The present invention relates to weather protection and isolation of buildings during construction time and particularly to a temporary wall element.
In a typical building site of a multi-storey apartment or office building the building frame is erected first and exterior walls are constructed later on. Especially in tall buildings the building frame can be without exterior walls for a long time in the top-most floors which are also subject to harsh weather conditions.
Typical solution is to fix a plank to a floor and to a ceiling and stretch a sheet of plastic between them to keep most of the rain and the wind outside. In upper floors a parapet or a balustrade is also needed to prevent workmen from falling down and injuring themselves.
One of the problems associated with the above arrangement is that these arrangements are burdensome to build and demolish. Heat and sound insulation are poor and during wintertime a constant room temperature is difficult to arrange into such a building site which means that temperature-sensitive indoor work can't be started before the exterior walls have been built.
An object of the present invention is thus to provide an arrangement so as to alleviate the above disadvantages. The objects of the invention are achieved by an arrangement which is characterized by what is stated in the independent claim. The preferred embodiments of the invention are disclosed in the dependent claims.
The invention is based on the idea of a wall element having two sets of columns with panel between the columns so that the columns of the first set and the second set are within each other so that the wall element can be extended and contracted, depending on the room height, in such a way that the wall panels cover the area between columns and form a substantially continuous wall from floor to ceiling.
An advantage of the wall element of the invention is that a temporary wall can be erected quickly and easily to arbitrary room with a number of wall elements without needing any tools. The wall elements are reusable and the wall panels can be changed if better insulation, lighter weight or other properties are desired.
In the following the invention will be described in greater detail by means of preferred embodiments with reference to the accompanying drawings, in which
The wall element of
Both inner columns 11a, 11b have a fixed support 14a, 14b for holding a wall panel. The fixed support is preferably a continuous profile extending along the inner column for substantially the whole length of the inner column. The fixed support has preferably a slot or a cavity for housing an edge of a wall panel. In an embodiment the fixed support is arranged to house wall panels of different thicknesses wherein gaskets 18 are arranged between the fixed supports and the wall panels to secure the wall panel to the fixed support.
The wall element also has a first wall panel 16 arranged between the fixed supports 14a, 14b. The wall panel is preferably made of cellular or honeycomb board to reduce weight and improve insulation. In an embodiment the wall panel is a polycarbonate cellular board. In an embodiment the wall panel has a thickness between 6 and 32 millimeters. In an embodiment the wall panel has a thickness up to 40 millimeters. In an embodiment the wall panel has a thickness from 12 millimeters.
The wall element comprises also two outer columns 10a, 10b partially surrounding the two inner columns 11a, 11b. The outer columns can be for example in the form of the letter C or a rectangular pipe with one side cut open. It is important that the inner columns 11a, 11b fit inside the outer columns 10a, 10b, though not necessarily length-wise. When the wall element is in use, the inner columns 11a, 11b and the outer columns 10a, 10b are in vertical position in longitudinal direction pointing from a floor to a ceiling or vice versa. The inner columns and outer columns are near the horizontal ends i.e. sides of the wall element. The columns are preferably made of metal, such as aluminium or steel, or plastics, such as polycarbonate. In an embodiment the columns are not pipes but profiles providing enough strength to the column structure.
Like the inner columns, also both outer columns 10a, 10b have a fixed support 15a, 15b for holding a wall panel. The fixed support is preferably a continuous profile extending along the outer column for substantially the whole length of the inner column. The fixed support has preferably a slot or a cavity for housing an edge of a wall panel. In an embodiment the fixed support is arranged to house wall panels of different thicknesses wherein gaskets 18 are arranged between the fixed supports and the wall panels to secure the wall panel to the fixed support.
Finally the wall element has a second wall panel 17 arranged between the fixed supports 15a, 15b of the outer columns. The wall panel is preferably made of cellular or honeycomb board to reduce weight and improve insulation. In an embodiment the wall panel is a polycarbonate cellular board. In an embodiment the wall panel has a thickness between 6 and 32 millimeters. In an embodiment the wall panel has a thickness up to 40 millimeters. In an embodiment the wall panel has a thickness from 12 millimeters.
The wall element can be extended and contracted depending on the room height where the wall element is used. The two inner columns 11a, 11b and the two outer columns 10a, 10b are at least partially within each other and configured to be moved relative to each other in the longitudinal direction of the columns 10a, 10b, 11a, 11b so as to adjust the length of the wall element to match the room height of the building site to be isolated. In an embodiment the wall element comprises at least one spring which is arranged to exert a force between the two inner columns 11a, 11b and the two outer columns 10a, 10b to move them relative to each other in the longitudinal direction of the columns 10a, 10b, 11a, 11b so as to secure the wall element between a floor and a ceiling. Preferably the wall element comprises a spring between each inner column and outer column so that the spring is loaded when the wall element is pushed in to its contracted state and locked in the contracted state. When released, the spring force extends the wall element and pushes opposing ends of the wall element against the floor and the ceiling. In an embodiment the wall element comprises a non-slip surface on the outer surfaces which are arranged to be placed against the floor or the ceiling. The non-slip surface may be for example corrugated rubber or silicone.
The first wall panel 16 and the second wall panel 17 are preferably close to each other when the wall element is in its contracted state. When the wall element is extended, the first wall panel 16 and the second wall panel 17 form a substantially even vertical wall with a small discontinuation and a gap between the wall panels. If a maximum insulation and/or air tightness is important the gap between the wall panels can be covered with e.g. a sticky tape. In an embodiment the gap between the wall panels 16, 17 has been made dust proof by using a felt gasket or felt seal. The felt gasket or seal is compressible but does not provide as much friction as rubber gaskets and seals and thereby allows the wall panels to slide against the felt gasket. The felt gasket is preferably fixed to the first wall panel 16 on the side that is facing the second wall panel 17 or to the second wall panel 17 on the side that is facing the first wall panel 16.
In an embodiment the wall elements are used in renovation sites to define a ‘clean room’ and a ‘dirty room’. While the renovation work is being done at the dirty room, normal living conditions should be maintained at the clean room which is on the other side of a temporary wall made of wall elements. Thus it is vital that the temporary wall is at least essentially dust proof so that the dust caused by the renovation or construction work does not spread to the clean room. In addition to the seals which seal the wall panels and essentially the wall element by itself, additional seals and gaskets are needed to seal the outer periphery of the wall element. A sealing gasket is applied on the top and bottom surfaces of the wall element for dust proof seal. In an embodiment the non-slip surface on the top and bottom of the wall element is applied on the whole upper and lower surface of the wall element so that the non-slip surface itself provides for a dust proof seal between both the wall element and the floor, and the wall element and the ceiling. Furthermore, the sides of the wall element which are against neighbouring wall elements need to be sealed to prevent leaking between two wall elements. Preferably a continuous sealing gasket runs through the whole length from floor to ceiling on at least one side of the wall element so that the sealing gasket seals any small gaps between two neighbouring wall elements.
Occasionally people, tools or materials have to be moved through temporary walls during renovation or construction. In an embodiment one or more wall elements or a temporary wall can be equipped with a hatch or a door. Said hatch or door may be e.g. hinged to the lower wall panel, e.g. the first wall panel 16. The wall element which has a door may need to be wider than other wall panels, e.g. 1200 mm wide instead of 600 mm or 900 mm. Also the upper wall panel, e.g. the second wall panel 17, may need to be cut to a lower height than in normal wall panels so that it wouldn't lower the doorway too much in sites with low room height. Since the wall panels are interchangeable, only the second wall panel 17 needs to be changed if the room height changes significantly between sites which will use the same door element.
In an embodiment the wall element comprises a guide 12 for partially accommodating a column of similar neighbouring wall element. The guide may comprise for example protrusions extending along both sides of column 10a so that the column 10b of the neighbouring wall element can be placed between the protrusions so as to obtain a continuous wall from multiple neighbouring wall elements. Also other suitable guides can be used.
The pin and aperture adjustment is not accurate enough to match the room height of the building site to be isolated. It can be used to extend the height of the wall element until the wall element is a few centimeters shorter than the room height. The remaining adjustment and a force that pushes the wall element against the floor and the ceiling are achieved with a spring arrangement. The spring arrangement is arranged to exert a force between the two inner columns 11a, 11b and the two outer columns 10a, 10b to move them relative to each other in the longitudinal direction of the columns 10a, 10b, 11a, 11b so as to secure the wall element between a floor and a ceiling.
In the embodiment of
In an embodiment the wall element comprises a non-slip surface on the end surfaces of the wall element which are arranged to be placed against the floor or the ceiling. The non-slip surface may be for example corrugated rubber or silicone. The non-slip surface may extend, in the floor end of the wall element, along the floor over the edge of the floor in a construction site when the wall elements are used as exterior wall during construction. The extending non-slip surface guides wind-blown rain water out of the floor which is typically a concrete slab in multi-storey buildings. In an embodiment a separate rubber flap is fixed to the lower part of the wall element instead of extending the non-slip surface. The flap guides any unwanted water outside the building just like the extended non-slip surface described earlier. The flap can also be made of other materials than rubber, for example silicone and plastics can be used as well. The flap and/or the extended non-slip surface help to keep the concrete slab dry and to prevent unwanted accumulation of rainwater on the periphery of the building.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20145025 | Jan 2014 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2015/050018 | 1/14/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/107265 | 7/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3195191 | Neisewander | Jul 1965 | A |
3292321 | Vander Schans | Dec 1966 | A |
3453790 | Harris | Jul 1969 | A |
3897668 | McDonnell | Aug 1975 | A |
4037380 | Pollock | Jul 1977 | A |
4731961 | Bona | Mar 1988 | A |
4841689 | Schussler | Jun 1989 | A |
5140792 | Daw | Aug 1992 | A |
5433046 | MacQuarrie | Jul 1995 | A |
5685121 | DeFrancesco | Nov 1997 | A |
6050045 | Campbell | Apr 2000 | A |
6119430 | Nicholls | Sep 2000 | A |
6612670 | Liu | Sep 2003 | B2 |
20050247414 | Whittemore | Nov 2005 | A1 |
20070113991 | Mangelsen et al. | May 2007 | A1 |
20120273140 | Morales | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
2012201848 | Oct 2013 | AU |
962423 | Feb 1975 | CA |
19856542 | Jun 2000 | DE |
0034827 | Sep 1981 | EP |
2872532 | Jan 2006 | FR |
2003013607 | Jan 2003 | JP |
WO 0120105 | Mar 2001 | WO |
2007102015 | Sep 2007 | WO |
2009116466 | Sep 2009 | WO |
Entry |
---|
Aug. 15, 2014 Search Report issued in Finnish Patent Application No. 20145025. |
May 12, 2015 International Search Report issued in International Patent Application No. PCT/FI2015/050018. |
May 12, 2015 Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/FI2015/050018. |
Number | Date | Country | |
---|---|---|---|
20160333580 A1 | Nov 2016 | US |