This invention relates generally to resource management and more particularly to a method and apparatus for generating and using time-value curves for resource management.
The effectiveness of any mission is heavily reliant upon the ability of an underlying infrastructure to respond to the dynamic requirements of the mission. Typically missions are layered upon an existing resource infrastructure such that the mission becomes merely a set of tasks that is supported by the infrastructure. Layering a mission upon an existing infrastructure typically mis-utilizes key resources and increases the difficulty in detecting performance degradation or partial failures that adversely affect the mission. Allocating specific resources to a mission is technically challenging and error prone. It would be desirable to identify a mission architecture which would overcome the problems of the prior art.
A method and architecture of the present invention uses market-driven resource selection and mission deployment techniques to increase mission performance by optimizing network resource utilization. In one embodiment, a mission is represented as a set of services. A mission controller forwards a service tender to a plurality of coupled network service entities to obtain best matches between service requirements and network resources with one or more services in the service set of the mission. Each network service entity may return a bid to the mission controller, the bid includes a set of available resources and their availability, taking into account the mission's relative priority The mission controller evaluates the bids received from the network service entities to select a network service entity for mission execution.
Such an arrangement allows the mission controller to intelligently allocate mission services to network resources because the cost information reflects the real-time cost to each particular network entity at the time the mission service set is requested. As a result, network resources usage is optimized and the chance for mission success is increased.
In addition, the arrangement allows network service entities to increase their revenue by allowing them to identify opportunities to participate in missions which are best suited to their capabilities.
These and other aspects of the invention will be described in further detail in the attached figures.
The embodiment of
The MRM 10 essentially orchestrates the use of mission resources by identifying mission tasks and allocating INS resources to the mission tasks. According to one aspect of the invention, the allocation of network resources to mission tasks is performed intelligently using a tender-bid process which allows multiple Intentional Network Service (INS) entities such as INS A 20 and INS B 120 to ‘bid’ on the ability to provide the services for each mission. As will be described in greater detail below, the MRM tenders mission service requests to the INS entities. The INS entities analyze the service requests and forward bids to the MRM, with the bids including a ‘cost’ to the INS entity to support the mission service requests. The MRM selects the INS with the best match of resources to service requirements resulting from a multi-dimensional analysis.
The GSTU 12 may be a semantic tool which maps a high level goal definition, such as a natural language definition, into real-language mission goals into policy statements. One exemplary method for performing Goal to Service translation is described in Ser. No. ______ (Attorney Docket No.: 120-505), entitled Mission Goal Statement to Policy Statement Translation, by Travostino et al., filed ______ incorporated herein by reference. The policy statements are presented to the DES 13 in the form of a service template. The service template essentially includes a list of services, resources and applications that are used for mission support.
The DES 13 uses the service template provided by the GSTU 12 as the basis for a search of the directory 16. The directory 16 stores, for each INS entity, a General Service Offering Data Structure (GSO DS), such as 17a and 17b. The GSO data structure essentially identifies the services and applications that are available to the MRM for mission support.
Referring back to
At step 60, when all bids have been received, the bids forwarded by each INS entity are forwarded to the constraint analyzer CA 15 for comparison. The CA analyzes the bids to identify the INS entity that is best suited to support the mission. The particular method that is used to select among INS entities is obtained by a multi-dimensional analysis likely by an Expert Engine which takes into account the available of resources, the cost of the services, indicated by the INS, as well as constraints on the mission and relative priorities of the mission services. In Step 64, a final binding of resources to mission occurs. In one embodiment, the priorities of the mission services are temporally dynamic and defined using time-value curves, as described in patent application Ser. No. ______ (attorney docket number 120-504) entitled “Time-Value Curves to Provide Dynamic QoS for Time Sensitive File Transfers” by Schofield et. al. incorporated herein by reference.
If, however, it is determined at step 73 that the INS cannot service one or more aspects of the tender, at step 74 it is determined whether it can attempt to federate with another INS. Some embodiments may limit or prohibit federation between INS for security purposes . . . If it is determined that the INS cannot attempt to federate with another INS, then at step 78 the INS indicates an inability to provide service to the MRM. The indication may be in the form of an explicit response or alternatively may be inferred by a failure to response to the tender within a predetermined time frame.
However, if it is determined that the INS can request federation in order to fill the gaps of the resource offering, then at step 75 the INS identifies other INS that may assist in the provision of services to the mission. The INS may identify the INS in many ways, for example by maintaining a local copy of at least a subset of the GSO data structure stored in the directory 16.
At step 76, the INS tenders a bid to attempt federation. In one embodiment, a separate communication channel is advantageously maintained between INS entities to allow for federation of INS entities in the delivery of mission services to the MRM. In
If the INS is unable to receive an acceptable bid for federation, then the process proceeds to step 78 to indicate the inability to the MRM, as described above.
If, however, the bid is acceptable, the INS includes any cost and performance information provided by the federated INS into its bid, and returns the bid to the source of the tender at step 80.
Accordingly, a method and architecture has been shown and described that allows a centralized mission manager to understand the details of the network at a service level, thereby enabling service resource management to be optimized. As a result, mission goals can be successfully completed using mission optimal resources which take into account the dynamic nature of the networked environment.
Having described various embodiments of the invention, it will be appreciated that many of the above figures are flowchart illustrations of methods, apparatus (systems) and computer program products according to an embodiment of the invention. It will be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations, can be implemented by computer program instructions. These computer program instructions may be loaded onto a computer or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks. These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Those skilled in the art should readily appreciate that programs defining the functions of the present invention can be delivered to a computer in many forms; including, but not limited to: (a) information permanently stored on non-writable storage media (e.g. read only memory devices within a computer such as ROM or CD-ROM disks readable by a computer I/O attachment); (b) information alterably stored on writable storage media (e.g. floppy disks and hard drives); or (c) information conveyed to a computer through communication media for example using baseband signaling or broadband signaling techniques, including carrier wave signaling techniques, such as over computer or telephone networks via a modem
The above description and figures have included various process steps and components that are illustrative of operations that are performed by the present invention. These components may be implemented in hardware, software or a combination thereof. However, although certain components and steps have been described, it is understood that the descriptions are representative only, other functional delineations or additional steps and components can be added by one of skill in the art, and thus the present invention should not be limited to the specific embodiments disclosed. In addition it is understood that the various representational elements may be implemented in hardware, software running on a computer, or a combination thereof.
While the invention is described through the above exemplary embodiments, it will be understood by those of ordinary skill in the art that modification to and variation of the illustrated embodiments may be made without departing from the inventive concepts herein disclosed. Accordingly, the invention should not be viewed as limited except by the scope and spirit of the appended claims.
This application claims priority under 37 C.F.R. § 1.119(e) to provisional patent application 60/721,757 filed Sep. 29, 2005 and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60721757 | Sep 2005 | US |