
6575751 | Lehmann et al. | Jun 2003 | B1 |
6594539 | Geng | Jul 2003 | B1 |
6610079 | Li | Aug 2003 | B1 |
6619958 | Beaty et al. | Sep 2003 | B2 |
6629840 | Chishti | Oct 2003 | B2 |
6634883 | Ranalli | Oct 2003 | B2 |
6644970 | Lin | Nov 2003 | B1 |
6648640 | Rubbert et al. | Nov 2003 | B2 |
6671539 | Gateno et al. | Dec 2003 | B2 |
6672870 | Knapp | Jan 2004 | B2 |
6688887 | Morgan | Feb 2004 | B2 |
6691764 | Embert | Feb 2004 | B2 |
6743491 | Cirincione et al. | Jun 2004 | B2 |
6755652 | Nanni | Jun 2004 | B2 |
6772026 | Bradbury | Aug 2004 | B2 |
6776614 | Wiechmann et al. | Aug 2004 | B2 |
6783359 | Kapit | Aug 2004 | B2 |
6790040 | Amber et al. | Sep 2004 | B2 |
6793491 | Klein et al. | Sep 2004 | B2 |
6808659 | Schulman | Oct 2004 | B2 |
6814575 | Poirier | Nov 2004 | B2 |
6821462 | Schulamn et al. | Nov 2004 | B2 |
6829498 | Kipke et al. | Dec 2004 | B2 |
D503804 | Phleps et al. | Apr 2005 | S |
6882894 | Durbin et al. | Apr 2005 | B2 |
6885464 | Pfeiffer et al. | Apr 2005 | B1 |
6902401 | Jorneus et al. | Jun 2005 | B2 |
6913463 | Blacklock | Jul 2005 | B2 |
6926442 | Stöckl | Aug 2005 | B2 |
6926525 | Ronvig | Aug 2005 | B1 |
6939489 | Moszner et al. | Sep 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6953383 | Rothenberger | Oct 2005 | B2 |
6957118 | Kopelman et al. | Oct 2005 | B2 |
6966772 | Malin et al. | Nov 2005 | B2 |
6970760 | Wolf et al. | Nov 2005 | B2 |
6971877 | Harter | Dec 2005 | B2 |
6994549 | Brodkin et al. | Feb 2006 | B2 |
7010150 | Pfeiffer et al. | Mar 2006 | B1 |
7010153 | Zimmermann | Mar 2006 | B2 |
7012988 | Adler et al. | Mar 2006 | B2 |
7018207 | Prestipino | Mar 2006 | B2 |
7021934 | Aravena | Apr 2006 | B2 |
7029275 | Rubbert et al. | Apr 2006 | B2 |
7044735 | Malin | May 2006 | B2 |
7056115 | Phan et al. | Jun 2006 | B2 |
7056472 | Behringer | Jun 2006 | B1 |
7059856 | Marotta | Jun 2006 | B2 |
7066736 | Kumar et al. | Jun 2006 | B2 |
7084868 | Farag et al. | Aug 2006 | B2 |
7086860 | Schuman et al. | Aug 2006 | B2 |
7097451 | Tang | Aug 2006 | B2 |
7104795 | Dadi | Sep 2006 | B2 |
7110844 | Kopelman | Sep 2006 | B2 |
7112065 | Kopelman | Sep 2006 | B2 |
7118375 | Durbin et al. | Oct 2006 | B2 |
D532991 | Gozzi | Dec 2006 | S |
7153132 | Tedesco | Dec 2006 | B2 |
7153135 | Thomas | Dec 2006 | B1 |
7163443 | Basler et al. | Jan 2007 | B2 |
7175434 | Brajnovic | Feb 2007 | B2 |
7175435 | Andersson et al. | Feb 2007 | B2 |
7178731 | Basler | Feb 2007 | B2 |
7214062 | Morgan | May 2007 | B2 |
7220124 | Taub et al. | May 2007 | B2 |
7228191 | Hofmeister et al. | Jun 2007 | B2 |
7236842 | Kopelman et al. | Jun 2007 | B2 |
7281927 | Marotta | Oct 2007 | B2 |
7286954 | Kopelman et al. | Oct 2007 | B2 |
7303420 | Huch et al. | Dec 2007 | B2 |
7319529 | Babayoff | Jan 2008 | B2 |
7322746 | Beckhaus et al. | Jan 2008 | B2 |
7322824 | Schmitt | Jan 2008 | B2 |
7324680 | Zimmermann | Jan 2008 | B2 |
7329122 | Scott | Feb 2008 | B1 |
7333874 | Taub et al. | Feb 2008 | B2 |
7335876 | Eiff et al. | Feb 2008 | B2 |
D565184 | Royzen | Mar 2008 | S |
7367801 | Saliger | May 2008 | B2 |
7379584 | Rubbert et al. | May 2008 | B2 |
D571471 | Stöckl | Jun 2008 | S |
7381191 | Fallah | Jun 2008 | B2 |
7383094 | Kopelman et al. | Jun 2008 | B2 |
D575747 | Abramovich et al. | Aug 2008 | S |
7421608 | Schron | Sep 2008 | B2 |
7425131 | Amber et al. | Sep 2008 | B2 |
7429175 | Gittelson | Sep 2008 | B2 |
7435088 | Brajnovic | Oct 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7481647 | Sambu et al. | Jan 2009 | B2 |
7488174 | Kopelman et al. | Feb 2009 | B2 |
7497619 | Stoeckl | Mar 2009 | B2 |
7497983 | Khan et al. | Mar 2009 | B2 |
7520747 | Stonisch | Apr 2009 | B2 |
7522764 | Schwotzer | Apr 2009 | B2 |
7534266 | Kluger | May 2009 | B2 |
7536234 | Kopelman et al. | May 2009 | B2 |
7545372 | Kopelman et al. | Jun 2009 | B2 |
7551760 | Scharlack et al. | Jun 2009 | B2 |
7555403 | Kopelman et al. | Jun 2009 | B2 |
7556496 | Cinader, Jr. et al. | Jul 2009 | B2 |
7559692 | Beckhaus et al. | Jul 2009 | B2 |
7563397 | Schulman et al. | Jul 2009 | B2 |
D597769 | Richter et al. | Aug 2009 | S |
7572058 | Pruss et al. | Aug 2009 | B2 |
7572125 | Brajnovic | Aug 2009 | B2 |
7574025 | Feldman | Aug 2009 | B2 |
7578673 | Wen et al. | Aug 2009 | B2 |
7580502 | Dalpiaz et al. | Aug 2009 | B2 |
7581951 | Lehmann et al. | Sep 2009 | B2 |
7582855 | Pfeiffer | Sep 2009 | B2 |
7628537 | Schulze-Ganzlin | Dec 2009 | B2 |
7632097 | Clerck | Dec 2009 | B2 |
7653455 | Cnader, Jr. et al. | Jan 2010 | B2 |
7654823 | Dadi | Feb 2010 | B2 |
7655586 | Brodkin et al. | Feb 2010 | B1 |
7658610 | Knopp | Feb 2010 | B2 |
7661956 | Powell et al. | Feb 2010 | B2 |
7665989 | Brajnovic et al. | Feb 2010 | B2 |
7679723 | Schwotzer | Mar 2010 | B2 |
7687754 | Eiff et al. | Mar 2010 | B2 |
7689308 | Holzner et al. | Mar 2010 | B2 |
D614210 | Basler et al. | Apr 2010 | S |
7698014 | Dunne et al. | Apr 2010 | B2 |
7758346 | Letcher | Jul 2010 | B1 |
7774084 | Cinader, Jr. | Aug 2010 | B2 |
7780907 | Schmidt et al. | Aug 2010 | B2 |
7785007 | Stoeckl | Aug 2010 | B2 |
7787132 | Körner et al. | Aug 2010 | B2 |
7796811 | Orth et al. | Sep 2010 | B2 |
7798708 | Erhardt et al. | Sep 2010 | B2 |
7801632 | Orth et al. | Sep 2010 | B2 |
7815371 | Schulze-Ganzlin | Oct 2010 | B2 |
7824181 | Sers | Nov 2010 | B2 |
D629908 | Jerger et al. | Dec 2010 | S |
7855354 | Eiff | Dec 2010 | B2 |
7865261 | Pfeiffer | Jan 2011 | B2 |
7876877 | Stockl | Jan 2011 | B2 |
7901209 | Saliger et al. | Mar 2011 | B2 |
7982731 | Orth et al. | Jul 2011 | B2 |
7985119 | Basler et al. | Jul 2011 | B2 |
7986415 | Thiel et al. | Jul 2011 | B2 |
7988449 | Amber et al. | Aug 2011 | B2 |
8011925 | Powell et al. | Sep 2011 | B2 |
8011927 | Merckmans, III et al. | Sep 2011 | B2 |
8026943 | Weber et al. | Sep 2011 | B2 |
8038440 | Swaelens et al. | Oct 2011 | B2 |
8047895 | Basler | Nov 2011 | B2 |
8057912 | Basler et al. | Nov 2011 | B2 |
8062034 | Hanisch et al. | Nov 2011 | B2 |
8075313 | Ranck et al. | Dec 2011 | B2 |
8083522 | Karkar et al. | Dec 2011 | B2 |
8105081 | Bavar | Jan 2012 | B2 |
8226654 | Ranck et al. | Jul 2012 | B2 |
8454365 | Boerjes et al. | Jun 2013 | B2 |
20010008751 | Chishti et al. | Jul 2001 | A1 |
20010034010 | MacDougald et al. | Oct 2001 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020028418 | Farag et al. | Mar 2002 | A1 |
20020039717 | Amber et al. | Apr 2002 | A1 |
20020150859 | Imgrund et al. | Oct 2002 | A1 |
20020160337 | Klein et al. | Oct 2002 | A1 |
20020167100 | Moszner | Nov 2002 | A1 |
20030130605 | Besek | Jul 2003 | A1 |
20030222366 | Stangel | Dec 2003 | A1 |
20040029074 | Brajnovic | Feb 2004 | A1 |
20040048227 | Brajnovic | Mar 2004 | A1 |
20040180308 | Ebi et al. | Sep 2004 | A1 |
20040219477 | Harter | Nov 2004 | A1 |
20040219479 | Malin et al. | Nov 2004 | A1 |
20040219490 | Gartner et al. | Nov 2004 | A1 |
20040220691 | Hofmeister et al. | Nov 2004 | A1 |
20040241611 | Amber et al. | Dec 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20040259051 | Brajnovic | Dec 2004 | A1 |
20050023710 | Brodkin et al. | Feb 2005 | A1 |
20050056350 | Dolabdjian et al. | Mar 2005 | A1 |
20050070782 | Brodkin | Mar 2005 | A1 |
20050084144 | Feldman | Apr 2005 | A1 |
20050100861 | Choi et al. | May 2005 | A1 |
20050170311 | Tardieu et al. | Aug 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20050277089 | Brajnovic | Dec 2005 | A1 |
20050277090 | Anderson et al. | Dec 2005 | A1 |
20050277091 | Andersson et al. | Dec 2005 | A1 |
20050282106 | Sussman et al. | Dec 2005 | A1 |
20050283065 | Babayoff | Dec 2005 | A1 |
20060006561 | Brajnovic | Jan 2006 | A1 |
20060008763 | Brajnovic | Jan 2006 | A1 |
20060008770 | Brajnovic et al. | Jan 2006 | A1 |
20060093988 | Swaelens et al. | May 2006 | A1 |
20060094951 | Dean et al. | May 2006 | A1 |
20060127848 | Sogo et al. | Jun 2006 | A1 |
20060210949 | Stoop | Sep 2006 | A1 |
20060263741 | Imgrund et al. | Nov 2006 | A1 |
20060281041 | Rubbert et al. | Dec 2006 | A1 |
20070015111 | Kopelman et al. | Jan 2007 | A1 |
20070031790 | Raby et al. | Feb 2007 | A1 |
20070065777 | Becker | Mar 2007 | A1 |
20070077532 | Harter | Apr 2007 | A1 |
20070092854 | Powell et al. | Apr 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070154866 | Hall | Jul 2007 | A1 |
20070211081 | Quadling et al. | Sep 2007 | A1 |
20070218426 | Quadling et al. | Sep 2007 | A1 |
20070269769 | Marchesi | Nov 2007 | A1 |
20070281277 | Brajnovic | Dec 2007 | A1 |
20080015727 | Dunne | Jan 2008 | A1 |
20080038692 | Andersson et al. | Feb 2008 | A1 |
20080044794 | Brajnovic | Feb 2008 | A1 |
20080057467 | Gittelson | Mar 2008 | A1 |
20080070181 | Abolfathi et al. | Mar 2008 | A1 |
20080085489 | Schmitt | Apr 2008 | A1 |
20080090210 | Brajnovic | Apr 2008 | A1 |
20080114371 | Kluger | May 2008 | A1 |
20080118895 | Brajnovic | May 2008 | A1 |
20080124676 | Marotta | May 2008 | A1 |
20080153060 | De Moyer | Jun 2008 | A1 |
20080153061 | Marcello | Jun 2008 | A1 |
20080153065 | Brajnovic et al. | Jun 2008 | A1 |
20080153069 | Holzner et al. | Jun 2008 | A1 |
20080176189 | Stonisch | Jul 2008 | A1 |
20080206714 | Schmitt | Aug 2008 | A1 |
20080233537 | Amber et al. | Sep 2008 | A1 |
20080233539 | Rossler et al. | Sep 2008 | A1 |
20080241798 | Holzner et al. | Oct 2008 | A1 |
20080261165 | Steingart et al. | Oct 2008 | A1 |
20080261176 | Hurson | Oct 2008 | A1 |
20080286722 | Berckmans, III et al. | Nov 2008 | A1 |
20080300716 | Kopelman et al. | Dec 2008 | A1 |
20090017418 | Gittelson | Jan 2009 | A1 |
20090026643 | Wiest et al. | Jan 2009 | A1 |
20090042167 | Van Der Zel | Feb 2009 | A1 |
20090081616 | Pfeiffer | Mar 2009 | A1 |
20090087817 | Jansen et al. | Apr 2009 | A1 |
20090092948 | Gantes | Apr 2009 | A1 |
20090098510 | Zhang | Apr 2009 | A1 |
20090098511 | Zhang | Apr 2009 | A1 |
20090123045 | Quadling et al. | May 2009 | A1 |
20090123887 | Brajnovic | May 2009 | A1 |
20090130630 | Suttin et al. | May 2009 | A1 |
20090186319 | Sager | Jul 2009 | A1 |
20090187393 | Van Lierde et al. | Jul 2009 | A1 |
20090220134 | Cahill et al. | Sep 2009 | A1 |
20090220916 | Fisker et al. | Sep 2009 | A1 |
20090220917 | Jensen | Sep 2009 | A1 |
20090239197 | Brajnovic | Sep 2009 | A1 |
20090239200 | Brajnovic et al. | Sep 2009 | A1 |
20090253097 | Brajnovic | Oct 2009 | A1 |
20090263764 | Berckmans, III et al. | Oct 2009 | A1 |
20090287332 | Adusumilli et al. | Nov 2009 | A1 |
20090298009 | Brajnovic | Dec 2009 | A1 |
20090298017 | Boerjes et al. | Dec 2009 | A1 |
20090317763 | Brajnovic | Dec 2009 | A1 |
20090325122 | Brajnovic et al. | Dec 2009 | A1 |
20100009314 | Tardieu et al. | Jan 2010 | A1 |
20100028827 | Andersson et al. | Feb 2010 | A1 |
20100038807 | Brodkin et al. | Feb 2010 | A1 |
20100075275 | Brajnovic | Mar 2010 | A1 |
20100092904 | Esposti et al. | Apr 2010 | A1 |
20100105008 | Powell et al. | Apr 2010 | A1 |
20100105009 | Karkar et al. | Apr 2010 | A1 |
20100151420 | Ranck | Jun 2010 | A1 |
20100151423 | Ranck et al. | Jun 2010 | A1 |
20100173260 | Sogo et al. | Jul 2010 | A1 |
20100209877 | Hogan et al. | Aug 2010 | A1 |
20100280798 | Pattijn et al. | Nov 2010 | A1 |
20110008751 | Pettersson | Jan 2011 | A1 |
20110060558 | Pettersson | Mar 2011 | A1 |
20110129792 | Berckmans, III et al. | Jun 2011 | A1 |
20110183289 | Powell et al. | Jul 2011 | A1 |
20110183290 | Galgut et al. | Jul 2011 | A1 |
20110191081 | Malfliet et al. | Aug 2011 | A1 |
20110244426 | Amber et al. | Oct 2011 | A1 |
20110269104 | Berckmans, III et al. | Nov 2011 | A1 |
20110275032 | Tardieu et al. | Nov 2011 | A1 |
20110306008 | Suttin et al. | Dec 2011 | A1 |
20110306009 | Suttin et al. | Dec 2011 | A1 |
20110306014 | Conte et al. | Dec 2011 | A1 |
20120010740 | Swaelens et al. | Jan 2012 | A1 |
20120115105 | Schneider | May 2012 | A1 |
20120135370 | Ranck et al. | May 2012 | A1 |
20120164593 | Bavar | Jun 2012 | A1 |
20120164893 | Misuzuka et al. | Jun 2012 | A1 |
20120189982 | Powell et al. | Jul 2012 | A1 |
20120214130 | Krivoruk | Aug 2012 | A1 |
20120330315 | Ranck et al. | Dec 2012 | A1 |
20130177872 | Blaisdell et al. | Jul 2013 | A1 |
20140080092 | Suttin et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
104955417 | Sep 2015 | CN |
107374762 | Nov 2017 | CN |
10029256 | Nov 2000 | DE |
2005168518 | Jun 2005 | JP |
2009501036 | Jan 2009 | JP |
2012521236 | Sep 2012 | JP |
2015531652 | Nov 2015 | JP |
WO 199426200 | Nov 1994 | WO |
WO 1999032045 | Jul 1999 | WO |
WO 2000008415 | Feb 2000 | WO |
WO 2001058379 | Aug 2001 | WO |
WO 2002053055 | Jul 2002 | WO |
WO 2003024352 | Mar 2003 | WO |
WO 2004030565 | Apr 2004 | WO |
WO 2004075771 | Sep 2004 | WO |
WO 2004087000 | Oct 2004 | WO |
WO 2004098435 | Nov 2004 | WO |
WO 2006014130 | Feb 2006 | WO |
WO 2006062459 | Jun 2006 | WO |
WO 2006082198 | Aug 2006 | WO |
WO 2007005490 | Jan 2007 | WO |
WO 2007033157 | Mar 2007 | WO |
WO 2007104842 | Sep 2007 | WO |
WO 2007129955 | Nov 2007 | WO |
WO 2008057955 | May 2008 | WO |
WO 2008083857 | Jul 2008 | WO |
WO 2009146164 | Dec 2009 | WO |
WO 2010108935 | Sep 2010 | WO |
2012113407 | Aug 2012 | WO |
Entry |
---|
Biomet 3i—Manual entitled “Navigator ™ System for CT Guided Surgery Manual”, Revision A Oct. 2007—34 pages. |
Francois Goulette, “A New Method and a Clinical case for Computer Assisted Dental Implantology.” Retrieved from Summer European university in surgical Robotics, URL:www.lirmm.fr/manifs/UEE/docs/students/goulette.pdf Sep. 6, 2003 (7 pages). |
International Search Report for International Application No. PCT/US2009/034463, filed Feb. 19, 2009, dated Apr. 30, 2009 (2 pages). |
Jakob Brief, “Accuracy of image-guided implantology.” Retrieved from Google, <URL:sitemaker.umich,edu/sarmentlab/files/robodent_vs_denx_coir_05.pdf, Aug. 20, 2004 (7 pages). |
Machine Design: “Robots are ready for medical manufacturing.” Retrieved from MachineDesign.Com, <URL: http://machinedesign.com/article/robots-are-ready-for-medical-manufacturing-0712>, Jul. 12, 2007 (7 pages). |
MedNEWS: “‘Surgical Glue’ May Help to Eliminate Suturing for Implants.” Retrieved from MediNEWS.Direct, URL:http://www.medinewsdirect.com/?p=377, Dec. 21, 2007 (1 page). |
Written Opinion of International Application No. PCT/US2009/034463, filed Feb. 19, 2009, dated Apr. 30, 2009 (6 pages). |
International Search Report for International Application No. PCT/US2012/038097, filed May 16, 2012, dated Sep. 7, 2012 (2 pages). |
International Written Opinion for International Application No. PCT/US2012/038097, filed May 16, 2012, dated Sep. 7, 2012 (9 pages). |
“U.S. Appl. No. 13/797,385, Response filed Dec. 16, 2016 to Advisory Action dated Dec. 9, 2016”, 13 pgs. |
“Chinese Application Serial No. 201380059563.1, Office Action dated Jan. 17, 2017”, W/ English Translation, 7 pgs. |
“Chinese Application Serial No. 201380059563.1, Response Filed Mar. 31, 2017 to Office Action dated Jan. 17, 2017”, (W/ English Translation), 12 pgs. |
“Japanese Application Serial No. 2015-531988, Office Action dated May 16, 2017”, (W/ English Translation), 13 pgs. |
Edmond, H Pow, et al., “A Modified Implant Healing Abutment to Optimize Soft Tissue Contours: A Case Report, Implant dentistry”, vol. 13, No. 4, (2004), 297-299. |
“U.S. Appl. No. 13/797,385, Advisory Action dated Dec. 9, 2016”, 3 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Nov. 7, 2016 to Final Office Action dated Jul. 7, 2016”, 13 pgs. |
“Japanese Application Serial No. 2015-531988, Response filed Nov. 30, 2016 to Office Action dated Aug. 30, 2016”, W/ English Translation of Claims, 12 pgs. |
“U.S. Appl. No. 13/797,385, Non Final Office Action dated Nov. 20, 2017”, 12 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Feb. 20, 2018 to Non Final Office Action dated Nov. 20, 2017”, 13 pgs. |
“Australian Application Serial No. 2013315768, First Examination Report dated Sep. 14, 2017”, 6 pgs. |
“U.S. Appl. No. 13/797,385, Examiner Interview Summary dated Apr. 30, 2018”, 2 pgs. |
“U.S. Appl. No. 13/797,385, Final Office Action dated May 10, 2018”, 12 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Oct. 10, 2018 to Final Office action dated May 10, 2018”, 15 pgs. |
“Australian Application Serial No. 2013315768, Response filed Sep. 7, 2018 to Subsequent Examiners Report dated Sep. 3, 2018”, 19 pgs. |
“Australian Application Serial No. 2013315768, Subsequent Examiners Report dated Sep. 3, 2018”, 4 pgs. |
“Japanese Application Serial No. 2015-531988, Examiners Decision of Final Refusal dated Feb. 6, 2018”, (W/ English Translation), 9 pgs. |
“U.S. Appl. No. 13/797,385, Non Final Office Action dated Feb. 27, 2019”, 14 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Aug. 26, 2019 to Non Final Office Action dated Feb. 27, 2019”, 14 pgs. |
“Canadian Application Serial No. 2,884,009, Examiner's Rule 30(2) Requisition dated Jul. 11, 2019”, 4 pgs. |
“Chinese Application Serial No. 201710531878.1, Office Action dated Jul. 29, 2019”, with English translation, 14 pages. |
“Japanese Application Serial No. 2015-531988, Office Action dated Aug. 30, 2016”, w/ English Translation, 14 pgs. |
“Israel Application Serial No. 237609, Response filed Nov. 4, 2019 to Office Action dated Jul. 9, 2019”, 3 pages. |
“U.S. Appl. No. 13/797,385, Examiner Interview Summary dated Apr. 19, 2016”, 3 pgs. |
“U.S. Appl. No. 13/797,385, Examiner Interview Summary dated May 13, 2015”, 4 pgs. |
“U.S. Appl. No. 13/797,385, Final Office Action dated Feb. 3, 2015”, 16 pgs. |
“U.S. Appl. No. 13/797,385, Non Final Office Action dated Aug. 6, 2014”, 18 pgs. |
“U.S. Appl. No. 13/797,385, Non Final Office Action dated Nov. 17, 2015”, 16 pgs. |
“U.S. Appl. No. 13/797,385, Preliminary Amendment filed Mar. 12, 2013”, 6 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Apr. 18, 2016 to Non Final Office Action dated Nov. 17, 2015”, 14 pgs. |
“U.S. Appl. No. 13/797,385, Response filed May 7, 2015 to Final Office Action dated Feb. 3, 2015”, 12 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Jun. 18, 2014 to Restriction Requirement dated Apr. 30, 2014”, 6 pgs. |
“U.S. Appl. No. 13/797,385, Response filed Dec. 2, 2014 to Non Final Office Action dated Aug. 6, 2014”, 15 pgs. |
“U.S. Appl. No. 13/797,385, Restriction Requirement dated Apr. 30, 2014”, 6 pgs. |
“European Application Serial No. 13762714.7, Response filed Aug. 20, 2015 to Communication pursuant to Rules 161(1) and 162 EPC dated May 6, 2015”, 8 pgs. |
“International Application Serial No. PCT/US2013/058802, International Preliminary Report on Patentability dated Aug. 8, 2014”, 12 pgs. |
“International Application Serial No. PCT/US2013/058802, International Search Report dated Jan. 23, 14”, 2 pgs. |
“International Application Serial No. PCT/US2013/058802, Written Opinion dated Jan. 23, 2014”, 4 pgs. |
“Australian Application Serial No. 2019200020, First Examination Report dated Feb. 19, 2020”, 6 pages. |
“Canadian Application Serial No. 2,884,009, Office Action dated Jun. 2, 2020”, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20140080095 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61701416 | Sep 2012 | US |