The field of the present invention relates generally to implanted devices for tissue stimulation, monitoring, and other therapeutic or diagnostic functions, and specifically to implantable devices for the stimulation of cardiac tissue, for example pacemakers or implantable cardioverter-defibrillators (ICDs). More specifically, it pertains to such devices utilizing wireless energy transfer, for example using ultrasound energy.
Pacemakers provide electrical stimulus to heart tissue to cause the heart to contract and hence pump blood. Conventionally, pacemakers include a pulse generator, typically implantable in a patient's pectoral region, with one or more leads (wires) extending from the pulse generator into a heart chamber. The lead terminates at an electrode, which is implanted in the heart.
While pacemakers using leads are widely used, they have several drawbacks. For example, the gradual intertwining of leads with heart tissue over time secures the lead in place but also hinders lead removal or repositioning. Another drawback to using leads is the limit placed on the number of heart sites that may be stimulated. While pacing at multiple sites may be beneficial for treating different heart conditions such as congestive heart failure, arrhythmia and atrial fibrillation, using multiple leads may block a clinically significant fraction of the cross section of the veins and cavities through which the leads are routed.
Pacing systems using wireless electrodes have been suggested as a way of overcoming the limitations of conventional systems with leads, with wireless receiver-stimulator electrodes implanted into the heart wall and in wireless communication with transmitter(s) for energy delivery or for communication of control or feedback signals. The inventors of this patent application have proposed systems using implantable wireless electrodes that receive acoustic energy and convert it into electrical energy for electrically stimulating the heart. Such methods and systems have been disclosed in co-pending U.S. Patent Application Nos. (Publication No.) 20060136004, 20060136005, 20070027508, 20070055184, 20070078490 and 20070060961 and U.S. Ser. No. 11/752,775, which are herein incorporated by reference in their entirety. As another example, U.S. Patent Application No. (Publication No.) 2006/0085039 discloses a system using implantable wireless electrodes that receive energy via inductive coupling of a coil in the electrode to a radio frequency antenna attached to a central pacing controller.
When implanting a wireless receiver-stimulator, the choice of the implantation location is important for at least two reasons. First, it is desirable that the tissue in electrical contact with the stimulation electrodes of the receiver-stimulator be sufficiently excitable to allow efficient pacing stimulation by the receiver-stimulator. Secondly, it is desirable that the wireless receiver-stimulator be positioned relative to the wireless transmitter to allow efficient wireless communication between the two, particularly with respect to energy transmission and reception.
While the determination of the location in conventional systems with leads involves fairly straightforward techniques, such techniques do not translate directly for wireless pacing systems. In a conventional pacing system, determination of an excitable tissue location is customarily practiced by monitoring electrogram (EGM) signals at the implantation site and additionally by stimulating or pacing through the electrodes, before permanently implanting them in the patient. The user simply connects the proximal end of the pacing lead into a pacemaker programmer or other electrophysiology instrumentation that allows the user to monitor EGM signals from the electrodes on the lead and to stimulate through the electrodes on the lead to confirm that the implant location is appropriate.
In contrast, in a wireless system one obstacle is the lack of a direct connection to one or more of the electrodes for the monitoring of EGM signals. Additionally, stimulating through the wireless electrodes involves transmission of energy from a transmitter to a receiver-stimulator through a wireless process, whether for charging the receiver-stimulator or for transduction from wirelessly delivered energy to stimulation energy. This lumps two effects together: the efficiency of the wireless transfer of energy (by whatever means the system employs, such as acoustic energy, radio frequency (RF), or other means) and the properties and excitability of the tissue that the pacing electrodes are placed over. This could result in user confusion and potentially inaccurate determination of pacing thresholds and energy conversion efficiencies.
For example, in a conventional pacing system with leads, a high pacing threshold implies a poor location for placing the pacing electrodes. This may indicate, for example, that the electrodes are not in close proximity to the tissue or are placed over non-excitable tissue. A straightforward resolution of this problem is moving the electrode until an appropriate location is found. In contrast, in a wireless system a high energy level that is required to pace could be the result of inefficient or poor wireless transfer of energy from the transmitter to the receiver-stimulator, or, similar to the conventional pacing system, the result of a poor location of the receiver-stimulator not in close proximity to the tissue or over non-excitable tissue.
An extension of the above lead-based techniques to wireless stimulation systems comprises establishing electrical contact between one or more of the electrodes of an implantable wireless receiver-stimulator, a delivery system (such as a catheter or the like), and the tissue. Alternatively, surrogate electrodes on the delivery system, i.e., not the electrodes of the wireless receiver-stimulator, may be used for assessing whether the tissue is excitable. However, it requires the use of one or more of the electrodes of the implantable wireless receiver-stimulator to fully assess the efficient and effective transfer of energy to the receiver-stimulator from the transmitter. The desirable approach is to use one or more of the electrodes of the implantable wireless receiver-stimulator to sense local tissue EGMs in order to (1) determine a suitable implant location, as well as (2) determine efficiency of energy conversion by the wireless implant. For example, such a technique is partially suggested in the above referenced U.S. Patent Application (Publication No.) 2006/0085039. Another approach to determine the appropriate location for implantation of the electrodes is to observe the hemodynamic parameters of the heart upon stimulating a location. Such an approach is described in the Applicants' co-pending U.S. Patent Application (Publication No.) 2007/0060961. While this desirable approach may be constructed, it does give rise to a number of challenges.
First, once the wireless electrode is implanted, disconnected from the delivery system, and the delivery system is removed, any conductive material at the severed connection on the wireless implant, remaining exposed after disconnecting the delivery system from the electrode(s), presents a potential alternate electrical path between the implant electrodes and the exposed remains, allowing some or all of the stimulation current to bypass the desired stimulation path and thereby reduce or entirely undermine stimulation effectiveness.
Second, it is also desirable to be able to assess conversion efficiency in-situ, perhaps over a variety of energy transmission conditions. It would be desirable to perform this assessment while directly connected to one or more of the electrodes without requiring that the wireless implant deliver electrical output (stimulation energy) at sufficient strength to capture tissue. By monitoring the electrical energy output, the efficiency of transmission can be assessed and the likelihood of pacing capture can be correlated with the efficiency.
Therefore, it is desirable to have a wireless pacing system that allows the user to determine a suitable implant location and assess the efficiency of energy conversion prior to permanent implantation by using the pacing electrodes of the receiver-stimulator, and further eliminate exposed residual conductive material after removal of the delivery system.
Embodiments of the present invention are directed to wireless receiver-stimulator devices for cardiac stimulation. An implantable wireless receiver-stimulator is implanted into a location in the heart using a delivery system, which typically comprises a delivery catheter but may take other forms as well. The receiver-stimulator comprises a cathode and an anode, and is configured to receive energy delivered by a controller-transmitter. The receiver-stimulator converts the energy to electrical energy and delivers the electrical energy as pacing pulse (stimulation) energy, through the cathode and anode stimulation electrodes, which stimulates the heart. By practice, the cathode is typically the P− and the anode is typically the P+ for the stimulation electrodes.
The delivery system comprises conductive wires routed through the catheter which temporarily connect one or more of the electrodes of the receiver-stimulator to an external monitor and pacing controller. A first temporary electrical connection connects the delivery system with the receiver-stimulator's cathode, and a second temporary electrical connection connects the delivery system with the receiver-stimulator's anode. The system may be operated with a single temporary connection, preferably to the cathode, and an indifferent electrode, which may be a separate electrode acting as the anode (apart from the anode of the receiver-stimulator) that is integrated into the delivery system or on a separate device, or still further a body surface electrode. Temporary electrical connections allow the user to monitor the heart's electrical activity at a location in the heart as sensed by the receiver-stimulator's cathode and anode and determine whether the location indicates excitable heart tissue. Alternatively, combination of the temporary electrical connection between the receiver-stimulator's cathode and a monitoring system and a permanent electrical connection between the indifferent electrode and the monitoring system can also be used to determine whether the location indicates excitable heart tissue.
Once a receiver-stimulator is positioned at a heart location intended as the implant location, the heart tissue is stimulated using electrical stimulation energy from an external pacing controller delivered to the tissue through the receiver-stimulator's cathode and an anode via the temporary electrical connection(s), thereby allowing determination of an acceptable electrical pacing threshold at the location of the cathode prior to permanent attachment of the wireless receiver-stimulator to the heart wall.
The temporary electrical connection can also be used to determine the efficiency of conversion of energy to electrical stimulation energy by the receiver-stimulator at a given location in the heart. In one embodiment, this is accomplished by delivering acoustic energy from a wireless controller-transmitter or similar implantable or externally-applied acoustic transmitter to the wireless receiver-stimulator, converting the acoustic energy to electrical energy, and delivering electrical energy to the heart tissue through the receiver-stimulator's cathode and an anode, while monitoring the electrical energy using an external monitor connected to the electrodes via the temporary electrical connections through the delivery system. The electrical energy in this embodiment need not be at pacing strength, since conversion efficiency can be gauged even at lower energy levels. In an alternative embodiment, the heart is stimulated at pacing strength using the electrical energy that was converted from the acoustic energy, and the EGM generated by the stimulation of heart tissue is monitored using the temporary electrode connections on the receiver-stimulator or other electrodes, e.g., surface EKG electrodes or other electrodes mounted on the delivery system.
When a suitable implantation location is determined, the wireless receiver-stimulator is attached to the heart wall and the temporary electrical connections are disconnected using a disconnect mechanism. The disconnect mechanism is configured to prevent the creation of an unwanted secondary set of conductive areas on the receiver-stimulator.
In one embodiment, the disconnect mechanism seals an electrical contact point of the cathode temporary electrical connection on the receiver-stimulator from patient fluid or tissue. In another embodiment, the disconnect mechanism comprises a magnetically operated switch which opens when the delivery system is detached from the receiver-stimulator, thereby internally disconnecting the cathode temporary electrical connection contact point on the receiver-stimulator from the active electrodes of the receiver-stimulator. In other embodiments, the disconnect mechanism comprises bellows configured to stretch and disconnect the cathode temporary electrical connection when the delivery system is disconnected, or a conductive dome structure configured to pop out and disconnect the cathode temporary electrical connection when the delivery system is pulled away and disconnected.
The invention has other advantages and features which will be more readily apparent from the following detailed description of the invention and the appended claims, when taken in conjunction with the accompanying drawings, in which:
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details.
Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments. In general, features described in one embodiment might be suitable for use in other embodiments as would be apparent to those skilled in the art.
A wireless cardiac stimulation system is disclosed that allows the user to assess tissue viability for excitation at a location in the heart, determine an acceptable electrical pacing threshold at the location, and determine operational efficiency of a wireless cardiac stimulation system at the location, prior to permanent implantation of the wireless pacing device.
The delivery system 102 is positioned so that the R-S 103 at the distal tip 104 of the delivery system 102 is appropriately situated on a part of the heart wall 105 where the R-S 103 is to be attached/implanted. The insertion of the delivery system 102 may be facilitated by the use of a guidewire and/or a guiding catheter, as is known in the art. In addition, the movement of the delivery system 102 may be monitored fluoroscopically.
The wireless R-S 103 comprises a cathode 106 and an anode 110 for stimulating patient tissue, with the cathode 106 located at the distal tip of the R-S 103. The cathode is intentionally designed with a smaller surface area relative to the anode. This leads to higher current densities at the cathode, resulting in tissue stimulation at the cathode. Hence, the term cathode and stimulation electrode are interchangeably used. Additionally, the delivery system 102 comprises two temporary electrical connections between the R-S 103 and the delivery system 102: a first temporary electrical connection for establishing electrical contact with the cathode 106 and a second temporary electrical connection for establishing electrical contact with the anode 110. Alternatively, this may take the form of a single temporary electrical connection for establishing contact with the cathode 106 and the second electrical connection provided by an indifferent electrode 110C configured onto the delivery system (see
It is noted that on the R-S 103, any metal or conductive material on the cathode's temporary electrical connection contact point that remains exposed after the R-S 103 detaches from the delivery system 102 presents a potential for an alternate electrical path between the remaining conductive material and the anode. This could allow some or all of the stimulation current to bypass the desired path between the cathode 106 at the distal tip of the R-S 103 and the anode 110, at best reducing the efficiency of the wireless R-S 103 and at worst shunting energy away from the tissue and rendering the wireless R-S 103 ineffective. Therefore, various disconnect mechanisms for the cathode's temporary electrical connection are disclosed herein which isolate one or more electrical contact points of the cathode's temporary electrical connection on the wireless R-S 103. One particular embodiment comprises using a non-hermetically sealed enclosure around the cathode's temporary electrical connection contact point on the R-S 103. Another embodiment comprises using magnetic and/or mechanical switches internal to the R-S 103 for electrically isolating the cathode's temporary electrical connection contact point from the cathode itself. These and other embodiments are described in more detail below. The R-S 103 and the delivery system 102 will now be described in more detail.
The outside of the wireless R-S 103 housing serves as an anode 110 for stimulating the heart tissue. The anode 110 may comprise only a portion of the R-S 103 housing, or it may comprise the entire outer surface of the R-S 103 housing. The R-S 103 preferably comprises an endothelial growth promoting covering 132 which does not insulate the surface of the anode 110. For example, in one embodiment the covering 132 may comprise a polyester mesh.
The delivery system 102 comprises a flexible outer sheath 133 connected to a rigid collar 125 with flexible extensions or fingers 114. The fingers 114 are held by tubular extension 121 radially outwards into place around an indentation 120 of the R-S 103, thereby detachably attaching the delivery system 102 to the R-S 103. In one embodiment, the fingers 114 are made of a superelastic material, such as Nitinol, and configured to collapse radially inwards in the absence of a restrictive force and thereby release the R-S 103. Alternatively, the fingers 114 may comprise stainless steel, since it is contemplated that the strains experienced by such fingers 114 are small. A tubular extension 121 attached to the distal end of a retractable flexible wire coil 122 inside the sheath 133 provides such a restrictive force and holds the fingers 114 radially extended, preventing them from collapsing. To release the delivery system 102 from the R-S 103, the wire coil 122 and its tubular extension 121 are retracted, thereby allowing the fingers 114 to collapse and release the R-S 103.
Once the delivery system 102 has been maneuvered into place within the heart chamber, the wireless R-S 103, being disposed at the distal end of the delivery system 102, comes close to or contacts the heart wall 105 such that the cathode 106 is in electrical contact with the heart wall 105. The anode 110 may be in contact with the heart wall 105 or it may remain within the chamber of the heart. Alternatively, any other indifferent electrode (110C or 110P), e.g., one positioned on the outer sheath of the delivery system 102 or placed on the patient's body remote from the delivery system, respectively, may be used as an anode. The wireless R-S 103 can thus be repositioned by the delivery system 102 to assess electrical activity at various locations of the heart wall 105 using the cathode 106 and the anode 110 or indifferent electrode 110C or 110P.
During the implantation of the wireless R-S 103, temporary electrical connections from the delivery system 102 to the wireless R-S 103 electrodes are provided, one for the cathode 106 and one for the anode 110. The exploded view in the bottom panel in
While a direct temporary electrical connection is provided from the delivery system 102 to the anode 110 as described above, it is contemplated that a direct connection from the delivery system 102 to the cathode 106 located at the distal tip of the wireless R-S 103 may provide alternative current paths, or may impose complications in manufacturing, cost or reliability. Thus, a temporary electrical connection between the distal end of the delivery system 102 and the proximal end of the wireless R-S 103 housing is disclosed herein that provides a conductive path from the distal tip of the delivery system 102 via the needle assembly 115 to the cathode 106.
In one embodiment, this temporary electrical connection to the cathode 106 comprises an enclosure 117 configured around the neck segment 119 of the needle assembly 115. At its distal end, the enclosure 117 is tightly coupled to the needle assembly 115. Internally, the enclosure 117 comprises a seal 127 around the proximal segment 126 of the needle assembly 115. The seal 127 may be made of silicone, rubber or other flexible insulating material. The seal 127 need not necessarily be hermetic, but it is configured to provide high enough electrical resistance, for example in excess of 10,000 ohms, between the detached temporary electrical connection and the heart wall 105 or the fluid within the heart chamber to allow substantially any electrical current applied to the needle 115 to flow through the electrical path of the cathode 106 to the anode 110.
When the R-S 103 is permanently attached to the heart wall 105 and the delivery system 102 is to detach from the R-S 103, the conductive wire 123 is retracted into the delivery system 102, breaking the needle assembly 115 at the neck 119 and removing the proximal segment 126 of the needle assembly 115 from the enclosure 117. In such an embodiment, the two end points of the broken neck represent the two temporary electrical contact points for the temporary electrical connection between the catheter and the cathode. Upon removal of the proximal segment 126 from the enclosure 117, the seal 127 closes in around the hole left by the removed proximal segment 126, electrically isolating the remaining part of the needle assembly 115 (which includes the cathode temporary electrical connection contact point on the R-S 103) inside the sealed enclosure 117 from patient fluid and tissue.
We now turn to describing a sequence of states for the R-S 103 as it goes from introduction into the patient to final attachment to the heart wall 105. This sequence is shown in
In
In
The delivery system 102 is configured for use in the cardiovascular system of a patient and configured to be compatible with standard transvascular tools, such as introducers and guiding sheaths, and conventional techniques related to the operation of such tools.
The delivery system 102 comprises one or more safety mechanisms, interlocks, or indicators configured to prevent inadvertent attachment or release of the R-S 103.
As mentioned above, the delivery system 102 provides signal interconnect with an external monitor and pacing controller to facilitate location selection during an implant procedure by collecting local EGM signals, performing direct electrical pacing of the heart via electrical connections to one or more of the electrodes of the implantable R-S 103 device, and evaluating operational efficiency of the R-S 103.
In one embodiment, the delivery system shaft 140 is formed from polymer tubing. Conductive wires 143, deflection wires 147 and safety release interlock wires 146 are routed within the shaft 140. A proximal handle assembly 141 comprises a deflection control mechanism 142, a safety interlock release mechanism 145, and shrouded electrical connectors 144 that terminate the conductive wires 143 and permit driving the R-S 103 electrodes directly with an externally-generated electrical pacing pulse, as well as monitoring of cardiac EGM signals at the R-S 103 electrodes.
In one embodiment, the delivery system 102 is configured to attach the R-S in the left ventricle (LV) by prolapsing the shaft 140 in the aortic arch and advancing through the aortic valve of the heart atraumatically, thereby allowing access to targeted endocardial locations within the LV. The distal portion of the delivery system 102 is deflectable in one plane in at least one direction, through the handle-mounted deflection control system. The deflection control system holds a desired deflection angle. Similarly, in other embodiments the delivery system can be configured to attach the R-S in any heart chamber or on the epicardial surface of the heart or within the vasculature of the heart.
The delivery system 102 and/or R-S 103 may comprise one or more radiopaque markers at the distal end to allow fluoroscopic confirmation of the state of R-S 103 deployment. In one embodiment, the markers are configured to clearly differentiate between various stages of deployment, possibly including but not limited to: a) cathode retracted, b) cathode extended, c) attachment tines deployed, d) R-S 103 released, e) tether advanced, f) tether broken, and g) tether retracted.
In one embodiment, the delivery system 102 comprises a control mechanism to extend and retract the needle assembly 115 of the R-S 103. The control mechanism includes a safety mechanism to prevent accidental extension or retraction of the needle assembly 115. The control mechanism and/or the R-S 103 allows for locking the needle assembly 115 into the desired position (retracted or injected as shown in exemplary
The delivery system 102 comprises a control mechanism to activate the attachment mechanism of the R-S 103, as shown in exemplary
The delivery system 102 also comprises a control mechanism to release the R-S 103, as shown in exemplary
The control mechanism to release the R-S 103 incorporates multiple or multi-stage safety mechanisms to prevent inadvertent activation. The delivery system 102 and/or R-S 103 comprise reliable means to verify a secure implantation prior to permanent release.
The delivery system 102 also comprises a control mechanism to tether out (extend) the R-S 103 away from the main body of the delivery system 102, as shown in exemplary
The delivery system 102 also comprises a control mechanism to detach the tether and disconnect the temporary electrical connection from the R-S 103, as shown in exemplary
The delivery system 102 is removable from the vasculature by manual withdrawal through an introducer. Any enlargement or protrusion from the delivery system 102 as part of the R-S 103 release mechanism is retractable and/or reversible to allow removal. The delivery system 102 comprises conventional means to protect against accidental release of air into the vasculature or heart chamber before and after release of the R-S 103.
In one embodiment, the delivery system 102 is mated with an R-S 103 prior to packaging. The delivery system 102 and R-S 103 are mated and packaged with the cathode 106 locked in a retracted state. In one embodiment, a delivery system 102 with a pre-mated R-S 103 are packaged in a single-use sterile pouch or tray, and a catheter extension cable is packaged in the same single-use sterile pouch or tray with the delivery system 102 and R-S 103.
Once a location is determined to be excitable, the heart tissue is stimulated at step 456 using electrical stimulation energy from an external pacing controller delivered to the tissue through the cathode 106 in an injected state and an anode, possibly anode 110 of the R-S 103, thereby allowing determination of an acceptable electrical pacing threshold at the location prior to permanent attachment of the R-S 103 to the heart wall. If the pacing threshold is not acceptable, the R-S 103 is repositioned and the above steps are repeated until an acceptable pacing threshold is found.
At step 460, a wireless controller-transmitter (not shown) delivers acoustic energy to the wireless R-S 103, which in turn delivers electrical energy converted by the R-S 103 from the acoustic energy to the heart tissue through the cathode 106 in an injected state and necessarily the anode 110. At the same time, an external monitor, connected at least to the R-S 103 cathode 106 via the temporary electrical connection and to an indifferent electrode, possibly the anode 110 via its temporary electrical connections or alternatively an indifferent electrode 110C on the delivery system 102 or the indifferent electrode 110P, monitors and quantifies the delivered electrical energy at step 462 to determine the efficiency of conversion of acoustic energy to electrical energy by the R-S 103 at the current location and position in the heart.
As can be understood, electromagnetic energy (e.g., RF), could also be delivered wirelessly to the receiver-stimulator and the rest of the features and functionalities of the delivery system disclosed here could be used to identify the optimal location for the implant to efficiently stimulate heart tissue.
In one embodiment, the delivered electrical energy is at pacing strength to stimulate the tissue and the EGM generated by the stimulation of heart tissue is monitored using the temporary electrical connections to the cathode 106 and anode 110 to determine acoustic to electrical conversion efficiency. In an alternative embodiment, the delivered electrical energy is not at pacing/stimulation strength, but instead is at a level below the stimulation threshold; hence conversion efficiency can be gauged even at lower energy levels. In such an alternative embodiment, electrical monitoring via the temporary electrical connections to the cathode 106 and an anode, possibly the anode 110 via its temporary electrical connections or alternatively an indifferent electrode 110C on the delivery system 102 or indifferent electrode 110P that is remote from the delivery system, indicates the level of electrical energy generated by the R-S 103. A comparison of this level of generated electrical energy against the amount of acoustic energy transmitted to the R-S 103 indicates the conversion efficiency of the R-S 103.
When a suitable implantation location is determined, at step 466 the R-S 103 is attached to the heart wall in the triggered state, and at step 468 the temporary electrical connections to the cathode 106 and anode 110 are disconnected using a disconnect mechanism as the R-S 103 goes through the sequence of released state, tethered state, tether broken state, and delivered state, as described above in
While the above exemplary embodiments of the R-S 103 shown in
The connector receptacle 203 is at the proximal end of the needle assembly 115 and is electrically connected to the cathode 106 via the needle assembly 115. A seal 206 covers the connector receptacle 203 and comprises a hole or slit 207 to allow the conductive wire 123 of the delivery system 102 to pass through and electrically connect to the cathode 106 (via the connection to the connector receptacle 203). The distal tip of the conductive wire 123 represents the electrical contact at a distal position of the catheter assembly 102. This is shown in
In one embodiment, the seal 206 is compressed so that the hole or slit 207 is forced closed when the wire 123 is withdrawn, thereby isolating the connector receptacle 203 and the needle assembly 115 from patient fluid or tissue. The seal 206 need not necessarily be hermetic, but it is configured to provide high enough electrical resistance through the temporary electrical path to the connector receptacle 203 to allow substantially any electrical current to flow through the electrical path of the cathode 106 to the anode 110.
Instead of a seal, a magnetically operated switch internal to the wireless R-S 103 can be used to electrically connect the wire 123 to the cathode 106.
One or more springs 213 push the disk 212 away and hold the switch 211 open when the catheter magnet 210 detaches from R-S 103 and is withdrawn, at which point the switch 211 opens and the temporary electrical connection from the cathode 106 to the feed-through 204 is disconnected.
The bellows 301 is initially configured such that the outside lead 305 is in electrical contact with the inside lead 304 at the electrical contact point 302 as shown in
The conductive dome structure 310 is initially configured such that it is in electrical contact with the inside lead 313 at the electrical contact point 312 as shown in
In an alternative embodiment, the disconnect mechanism comprises a fuse internal to the R-S 103. Once a suitable implant location has been determined and the R-S 103 has been attached to the heart, the fuse is opened (blown) by delivering sufficient current through the conductive wire 123 of the delivery system 102. The opened fuse disconnects the temporary electrical connection to the cathode 106. Alternatively, the disconnect mechanism may comprise an electronic switch internal to the R-S 103 which when activated disconnects the temporary electrical connection to the cathode 106.
Although the detailed description contains many specifics, these should not be construed as limiting the scope of the invention but merely as illustrating different examples and aspects of the invention. It should be appreciated that the scope of the invention includes other embodiments not discussed in detail above. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as described here.
The present application is a continuation of U.S. patent application Ser. No. 15/043,210, filed Feb. 12, 2016, now U.S. Pat. No. 9,907,968, which is a divisional of U.S. patent application Ser. No. 12/890,308, now U.S. Pat. No. 9,283,392, filed Sep. 24, 2010, which is a continuation of International Patent Application No. PCT/US2009/037978, filed Mar. 23, 2009, which claims the benefit of provisional U.S. Application No. 61/039,335, filed Mar. 25, 2008, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3057356 | Greatbatch | Oct 1962 | A |
3659615 | Carl | May 1972 | A |
3693627 | Berkovits | Sep 1972 | A |
3698398 | Berkovits | Oct 1972 | A |
3735756 | Richards et al. | May 1973 | A |
3832994 | Bicher et al. | Sep 1974 | A |
3835865 | Bowers | Sep 1974 | A |
3857382 | Williams et al. | Dec 1974 | A |
3893461 | Preston | Jul 1975 | A |
3939844 | Pequignot | Feb 1976 | A |
3942534 | Allen et al. | Mar 1976 | A |
4181133 | Kolenik et al. | Jan 1980 | A |
4256115 | Bilitch | Mar 1981 | A |
4265228 | Zoll | May 1981 | A |
4280502 | Baker, Jr. et al. | Jul 1981 | A |
4343312 | Cals et al. | Aug 1982 | A |
4373531 | Wittkampf et al. | Feb 1983 | A |
4399818 | Money | Aug 1983 | A |
4498478 | Bourgeois | Feb 1985 | A |
4561442 | Vollmann et al. | Dec 1985 | A |
4577633 | Berkovits et al. | Mar 1986 | A |
4651716 | Forester et al. | Mar 1987 | A |
4651740 | Schroeppel | Mar 1987 | A |
4690144 | Rise et al. | Sep 1987 | A |
4830006 | Haluska et al. | May 1989 | A |
5018523 | Bach, Jr. et al. | May 1991 | A |
5063928 | Grevis et al. | Nov 1991 | A |
5103129 | Slayton et al. | Apr 1992 | A |
5113859 | Funke | May 1992 | A |
5165403 | Mehra | Nov 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5174289 | Cohen | Dec 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5292338 | Bardy | Mar 1994 | A |
5377166 | Kuhn | Dec 1994 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5433731 | Hoegnelid et al. | Jul 1995 | A |
5557210 | Cappa | Sep 1996 | A |
5674251 | Combs et al. | Oct 1997 | A |
5749909 | Schroeppel et al. | May 1998 | A |
5751539 | Stevenson et al. | May 1998 | A |
5757104 | Getman et al. | May 1998 | A |
5766227 | Nappholz et al. | Jun 1998 | A |
5782880 | Lahtinen et al. | Jul 1998 | A |
5800464 | Kieval | Sep 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5817130 | Cox et al. | Oct 1998 | A |
5843136 | Zhu et al. | Dec 1998 | A |
5844349 | Oakley et al. | Dec 1998 | A |
5871506 | Mower | Feb 1999 | A |
5935158 | Holmstrom et al. | Aug 1999 | A |
5978204 | Stevenson | Nov 1999 | A |
5998910 | Park et al. | Dec 1999 | A |
6037704 | Welle | Mar 2000 | A |
6070101 | Struble et al. | May 2000 | A |
6078837 | Peterson et al. | Jun 2000 | A |
6110098 | Renirie et al. | Aug 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6208894 | Schulman et al. | Mar 2001 | B1 |
6223079 | Bakels et al. | Apr 2001 | B1 |
6233484 | Ben-Haim et al. | May 2001 | B1 |
6236887 | Ben-Haim et al. | May 2001 | B1 |
6264611 | Ishikawa et al. | Jul 2001 | B1 |
6285906 | Ben-Haim et al. | Sep 2001 | B1 |
6298268 | Ben-Haim et al. | Oct 2001 | B1 |
6317631 | Ben-Haim et al. | Nov 2001 | B1 |
6330475 | Renirie et al. | Dec 2001 | B1 |
6330476 | Ben-Haim et al. | Dec 2001 | B1 |
6363279 | Ben-Haim et al. | Mar 2002 | B1 |
6366816 | Marchesi | Apr 2002 | B1 |
6408205 | Renirie et al. | Jun 2002 | B1 |
6424234 | Stevenson | Jul 2002 | B1 |
6425869 | Rafter et al. | Jul 2002 | B1 |
6428484 | Battmer et al. | Aug 2002 | B1 |
6439236 | Porter et al. | Aug 2002 | B1 |
6442424 | Ben-Haim et al. | Aug 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6463324 | Ben-Haim et al. | Oct 2002 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6527729 | Turcott | Mar 2003 | B1 |
6534895 | Kadota et al. | Mar 2003 | B2 |
RE38119 | Mower | May 2003 | E |
6584358 | Carter et al. | Jun 2003 | B2 |
6600955 | Zierhofer | Jul 2003 | B1 |
6628989 | Penner et al. | Sep 2003 | B1 |
6645145 | Dreschel et al. | Nov 2003 | B1 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6654638 | Sweeney | Nov 2003 | B1 |
6671547 | Lyster et al. | Dec 2003 | B2 |
6687538 | Hrdlicka et al. | Feb 2004 | B1 |
6707230 | Smith et al. | Mar 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6725093 | Ben-Haim et al. | Apr 2004 | B1 |
6728576 | Thompson et al. | Apr 2004 | B2 |
6754528 | Bardy et al. | Jun 2004 | B2 |
6754531 | Kroll et al. | Jun 2004 | B1 |
6764446 | Wolinsky et al. | Jul 2004 | B2 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6795732 | Stadler et al. | Sep 2004 | B2 |
6798716 | Charych | Sep 2004 | B1 |
6834204 | Ostroff et al. | Dec 2004 | B2 |
6856835 | Bardy et al. | Feb 2005 | B2 |
6970742 | Mann et al. | Nov 2005 | B2 |
6983185 | Ley et al. | Jan 2006 | B2 |
7010350 | Kralik | Mar 2006 | B2 |
7024248 | Penner et al. | Apr 2006 | B2 |
7043292 | Tarjan et al. | May 2006 | B2 |
7160258 | Imran et al. | Jan 2007 | B2 |
7198603 | Penner et al. | Apr 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7283874 | Penner | Oct 2007 | B2 |
7349740 | Soykan et al. | Mar 2008 | B2 |
7489967 | Von Arx et al. | Feb 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
8007227 | Rogall et al. | Aug 2011 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
9283392 | Moore et al. | Mar 2016 | B2 |
9907968 | Moore et al. | Mar 2018 | B2 |
20020077673 | Penner et al. | Jun 2002 | A1 |
20030013974 | Natarajan et al. | Jan 2003 | A1 |
20040015104 | Goldberger | Jan 2004 | A1 |
20040064166 | Thompson | Apr 2004 | A1 |
20040106959 | Schmidt et al. | Jun 2004 | A1 |
20040162501 | Imran | Aug 2004 | A1 |
20040167580 | Mann et al. | Aug 2004 | A1 |
20040172083 | Penner | Sep 2004 | A1 |
20040204744 | Penner et al. | Oct 2004 | A1 |
20040243192 | Hepp et al. | Dec 2004 | A1 |
20040260214 | Echt et al. | Dec 2004 | A1 |
20040260346 | Overall et al. | Dec 2004 | A1 |
20050065426 | Porat et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20060009831 | Lau et al. | Jan 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060136005 | Brisken et al. | Jun 2006 | A1 |
20060224067 | Giftakis et al. | Oct 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070032749 | Overall et al. | Feb 2007 | A1 |
20070055184 | Echt et al. | Mar 2007 | A1 |
20070060961 | Echt et al. | Mar 2007 | A1 |
20070067000 | Strother et al. | Mar 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070150009 | Kveen et al. | Jun 2007 | A1 |
20070232936 | Mann et al. | Oct 2007 | A1 |
20070260286 | Giftakis et al. | Nov 2007 | A1 |
20070265677 | Giftakis et al. | Nov 2007 | A1 |
20070293912 | Cowan et al. | Dec 2007 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
4330680 | Mar 1995 | DE |
2265166 | Dec 2010 | EP |
WO-9725098 | Jul 1997 | WO |
WO-9961058 | Dec 1999 | WO |
WO-0176687 | Oct 2001 | WO |
WO-03070323 | Aug 2003 | WO |
WO-2007149936 | Dec 2007 | WO |
WO-2008147703 | Dec 2008 | WO |
WO-2009120636 | Oct 2009 | WO |
Entry |
---|
European search report dated Jun. 7, 2010 for EP Application No. 08755507.4. |
International search report and written opinion dated Jul. 17, 2008 for PCT/US2008/063669. |
Notice of allowance dated Oct. 25, 2017 for U.S. Appl. No. 15/043,210. |
Notice of allowance dated Dec. 24, 2013 for U.S. Appl. No. 11/752,775. |
Office action dated Jan. 12, 2017 for U.S. Appl. No. 15/043,210. |
Office action dated Jun. 2, 2010 for U.S. Appl. No. 11/752,775. |
Office action dated Jun. 10, 2013 for U.S. Appl. No. 11/752,775. |
Office action dated Jun. 30, 2016 for U.S. Appl. No. 14/221,040. |
Office action dated Aug. 7, 2009 for U.S. Appl. No. 11/752,775. |
Office action dated Aug. 31, 2011 for U.S. Appl. No. 11/752,775. |
Office action dated Sep. 19, 2017 for U.S. Appl. No. 14/221,040. |
Office action dated Oct. 22, 2015 for U.S. Appl. No. 14/221,040. |
Abraham et al., for the Miracle study group, “Cardiac Resynchronization in Chronic Heart Failure,” N Engl J Med, 2002;346:1845-53. |
ACC/AHA Task Force on Practice Guidelines, “Evaluation and Management of Chronic Heart Failure in the Adult,” JACC 2002;38:2101-13. |
Allessie et al., “Regional Control of Atrial Fibrillation by Rapid Pacing in Conscious Dogs,” Circulation 1991;84:1689-97. |
Ansalone et al., “Bi-ventricular Pacing I Heart Failure:Back to Basics in the Pathophysiology of Left Bundle Branch Block to Reduce the No. Of Nonresponders,” Am J Cardiol 2003;91:55F-61F. |
Auricchio et al., “Cardiac Resynchronization Therapy: Current State of the Art,” Circulation 2004;109:300-307. |
Bardy, et al. The Totally Subcutaneous ICD System (The S-ICD). PACE. 2002; 24,578. |
Becker et al, “Suppression of Atrial Fibrillation by Multisite and Septal Pacing in a Novel Experimental Model”, Cardiovascular Research 2001;54(2):476-481. |
Bradley, et al. Cardiac resynchronization and death from progressive heart failure: a meta-analysis of randomized controlled trials. JAMA. Feb. 12, 2003;289(6):730-40. |
Camm, et al. Chapter 6: Nonpharmaceutical treatment of atrial fibrillation, In Atrial Fibrillation. Facts from Yesterday—Ideas for tomorrow. Futura Publishing Company, Inc., Armonk, NY, 1994, pp. 125-147. |
Dalecki, et al. Effects of Pulsed Ultrasound on the Frog Heart: I. Thresholds for Changes in Cardiac Rhythm and Aortic Pressure. Ultrasound in Med. & Biol. 1993; 19:385-390. |
Dalecki et al., “Effects of Pulsed Ultrasound on the Frog Heart: II. An Investigation of Heating as a Potential Mechanism,” Ultrasound in Med. & Biol. 1993; 19:391-398. |
Dalecki et al., “Thresholds for premature ventricular contractions in frog hearts exposed to lithotripter fields,” Ultrasound in Med. & Biol. 1991; 17:341-346. |
Daoud, et al. Implantation techniques and chronic lead parameters of biventricular pacing dual-chamber defibrillators. J Cardiovasc Electrophysiol. Oct. 2002;13(10):964-70. |
Daubert, et al. Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin Electrophysiol. Jan. 1998;21(1 Pt 2):239-45. |
Daubert, et al. Use of Specifically Designed Coronary Sinus Leads for Permanent Left Ventricular Pacing: Preliminary Experience. PACE, 1997; 20: II—NASPE Abstract 17, Apr. 1997. |
David Trial Investigators, The Dual Chamber and Wi Implantable Defibrillator (DAVID) Trial, JAMA 2002;288:3115-3123. |
Deshmukh et al. “Direct His-bundle pacing: present and future,” PACE 2004;27 [Pt.11]:862-70. |
Ellenbogen et al., “Detection and Management of an Implantable Cardioverter Defibrillator Lead Failure,” JACC. 2003;41:73-80. |
European search report and search opinion dated Oct. 4, 2011 for Application No. 9725046.8. |
Feldman et al, “Comparison of medical therapy, resynchronization and defibrillation therapies in heart failure trial (Companion),” Presented at ACC 2003 Late Breaking Clinical Trials, 1 page. |
Franz, “Mechano-electrical feedback in ventricular myocardium,” Cardiovascular Research. 1996; 32:15-24. |
Gregoratos, et al. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Circulation. 2002; 106:2145-2161. |
Hu et al., “Stretch-Activated Ion Channels in the Heart,” J. Mot. Cell Cardiol. 1997; 29:1511-1523. |
International search report and written opinion dated May 18, 2009 for PCT/US2009/037978. |
Johnson et al., “Adaptive Pacing During Ventricular Fibrillation,” PACE 2003;26:1824-36. |
Kalman J.M. et al, “Regional Entrainment of Atrial Fibrillation in Man”, J Cardiovasc Electrophysiol 1991;7:867-76. |
Kass et al., “Improved Left Ventricular Mechanics from Acute VDD Pacing in Patients with Dilated Cardiomyopathy and Ventricular Conduction Delay,” Circulation 1999;99:1567-73. |
Kenknight, et al. Regional Capture of Fibrillating Ventricular Myocardium. Circ Res 1999;77:849-55.retrieve from the Internet: circres.ahajournals.org/cgi/content/full/77/4/849. |
Kohl et al., Stretch-Induced Changes in Heart Rate and Rhythm: Clinical Observations, Experiments and Mathematical Models. Progress in Biophysics & Molecular Biology, 1999; 71:91-138. |
Kohl et al., “Sudden Cardiac Death by Commotio Cordis: Role of Mechano-Electrical Feedback,” Cardiovascular Research, 2001; 50:280-289. |
Leclercq, et al. Is Dual Site Better than Single Site Atrial Pacing in the Prevention of Atrial Fibrillation? PACE 2000;23:2102-7. |
Leclercq et al., “Systolic Improvement and Mechanical Resynchronization does not Require Electrical Synchrony in the Dilated Failing Heart with Left Bundle-Branch Block”, Circulation 2002;106:1760-1763. |
Leclerq, et al. Acute Hemodynamic Effects of Biventricular DDD Pacing in Patients with End-Stage Heart Failure. JACC 1998;32:1825-1831. |
Lee et al., “Effect of implantable Defibrillators of Arrhythmic Events and Mortality in the Multicenter Unsustained Tachycardia Trial,” Circulation. 2002; 106:233-238. |
Linde et al., “Long-Term Benefits of Biventricular Pacing in Congestive Heart Failure: From the Multisite Stimulation in Cardiomyopathy (MUSTIC) Study”, J Am Coll Cardiol 2002;40:111-118. |
Marrouche, et al. Nonexcitatory stimulus delivery improves left ventricular function in hearts with left bundle branch block. J Carcovasc Electrophysiol. 2002; 13(7):691-695. |
Mcpherson, et al. Seizing the Science of Ultrasound Beyond Imaging and Into Physiology and Therapeutics. Journal of the American College of Cardiology 2003;41:1628-30. |
Meltzer, et al. Therapeutic Cardiac Ultrasound. American Journal of Cardiology. 1991;67:422-4. |
Miracle Trial Investigators, “Combined Cardiac Resynchronization and Implantable Cardioversion Defibrillation in Advanced Heart Failure: the Miracle ICD Trial,” JAMA 2003;289:2685-2694. |
Mirza et al, “Biatrial Pacing for Paroxysmal Atrial Fibrillation”, J Am Coll Cardiol 2002;40:457-463. |
Miyamoto, et al. Coronary Vasodilation by Noninvasive Transcutaneous Ultrasound an in ivo Canine Study. Journal of the American College of Cardiology. 2003;41:1623-7. |
Mohri, et al. Cardiac Contractility Modulation by electric Currents Applied During the Refractory Period. Am J Physiol Heart Ciro Physiol. 2002;282:H1642-1647. |
Mond. Selective Site Pacing: The Future of Cardiac Pacing? PACE 2004;27:835-836. |
Mortimer, et al. Letter to the Editor: Altered Myocardial Contractility with Pulsed Ultrasound. Ultrasound in Med and Biol. 1987;13(9):L567-9. |
Moss et al., “Prophylactic Implantation of a Defibrillator in Patients with Myocardial Infarction and Reduced Ejection Fraction,” N Engl J Med. 2002; 346:877-933. |
Niehaus et al., “Non-Contact Cardiac Stimulation with locused Ultrasound Pulses,” PACE 2003: 26:1023. |
Nielsen et al., “A Randomized Comparison of Atrial and Dual-Chambered Pacing in 177 Consecutive Patients With Sick Sinus Syndrome,” J Am Coll Cardiol 2003;42:614-623. |
Nishida, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation. 2004;110:3055-3061. |
Nolte, et al. Mechanically Induced Ventricular Extrasystoles in the Isolated Perfused Guinea-Pig Heart. Arzneim.-Forsch/Drug Research. 1987; 37(11): 1025-1029. |
Notice of allowance dated Nov. 10, 2015 for U.S. Appl. No. 12/890,308. |
Office action dated Feb. 12, 2013 for U.S. Appl. No. 12/890,308. |
Office action dated Mar. 23, 2015 for U.S. Appl. No. 12/890,308. |
Office action dated May 27, 2014 for U.S. Appl. No. 12/890,308. |
Office action dated Jul. 8, 2012 for U.S. Appl. No. 12/890,308. |
Pappone, et al. Cardiac Contractility Modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2002;90(12):1307-1313. |
Pappone, et al. First Human Chronic Experience with Cardiac Contractility Modulation by Nonexcitatory Electrical Currents for Treating Systolic Heart Failure: Mid-Term Safety and Efficacy Results from a Multicenter Study. J Cardiovasc Electrophysiol 2004;15:418-427. |
Peschar et al., “Left Ventricular Septal and Apex Pacing for Optimal Pump Function in Canine Hearts,” J Am Coll Cardiol, 2003;41:1218-26. |
Reiter et al.., “Effects of Mechano-Electrical Feedback: Potential Arrhythmogenic Influence in Patients With Congestive Heart Failure,” Cardiovascular Research, 1996; 32:44-51. |
Smailys et al., “Investigation of the Possibilities of cardiac Defibrillation by Ultrasound,” Resuscitation, 1981; 9:233-242. |
Sowton, “Clinical Results with the Tachylog Antitachycardia Pacemaker”, PACE 1984; 7(Part II):1313-1317. |
Soykan. Automated Piecewise Linear Modeling of Pacing Leads. Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE (Nov. 3-6 1994); vol. 1, pp. 53-54. |
Stix, et al. Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. European Heart J 2004;25:650-655. |
Suchkova, et al. Ultrasound improves tissue perfusion in ischemic tissue through a nitric oxide-dependent mechanism. Throm Haemost. 2002;88:865-70. |
Tacker. Chapter 1: Fibrillation causes and criteria for defibrillation. In Defibrillation of the Heart. Tacker, WA, ed. Mosby-Year Book, Inc., St. Louis, Missouri, 1994, pp. 1-14. |
The Antiarrhythmics Versus Implantable Defibrillators (AVID) Investigators, “A Comparison of Antiarrhythmic Drug Therapy with Implantable Defibrillators in Patients Resuscitated from Near Fatal Ventricular Arrhythmias,” N Engl J Med. 1997; 337:1576-1583. |
Valls-Bertault et al., “Adverse Events with Transvenous Left Ventricular Pacing in Patients with Severe Heart Failure: Early Experience from a Single Centre,” Europace, 2001;3:60-63. |
Warren et al., “Clinical Evaluation of Automatic Tachycardia Diagnosis by an Implanted Device”, PACE 1986;9 (Part II):1079-1083. |
Zakharov, et al. The action of Ultrasound on the Contraction Strength and Cation Potential of the Papillary Muscle of the Rat Heart. Biul Eksp Biol Med. Apr. 1989; 107(4):423-6. |
Zakharov, et al. The Effect of Acoustic Cavitation on the Contraction Force and Membrane Potential of Rat Papillary Muscle. Ultrasound Med. Biol. 1989; 15 (6):561-5. |
Number | Date | Country | |
---|---|---|---|
20180280704 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
61039335 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12890308 | Sep 2010 | US |
Child | 15043210 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15043210 | Feb 2016 | US |
Child | 15878237 | US | |
Parent | PCT/US2009/037978 | Mar 2009 | US |
Child | 12890308 | US |