Tendon repair implant and method of arthroscopic implantation

Information

  • Patent Grant
  • 11717393
  • Patent Number
    11,717,393
  • Date Filed
    Friday, December 11, 2020
    4 years ago
  • Date Issued
    Tuesday, August 8, 2023
    a year ago
Abstract
A tendon repair implant for treatment of a partial thickness tear in the supraspinatus tendon of the shoulder is provided. The implant may incorporate features of rapid deployment and fixation by an arthroscopic means approach that compliment current procedures; tensile properties that result in desired sharing of anatomical load between the implant and native tendon during rehabilitation; selected porosity and longitudinal pathways for tissue in-growth; sufficient cyclic straining of the implant in the longitudinal direction to promote remodeling of new tissue to tendon-like tissue; and, may include a bioresorbable construction to provide transfer of additional load to new tendon-like tissue and native tendon over time.
Description
FIELD OF THE INVENTION

The present invention relates generally to orthopedic implants and methods of treatment. More particularly, the present invention relates to a tendon repair implant, such as one that is engineered for arthroscopic placement over or in the area of a partial thickness tear in the supraspinatus tendon of the shoulder.


BACKGROUND OF THE INVENTION

As disclosed by Ballet al. in U.S. Patent Publication No. US2008/0188936A1 and illustrated in FIG. 1, the rotator cuff 10 is the complex of four muscles that arise from the scapula 12 and whose tendons blend in with the subjacent capsule as they attach to the tuberosities of the humerus 14. The subscapularis 16 arises from the anterior aspect of the scapula 12 and attaches over much of the lesser tuberosity. The supraspinatus muscle 18 arises from the supraspinatus fossa of the posterior scapula, passes beneath the acromion and the acromioclavicular joint, and attaches to the superior aspect of the greater tuberosity 11. The infraspinatus muscle 13 arises from the infraspinous fossa of the posterior scapula and attaches to the posterolateral aspect of the greater tuberosity 11. The teres minor 15 arises from the lower lateral aspect of the scapula 12 and attaches to the lower aspect of the greater tuberosity 11. Proper functioning of the rotator depends on the fundamental centering and stabilizing role of the humeral head 15 with respect to sliding action during anterior and lateral lifting and rotation movements of the arm.


The insertion of these tendons as a continuous cuff 10 around the humeral head 17 permits the cuff muscles to provide an infinite variety of moments to rotate the humerus 14 and to oppose unwanted components of the deltoid and pectoralis muscle forces. The insertion of the infraspinatus 13 overlaps that of the supraspinatus 18 to some extent. Each of the other tendons 16, 15 also interlaces its fibers to some extent with its neighbor's tendons. The tendons splay out and interdigitate to form a common continuous insertion on the humerus 14.


The rotator cuff muscles 10 are critical elements of this shoulder muscle balance equation. The human shoulder has no fixed axis. In a specified position, activation of a muscle creates a unique set of rotational moments. For example, the anterior deltoid can exert moments in forward elevation, internal rotation, and cross-body movement. If forward elevation is to occur without rotation, the cross-body and internal rotation moments of this muscle must be neutralized by other muscles, such as the posterior deltoid and infraspinatus. The timing and magnitude of these balancing muscle effects must be precisely coordinated to avoid unwanted directions of humeral motion. Thus the simplified view of muscles as isolated motors, or as members of force couples must give way to an understanding that all shoulder muscles function together in a precisely coordinated way—opposing muscles canceling out undesired elements leaving only the net torque necessary to produce the desired action. Injury to any of these soft tissues can greatly inhibit ranges and types of motion of the arm.


The mechanics of the rotator cuff 10 are complex. The cuff muscles 10 rotate the humerus 14 with respect to the scapula 12, compress the humeral head 17 into the glenoid fossa providing a critical stabilizing mechanism to the shoulder (known as concavity compression), and provide muscular balance. The supraspinatus and infraspinatus provide 45 percent of abduction and 90 percent of external rotation strength. The supraspinatus and deltoid muscles are equally responsible for producing torque about the shoulder joint in the functional planes of motion.


With its complexity, range of motion and extensive use, a fairly common soft tissue injury is damage to the rotator cuff or rotator cuff tendons. Damage to the rotator cuff is a potentially serious medical condition that may occur during hyperextension, from an acute traumatic tear or from overuse of the joint. With its critical role in abduction, rotational strength and torque production, the most common injury associated with the rotator cuff region is a strain or tear involving the supraspinatus tendon. A tear in the supraspinatus tendon 19 is schematically depicted in FIG. 2. A tear at the insertion site of the tendon with the humerus, may result in the detachment of the tendon from the bone. This detachment may be partial or full, depending upon the severity of the injury. Additionally, the strain or tear can occur within the tendon itself. Injuries to the supraspinatus tendon 19 and recognized modalities for treatment are defined by the type and degree of tear. The first type of tear is a full thickness tear as also depicted in FIG. 2, which as the term indicates is a tear that extends through the thickness of the supraspinatus tendon regardless of whether it is completely torn laterally. The second type of tear is a partial thickness tear which is further classified based on how much of the thickness is torn, whether it is greater or less than 50% of the thickness.


The accepted treatment for a full thickness tear or a partial thickness tear greater than 50% includes reconnecting the torn tendon via sutures. For the partial thickness tears greater than 50%, the tear is completed to a full thickness tear by cutting the tendon prior to reconnection. In treating a full thickness tear or partial thickness tear of greater than 50% after completing the tear by cutting the tendon, accepted practice also can include the placement of scaffolds and patches over the repaired tendon to shield the sutured or repaired tendon area from anatomical load during rehabilitation. For example, Wright Medical disclose that the GraftJacket® can be used to augment a suture repaired tendon in large and massive full-thickness tears or smaller full-thickness tears in a shoulder having severely degenerated tissue. However, it is recognized that significant shielding of the tendon from load can lead to atrophy and degeneration of the native tendon and muscle.


It is known that, for the rotator cuff, allowing the tendon to experience full anatomical load during recovery after repairing the tendon tear with sutures will result in a 20-60% failure rate. Ballet al. (US Patent Appl. No. 2008/0188936 A1) disclose an implant that provides a healing modality that shields the tendon from most of the anatomical loads in the early part of the recovery period, and gradually experience increasing loads as the repair heals to full strength. Ballet al. discloses the strength of the surgical repair, expressed as percent strength of the final healed repair, begins post-surgically at the strength of the suture-to-tissue connection alone. In their illustrated example, the suture-to-tissue connection represents about 25% of the strength. The augmentation implant initially receives the 75% of the loads experienced during recovery through high initial strength. Gradually, the ratio of load sharing shifts to the suture-to-tissue connection as the repair heals and gains strength, while the implant is simultaneously absorbed by the body. Strength retention is defined to refer to the amount of strength that a material maintains over a period of time following implantation into a human or animal. For example, if the tensile strength of an absorbable mesh or fiber decreases by half over three months when implanted into an animal or human, the mesh or fiber's strength retention at 3 months would be 50%.


In contrast to the treatment of a full thickness tear or a partial thickness tear of greater than 50%, the treatment for a partial thickness tear less than 50% usually involves physical cessation from use of the tendon, i.e., rest. Specific exercises can also be prescribed to strengthen and loosen the shoulder area. In many instances, the shoulder does not heal and the partial thickness tear can be the source of chronic pain and stiffness. Further, the pain and stiffness may cause restricted use of the limb which tends to result in further degeneration or atrophy in the shoulder. Surgical intervention may be required for a partial thickness tear of less than 50%. However, current treatment interventions do not include repair of the tendon. Rather, the surgical procedure is directed to arthroscopic removal of bone to relieve points of impingement or create a larger tunnel between the tendon and bone that is believed to be causing tendon damage. As part of the treatment, degenerated tendon may also be removed using a debridement procedure. Again, the tendon partial tear is not repaired. Several authors have reported satisfactory early post-operative results from these procedures, but over time recurrent symptoms have been noted. In the event of recurrent symptoms, many times a patient will “live with the pain”. This may result in less use of the arm and shoulder which further causes degeneration of the tendon and may lead to more extensive damage. A tendon repair would then need to be done in a later procedure if the prescribed treatment for partial tear was unsuccessful in relieving pain and stiffness or over time the tear propagated through injury or degeneration to a full thickness tear or a partial thickness tear greater than 50% with attendant pain and debilitation. A subsequent later procedure would include the more drastic procedure of completing the tear to full thickness and suturing the ends of the tendon back together. This procedure requires extensive rehabilitation, has relatively high failure rates and subjects the patient who first presented and was treated with a partial thickness tear less than 50% to a second surgical procedure.


As described above, adequate treatments do not currently exist for repairing a partial thickness tear of less than 50% in the supraspinatus tendon. Current procedures attempt to alleviate impingement or make room for movement of the tendon to prevent further damage and relieve discomfort but do not repair or strengthen the tendon. Use of the still damaged tendon can lead to further damage or injury. Prior damage may result in degeneration that requires a second more drastic procedure to repair the tendon. Further, if the prior procedure was only partially successful in relieving pain and discomfort, a response may be to use the shoulder less which leads to degeneration and increased likelihood of further injury along with the need for more drastic surgery. There is a large need for surgical techniques and systems to treat partial thickness tears of less than 50% and prevent future tendon damage by strengthening or repairing the native tendon having the partial thickness tear.


SUMMARY OF THE INVENTION

In accordance with aspects of the disclosure, a tendon repair implant is provided that can be relatively quickly implanted during an arthroscopic procedure to treat symptoms related to a partial thickness tear, such as in the supraspinatus tendon of the shoulder. With current treatment modalities, a partial thickness tear is treated without repair of the tendon itself, but rather procedures are directed to removing bone that may be impinging upon or restricting movement of the tendon. Other current procedures may include debridement of degenerated tendon, but again nothing is done to repair the tendon.


In some embodiments, the tendon repair implant can include a sheet-like structure having desired properties and format for repairing the partial thickness tear. In particular, the sheet-like structure may be constructed to have a first compact configuration for delivery from an arthroscopic instrument and a second planar configuration defined by a longitudinal, lateral and thickness dimension with a longitudinal surface generally conformable to a bursal side surface of the supraspinatus tendon when positioned thereon. The sheet-like structure may have a tensile modulus of about 5 MPa to about 100 MPa in the range of 1% to 3% strain in the longitudinal dimension and porosity of about 30% to about 90%. Further the sheet-like structure may include longitudinal pathways defined in the thickness dimension for at least some tissue in-growth oriented in the longitudinal dimension. The oriented tissue in-growth coupled with cyclic straining and load sharing with the implant result in remodeling of new tissue in-growth to form oriented tendon-like tissue that strengthens the native tendon.


In some embodiments, the physical properties of the sheet-like structure result in load sharing between native tendon and the tendon repair implant immediately following surgery. In some embodiments, about 1% to about 50% of the load on the combination of native tendon and implant is carried by the implant. In some embodiments, about 5% to about 33% of the load is carried by the implant or sheet-like structure. Further, the sheet-like structure may be manufactured from a bioabsorbable or bioresorbable material so that over time the implant degrades and more of the load on the implant/native tendon combination is transferred to new tissue in-growth in the implant along with the native tendon.


The detailed disclosure also includes a method of treating a partial thickness tear in the supraspinatus tendon of the shoulder. The method includes providing a sheet-like structure having a first compact configuration for delivery from an arthroscopic instrument and a second planar configuration defined by a longitudinal, lateral and thickness dimension. The selected sheet-like structure may have a tensile modulus of about 1 MPa to about 100 MPa in the range of 1% to 3% strain in the longitudinal dimension and a porosity of about 30% to about 90% with longitudinal pathways defined in the longitudinal direction through the thickness dimension. In some embodiments, the tensile modulus is about 5 MPa to about 50 MPa in the range of 1% to 3% strain in the longitudinal direction. The shoulder may be arthroscopically accessed, in particular the bursal side surface of the supraspinatus tendon with the sheet-like structure in the first configuration. The sheet-like structure may then be deployed, transforming to the second planar configuration wherein a planar surface of the sheet-like structure extends over the partial thickness tear and is in contact with and generally conforms to the bursal surface of the tendon with the longitudinal dimension extending in the lengthwise direction of the tendon. The sheet-like structure may then be affixed to the tendon.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified perspective view of the human rotator cuff and associated anatomical structure;



FIG. 2 is a schematic depiction of a full thickness tear in the supraspinatus tendon of the rotator cuff of FIG. 1;



FIG. 3 is an anterior view showing the upper torso of a patient with the left shoulder shown in cross-section;



FIG. 4 is an enlarged, cross-sectional view showing the left shoulder depicted in FIG. 3;



FIG. 5 is an enlarged schematic cross-sectional view of a shoulder showing partial thickness tears and an exemplary tendon repair implant positioned thereon;



FIG. 6 is a schematic representation of the load sharing between the supraspinatus tendon and an exemplary tendon repair implant positioned and affixed thereon;



FIG. 7 is a magnified image of an exemplary tendon repair implant including a sheet-like structure having a woven strand and multifilament configuration;



FIG. 8 is a magnified image of a cross section of the implant of FIG. 7;



FIG. 9 is a representation of another exemplary tendon repair implant including a sheet-like structure having multiple layers of a micro-machined polymer material;



FIG. 10 schematically depicts the pattern of material removed from the structure of FIG. 9 illustrating the longitudinal pathways created through the structure;



FIG. 11 is a magnified image of another exemplary tendon repair implant including a sheet-like structure having an array of nano-fibers forming the structure;



FIG. 12 is a magnified image of another exemplary tendon repair implant including a sheet-like structure formed from a synthetic sponge material; and



FIG. 13 is a magnified image of another exemplary tendon repair implant including a sheet-like structure formed from a reconstituted collagen material.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.



FIG. 3 is a stylized anterior view of a patient 28. For purposes of illustration, a shoulder 26 of patient 28 is shown in cross-section in FIG. 3. Shoulder 26 includes a humerus 24 and a scapula 23. The movement of humerus 24 relative to scapula 23 is controlled by the muscles of the rotator cuff as previously discussed with respect to FIG. 1. For purposes of illustration, only the supraspinatus 30 is shown in FIG. 3. With reference to FIG. 3, it will be appreciated that a distal tendon 22 of the supraspinatus 30 (hereinafter referred to as the supraspinatus tendon) meets humerus 24 at an insertion point 32.



FIG. 4 is an enlarged cross sectional view of shoulder 26 shown in the previous figure. In FIG. 4, a head 36 of humerus 24 is shown mating with a glenoid fossa of scapula 23 at a glenohumeral joint 38. The glenoid fossa comprises a shallow depression in scapula 23. A supraspinatus 30 and a deltoid 34 are also shown in FIG. 4. These muscles (along with others) control the movement of humerus 24 relative to scapula 23.


A distal tendon 22 of supraspinatus 30 meets humerus 24 at an insertion point 32. In the embodiment of FIG. 4, tendon 22 includes a damaged portion 140 located near insertion point 32. Damaged portion 40 includes a tear 42 extending partially through tendon 22. Tear 42 may be referred to as a partial thickness tear. The depicted partial thickness tear is on the bursal side of the tendon; however, the tear can be on the opposite or articular side of the tendon or may include internal tears to the tendon not visible on either surface. Tendon 22 of FIG. 4 has become frayed. A number of loose tendon fibers 44 are visible in FIG. 4.


Scapula 23 includes an acromium 21. In FIG. 4, a subacromial bursa 20 is shown extending between acromium 21 of scapula 23 and head 36 of humerus 24. In FIG. 4, subacromial bursa 20 is shown overlaying supraspinatus 30. Subacromial bursa 20 is one of more than 150 bursae found the human body. Each bursa comprises a fluid filled sac. The presence of these bursae in the body reduces friction between bodily tissues.



FIG. 5 is an additional cross sectional view of shoulder 26 shown in the previous figure. In the embodiment of FIG. 5, a tendon repair implant 25 has been placed over the partial thickness tear 42. In this embodiment, the tendon repair implant 25 is placed on the bursal side of the tendon regardless of whether the tear is on the bursal side, articular side or within the tendon. Further, the tendon repair implant may overlay multiple tears, as also shown in FIG. 5.


In some embodiments, the tendon repair implant is engineered to provide a combination of structural features, properties and functions that are particularly appropriate for treating a partial thickness tear of less than 50% without physically cutting, then suturing the tendon, as is done in treating full thickness tears or partial thickness tears greater than 50%. These features may include: rapid deployment and fixation by arthroscopic means that compliment current procedures; tensile properties that result in desired sharing of anatomical load between the implant and native tendon during rehabilitation; selected porosity and longitudinal pathways for tissue in-growth; sufficient cyclic straining of the implant, having new tissue in-growth, in the longitudinal direction to promote remodeling of new tissue to tendon-like tissue; and, the tendon repair implant is bioresorbable or otherwise absorbable to provide transfer of additional load to native tendon over time.


In some embodiments, tendon repair implants are structured for rapid deployment and fixation by arthroscopic means to compliment current techniques used to relieve impingement or restricted movement of tendon relative to bone, such as acromioplasty and tunneling procedures in partial thickness tear treatments. The tendon repair implant 25 is a generally sheet-like structure that has a surface that conforms to the tendon surface when implanted. Further, the physical properties of the implant may be such that no significant pre-stretching or pre-loading of the implant during placement is required for it to function in sharing a sufficient portion of the anatomical load with the native tendon, as discussed below. Stated another way, the tensile properties of the implant may be designed to share a sufficient portion of the anatomical load present during rehabilitation by laying the implant in surface to surface contact with the tendon without any significant wrinkles. Therefore, the tendon repair implant may be delivered in a folded, rolled or other reduced configuration through an arthroscopic instrument and spread out into the sheet-like shape with its surface in contact and generally conforming to the tendon surface without significant stretching before fixation to the tendon. Fixation may be accomplished via arthroscopic suturing or stapling techniques.


The sheet-like structure is defined by a longitudinal dimension, a lateral dimension and a thickness. In some embodiments, lateral and longitudinal dimensions of the implant may range from about 14 mm. to 24 mm. in the lateral direction and 20 mm. to 32 mm. in the longitudinal direction. The thickness of the sheet-like structure may be about 0.5 mm. to 2.5 mm. Upon implantation, the longitudinal dimension may extend generally in or parallel to the load bearing direction of the tendon. As depicted in the embodiment shown in FIG. 5, the longitudinal direction follows the supraspinatus tendon from its origin in the supraspinatus muscle down to the area of attachment on the humerus. As is well understood in the art, loading of the tendon is in this general direction upon contraction of the supraspinatus muscle.


Current procedures for repairing full thickness tears or partial thickness tears greater than 50% include cutting and suturing of the tendon itself and may include the addition of an implant that is designed to shield the tendon repair area from experiencing stresses during use. With current stress shielding implants the concern is the strain and load at which the implant versus the suture repair fails, as the goal is to prevent suture failure during excessive loading. In contrast, the tendon repair implants in some embodiments of the present disclosure have tensile properties to selectively share the anatomical load between damaged native tendon and the implant during the normal range of strains experienced during rehabilitation.


The tensile properties of some tendon repair implants described in the present disclosure for partial thickness tears less than 50% are engineered to selectively share the anatomical load during rehabilitation. The strain and loads experienced by the both the native tendon and affixed implant during use are explained with respect to the schematic diagram of FIG. 6. As installed over the damaged tendon, the tendon repair implant 25 and native tendon 22 are two generally parallel structures that each carry a portion of a load 27 generated by contraction of the supraspinatus muscle 30. The relative load carried by each depends on the tensile properties of the each structure. As parallel structures, the tendon repair implant 25 and the native tendon 22 each experience the same strain under a given load. It is known that native tendon will fail at strains of about 8%, and in normal use tendons experience less than 5% strain. In rehabilitation after surgery, the native tendon is exposed to strains of about 0% to 3%.


In some embodiments, tendon repair implants of the present disclosure are engineered with tensile properties in the range of 1% to 3% strain in order to properly share anatomical load during rehabilitation, as this is the range over which tensile properties affect the function of the implant. To accomplish load sharing, the tensile modulus of the implant should be less than the tensile modulus of the tendon which results in the load on the implant being less than the load on the native tendon. In some embodiments, the tensile modulus of the implant ranges from about 1 MPa. to about 100 MPa. In some embodiments, the tensile modulus is from about 20 to about 50 MPa. in the range of 1% to 3% strain. The value for a given material structure may be calculated from a best fit linear regression for data collected over the range of 1% to 3% strain. Depending upon the particular native tendon on which the implant is located, this may result in initial load sharing following surgery with about 1% to about 50% being carried by the implant. In some embodiments, about 10% to about 30% may be carried by the implant. The load on the supraspinatus tendon during rehabilitation may be about 50 N. to about 100 N., translating to a load on the implant of about 10 N to about 20 N. The tensile modulus can be measured with a 1 N. preload at zero strain and elongation rate of 1% per second after positioning the sheet-like structure in a generally flat and non-wrinkled format.


In some embodiments, a tendon repair implant of the present disclosure includes a selected porosity and longitudinal pathways for tissue in-growth. In some useful embodiments, the sheet-like structure of the implant comprises a material defining a plurality of pores that encourage tissue growth therein. The porosity and tissue in-growth allows for new collagen to integrate with collagen of the native tendon for functional load carrying. A coating that encourages tissue growth or in-growth may be applied to the surfaces of the sheet-like structure. It will be appreciated that sheet-like structure may comprise various pore defining structures without deviating from the spirit and scope of the present description. In some embodiments, the sheet-like structure has a pore size in the range of about 20 to about 400 microns. In some embodiments the pore size is in the range of about 100 microns to about 300 microns, and in some embodiments it is about 150 to about 200 microns. The porosity may be about 30% to about 90%, or it may be within the range of at least about 50% to about 80%. Examples of pore defining structures are discussed in more detail below for specific embodiments, but may include, but not be limited to open cell foam structures, mesh structures, micro-machined layered structures and structures comprising a plurality of fibers. In some embodiments, the fibers may be interlinked with one another. Various processes may be used to interlink the fibers with one another. Examples of processes that may be suitable in some applications include weaving, knitting, and braiding.


Tendon repair implants of the present invention may have a porosity greater than 50%, however, the porosity may be further structured to include tissue in-growth pathways in the longitudinal direction of the implant. Pathways may be included to extend through the thickness of the implant or laterally in the plane of the implant. Pathways may include segments extending longitudinally in the plane of the implant. In some embodiments, longitudinally extending pathways comprise a majority of the porosity with such pathway segments having cross sections of about 150 to about 200 microns. Longitudinal pathways may be open channels or lumens that extend in the longitudinal direction in the plane of the sheet-like structure when laying flat. They may be defined in the thickness of the sheet in the longitudinal direction. Further, these longitudinal pathways may generally be maintained when the implant is subjected to longitudinal loads experienced during rehabilitation.


A tendon repair implant may include tensile properties that allow for cyclic straining of the implant and new tissue in-growth to cause and facilitate remodeling of this new tissue to a more organized structure resembling tendon-like tissue. In some embodiments, the new tissue, based on the tensile properties of the implant, experiences tendon-like strain during rehabilitation. The tendon-like tissue, which may not be as strong as native tendon, has added load bearing strength in the longitudinal direction relative to unorganized tissue. This remodeling of tissue begins within 4 to 8 weeks after implant and continues for months. The strength of the new tissue continues to increase as collagen fibers become more oriented due to the proper strain signal resulting from the properties of the implant. To facilitate cyclic loading, the tendon repair implant may have a compressive modulus greater than the native tendon. A published value for the compressive modulus of the supraspinatus tendon is in the range of 0.02-0.09 MPa (J Biomech Eng 2001, 123:47-51). In some embodiments, the implant provided by the implantable device should have a higher compressive modulus than the tendon to prevent collapse of pores in the implant. The compressive modulus may be at least about 0.1 MPa, or at least about 0.2 MPa.


In some embodiments, the tendon repair implant is bioresorbable, biodegradable or otherwise absorbable to provide transfer of additional load to native tendon over time. By 2-3 months after implant, the new tissue in-growth should have gained strength through remodeling and it may be desirable to transfer more load from the implant to the new tissue and native tendon combination. Absorption of the implant enables the new tissue, in combination with the native tendon, to carry all of the load and develop optimal collagen fiber alignment. Further, absorption avoids potential long-term problems with particles from non-absorbable materials. The tissue within the device implant will typically be developing and organizing during the first one to three months after implantation, so load sharing with the implant is desired in some embodiments. After three months the tissue will typically be remodeling, so the mechanical properties of the implant should gradually decline to zero to enable the new tissue to be subjected to load without the implant bearing any of the load. If the implant loses modulus faster than it loses strength, then the relative loads on the implant will be less at three months than when first implanted. For example, if the modulus of the implant drops 50% to 25 MPa at three months, then 2% strain of the implant would require a stress of only about 0.5 MPa. At the same time, if the strength of the implant drops about 30% to 3.5 MPa, then the strength of the implant will be about seven times the anticipated loads at three months, compared to about five times when first implanted. Therefore, with the design criteria provided above, tensile failure of the implant during the first three months should be unlikely. Accordingly, the following specifications for degradation rate are recommended in some embodiments: an ultimate tensile strength of at least 70% strength retention at three months; tensile and compressive modulus of at least 50% strength retention at three months; and no minimum specification for strength and modulus at 6 months. The device may be designed to have a degradation profile such that it is at least 85% degraded in less than 1 to 2 years after implantation.


Cyclic creep is another design constraint to be considered in some embodiments. A strain of about 2% with a 30 mm long implant will result in an elongation of about only 0.6 mm. Therefore, very little cyclic creep can be tolerated in these embodiments to ensure that the implant will undergo strain with each load cycle. A test where a proposed implant design is cyclically strained to 2% at 0.5 Hz with rest periods for 8 hours provides 9000 cycles, which likely exceeds the number of cycles experienced in three months of rehabilitation of a patient's joint. Incorporation of relaxation times should be considered in such testing. In some embodiments, a maximum of about 0.5% creep is an acceptable specification.


In some useful embodiments, the tendon repair implant comprises one or more bioabsorbable materials. Examples of bioabsorbable materials that may be suitable in some applications include those in the following list, which is not exhaustive: polylactide, poly-L-lactide (PLLA), poly-D-lactide (PDLA), polyglycolide (PGA), polydioxanone, polycaprolactone, polygluconate, polylactic acid-polyethylene oxide copolymers, modified cellulose, collagen, poly (hydroxybutyrate), polyanhydride, polyphosphoester; poly(amino acids), poly(alpha-hydroxy acid) or related copolymers materials.


The tendon repair implant may be configured to allow loading and retention of biologic growth factors. The implant and/or the growth factors may be configured to controllably release the growth factors. The implant may be configured to allow transmission of body fluid to remove any degradation bi-products in conjunction with a potential elution profile of biologics. The implant may also include platelet rich plasma at the time of implant or other biologic factor to promote healing and tissue formation.


A tendon repair implant of the present invention can include multiple layers or surface coatings. As implanted, the bursal side of the implant can include a layer or surface that will preferably slide against tissue without adherence. The tendon side of the implant may include a layer or coating that is more compatible with fixation to the tendon surface.


Various materials and formats may be used to produce tendon repair implants of the present invention. Each material and format is engineered to include selected material properties in the ranges discussed above. Material properties can be altered in the materials making up the sheet like structure or by altering the format or pattern of the material to adjust physical properties of the composite structure.


One material and format for the sheet-like structure 50 is shown in FIG. 7. The structure 50 is a woven material including multiple strands 52 of a polymeric material, with each strand 52 including multiple filaments 53. The strands 52 include a weave pattern that forms longitudinally extending pathways 51 as depicted in the cross section view of FIG. 8. These longitudinally extending pathways have a cross section of about 150 to about 200 microns as indicated. One material for the filaments is poly-L-lactic acid.


An alternative material and format for the sheet-like structure 50 is shown in FIG. 9. The sheet-like structure 50 includes multiple layers 56 of micro-machined sheets. The composite of layered sheets form longitudinally extending pathways 58. This is best illustrated in FIG. 10, which shows the material that is removed from the sheets, indicating the pathways defined in the structure. These sheets are preferably made up of a blend of poly-L-lactic acid and polycaprolactone. Alternatively, individual sheets may be made of one or both of the polymers. The cross section of the longitudinally extending pathways may be about 150 to about 200 microns.


In another alternative material and format, the sheet-like structure 50 of the tendon repair implant is made up of electro-spun nano-fiber filaments 60 forming a composite sheet. An SEM of the composite structure is depicted in FIG. 11. The filaments have a cross section of about 5 microns. The filaments can be formed in a random pattern or can be aligned to alter the mechanical properties of the composite and create longitudinally extending pathways for tissue migration. The filaments may be made up of a blend of poly-L-lactic acid and polycaprolactone.


Another alternative material and format for the sheet-like structure 50 can include a synthetic sponge material as depicted in FIG. 12. As the SEM photograph indicates, longitudinally extending pathways are defined through the open cell structure. The open pores may be between about 150 to about 200 microns in cross section and may be interconnected in a random pattern. A similar cell structure can also be found in another alternative material and format manufactured from reconstituted collagen and depicted in the magnified image of FIG. 13. This structure includes longitudinal alignment of the collagen material to create longitudinal pathways 66. Physical properties of the collagen material may be adjusted through cross-linking. According to aspects of the present detailed disclosure, methods of treating a partial thickness tear in a tendon are also provided. In some methods, supraspinatus tendons having partial thickness tears of less than 50% are treated. The treatment site may be first arthroscopically accessed in the area of the damaged tendon. A tendon repair implant, such as previously described may be placed over a partial tear in a tendon. In some embodiments, the implant may be placed over a tendon having micro-tear(s), abrasions and/or inflammation. Left untreated, minor or partial tendon tears may progress into larger or full tears. According to aspects of the present disclosure, a small or partial tear may be treated by protecting it with a tendon repair implant as described above. Such early treatment can promote healing and prevent more extensive damage from occurring to the tendon, thereby averting the need for a more involved surgical procedure.


For arthroscopic delivery of the tendon repair implant, the implant may be configured to be collapsible so that it may be inserted into or mounted on a tubular member for arthroscopic insertion to the treatment site. For example, the implant and associated delivery device may be collapsed like an umbrella where the deployed delivery systems unfolds the pleats of the implant as mounted thereon to allow surface to surface engagement with the tendon without any substantial wrinkles. Once flat against the tendon, the tendon repair implant may then be affixed using sutures or other suitable means such as staples such that the tensile properties will assure that the anatomical load will be shared because the native tendon and implant experience the same strain under load.


In summary, the tendon repair implant may comprise an absorbable material. In some embodiments, the purpose of the implant is to protect an injured portion of a tendon during healing, provide an implant for new tissue growth, and/or temporarily share some of the tendon loads. The implant may induce additional tendon-like tissue formation, thereby adding strength and reducing pain, micro strains and inflammation. When the implant is applied to a structurally intact, partially torn tendon, the initial loading of the implant may be less than that carried by native tendon tissue until collagen is formed during the healing process. In some embodiments, organized collagen fibers are created that remodel to tendon-like tissue or neo-tendon with cell vitality and vascularity. Initial stiffness of the device may be less than that of the native tendon so as to not overload the fixation while tendon tissue is being generated.


It is desirable in some situations to generate as much tissue as possible within anatomical constraints. In some cases where a tendon is degenerated or partially torn, tendon loads are relatively low during early weeks of rehabilitation. For example, the load may be about 100 N. The strain in the tendon due to the load during rehabilitation can be about 2%. In some of these cases, the tendon repair implant can be designed to have an ultimate tensile strength of at least about 2 MPa. The tensile modulus may be designed to be no more than about 50 MPa and no less than about 5 MPa. The compressive modulus may be designed to be at least about 0.2 MPa. With a tensile modulus of 5 MPa, in order for the implant to strain 2% in conjunction with the degenerated tendon, the stress on the implant will be about 1.0 MPa. With an ultimate tensile strength of 2 MPa, the strength of the sheet-like structure of the implant when first implanted will be about two times the expected loads. With a cross-sectional area of 20 mm2, the load on the implant will be 20 N. Thus, from a load sharing perspective, the implant will carry about 20% of the load to experience 2% strain.


Material(s) used in the implanted device should be able to withstand the compression and shear loads consistent with accepted post-surgical shoulder motions. The perimeter of the device may have different mechanical properties than the interior of the device, such as for facilitating better retention of sutures, staples or other fastening mechanisms. The material(s) may be chosen to be compatible with visual, radiographic, magnetic, ultrasonic, or other common imaging techniques. The material(s) may be capable of absorbing and retaining growth factors with the possibility of hydrophilic coatings to promote retention of additives.


While exemplary embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

Claims
  • 1. A method of repairing a tendon, the method comprising: arthroscopically delivering a sheet-like implant to a surface of the tendon with the sheet-like implant in a first compact configuration, the sheet-like implant having a longitudinal dimension, a lateral dimension, and a thickness dimension, the sheet-like implant having a porosity of 30% to 90% for tissue ingrowth, the sheet-like implant formed of electro-spun filaments aligned to create longitudinal pathways extending along the longitudinal dimension of the sheet-like implant in the thickness dimension for at least some tissue ingrowth oriented in a longitudinal direction;deploying the sheet-like implant by transforming the sheet-like implant to a second configuration wherein a surface of the sheet-like implant faces the surface of the tendon;contacting and conforming the surface of the sheet-like implant to the surface of the tendon with the longitudinal dimension aligned with a load bearing direction of the tendon;and affixing the sheet-like implant to the surface of the tendon.
  • 2. The method of claim 1, wherein the sheet-like implant includes growth factors, wherein the sheet-like implant is configured to controllably release the growth factors.
  • 3. The method of claim 1, wherein upon initially affixing the sheet-like implant to the surface of the tendon, an anatomical load on the tendon and sheet-like implant combination is distributed with 1% to 50% of the anatomical load carried by the sheet-like implant.
  • 4. The method of claim 1, wherein upon initially affixing the sheet-like implant to the surface of the tendon, the sheet-like tendon carries between 0.5 N to 50 N of an anatomical load.
  • 5. The method of claim 1, wherein upon initially affixing the sheet-like implant to the surface of the tendon, the sheet-like tendon carries between 0.5 N to 25 N of an anatomical load.
  • 6. The method of claim 1, wherein the longitudinal pathways have a cross-section of 150 to 200 microns.
  • 7. The method of claim 1, wherein the filaments comprise poly-L-lactic acid.
  • 8. The method of claim 1, wherein the filaments have a cross-section of about 5 microns.
  • 9. The method of claim 1, wherein the affixing step includes affixing a first portion of the sheet-like implant to the tendon on a muscle side of a tear in the tendon and affixing a second portion of the sheet-like implant to a tuberosity side of the tear.
  • 10. The method of claim 9, wherein the tear is a partial thickness tear.
  • 11. The method of claim 10, wherein the tear extends through less than 50% of a thickness of the tendon.
  • 12. The method of claim 1, wherein the sheet-like implant is configured such that tissue grown within the longitudinal pathways will experience tendon-like strain when the sheet-like implant is subjected to longitudinally elongating loads following implantation.
  • 13. The method of claim 1, wherein the sheet-like implant is configured to degrade in tensile strength from an initial tensile strength thereby sharing less of the anatomical load over time.
  • 14. The method of claim 1, wherein the sheet-like implant has pores having a size of 20 to 400 microns.
  • 15. The method of claim 1, wherein the sheet-like implant has pores having a size of 100 to 300 microns.
  • 16. A tendon repair implant for repair of a tendon, the tendon repair implant comprising: an elongated sheet-like structure having a first compact configuration for delivery from an arthroscopic instrument and a second planar configuration having a longitudinal dimension, a lateral dimension, and a thickness dimension and configured to be affixed to a surface of the tendon such that the longitudinal dimension of the sheet-like structure extends parallel to a load bearing direction of the tendon;wherein the sheet-like structure has a porosity of 30% to 90% for tissue ingrowth;wherein the sheet-like structure is formed of electro-spun filaments aligned to create longitudinal pathways extending along the longitudinal dimension of the sheet-like structure in the thickness dimension for at least some tissue ingrowth oriented in a longitudinal direction.
  • 17. The implant of claim 16, wherein the filaments comprise poly-L-lactic acid.
  • 18. The implant of claim 16, wherein the sheet-like structure has pores having a size of 20 to 400 microns.
  • 19. The implant of claim 16, wherein the sheet-like structure has pores having a size of 100 to 300 microns.
  • 20. The implant of claim 16, wherein the sheet-like structure is configured to have an initial load share representing between 1% to 50% of an anatomical load applied to the tendon and the sheet-like structure at the time that the sheet-like structure is affixed to the tendon.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/150,927 filed on Oct. 3, 2018, which is a continuation of U.S. application Ser. No. 15/198,662 filed on Jun. 30, 2016, which is a continuation of U.S. application Ser. No. 15/184,378 filed on Jun. 16, 2016, which is a continuation of U.S. application Ser. No. 14/474,989 filed on Sep. 2, 2014, which is a continuation of U.S. application Ser. No. 13/889,701 filed on May 8, 2013, which is a continuation of U.S. application Ser. No. 13/046,624 filed on Mar. 11, 2011, which claims benefit to U.S. Provisional Patent Application No. 61/313,113, filed on Mar. 11, 2010. The disclosures of each of which are herein incorporated by reference in their entirety. This present application is related to: U.S. patent application Ser. No. 12/684,774, filed Jan. 8, 2010; U.S. patent application Ser. No. 12/729,029, filed Mar. 22, 2010; U.S. patent application Ser. No. 12/794,540, filed Jun. 4, 2010; U.S. patent application Ser. No. 12/794,551, filed Jun. 4, 2010; U.S. patent application Ser. No. 12/794,673, filed Jun. 4, 2010; U.S. patent application Ser. No. 12/794,677, filed Jun. 4, 2010; U.S. patent application Ser. No. 13/889,701; U.S. Provisional Patent Application No. 61/443,180, filed Feb. 15, 2011; U.S. Provisional Patent Application No. 61/443,169, filed Feb. 15, 2011, all of which are incorporated herein by reference. All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

US Referenced Citations (478)
Number Name Date Kind
511238 Hieatzman et al. Dec 1893 A
765793 Ruckel Jul 1904 A
1728316 Von Wachenfeldt Sep 1929 A
1855546 File Apr 1932 A
1868100 Goodstein Jul 1932 A
1910688 Goodstein May 1933 A
1940351 Howard Dec 1933 A
2034785 Wappler Mar 1936 A
2075508 Davidson Mar 1937 A
2131321 Hart Sep 1938 A
2158242 Maynard May 1939 A
2199025 Conn Apr 1940 A
2201610 Dawson, Jr. May 1940 A
2254620 Miller Sep 1941 A
2277931 Moe Mar 1942 A
2283814 La Place May 1942 A
2316297 Southerland et al. Apr 1943 A
2421193 Gardner May 1947 A
2570497 Senderowitz Oct 1951 A
2571813 Austin Oct 1951 A
2630316 Foster Mar 1953 A
2684070 Kelsey Jul 1954 A
2744251 Vollmer May 1956 A
2790341 Keep et al. Apr 1957 A
2817339 Sullivan Dec 1957 A
2825162 Flood Mar 1958 A
2881762 Lowrie Apr 1959 A
2910067 White Oct 1959 A
3068870 Levin Dec 1962 A
3077812 Dietrich Feb 1963 A
3103666 Bone Sep 1963 A
3123077 Alcamo Mar 1964 A
3209754 Brown Oct 1965 A
3221746 Noble Dec 1965 A
3470834 Bone Oct 1969 A
3527223 Shein Sep 1970 A
3570497 Lemole Mar 1971 A
3577837 Bader, Jr. May 1971 A
3579831 Stevens et al. May 1971 A
3643851 Green et al. Feb 1972 A
3687138 Jarvik Aug 1972 A
3716058 Tanner, Jr. Feb 1973 A
3717294 Green Feb 1973 A
3757629 Schneider Sep 1973 A
3777538 Weatherly et al. Dec 1973 A
3837555 Green Sep 1974 A
3845772 Smith Nov 1974 A
3875648 Bone Apr 1975 A
3960147 Murray Jun 1976 A
3976079 Samuels et al. Aug 1976 A
4014492 Rothfuss Mar 1977 A
4127227 Green Nov 1978 A
4259959 Walker Apr 1981 A
4263903 Griggs Apr 1981 A
4265226 Cassimally May 1981 A
4317451 Cerwin et al. Mar 1982 A
4400833 Kurland Aug 1983 A
4422567 Haynes Dec 1983 A
4454875 Pratt et al. Jun 1984 A
4480641 Failla et al. Nov 1984 A
4485816 Krumme Dec 1984 A
4526174 Froehlich Jul 1985 A
4549545 Levy Oct 1985 A
4570623 Ellison et al. Feb 1986 A
4595007 Mericle Jun 1986 A
4624254 McGarry et al. Nov 1986 A
4627437 Bedi et al. Dec 1986 A
4632100 Somers et al. Dec 1986 A
4635637 Schreiber Jan 1987 A
4669473 Richards et al. Jun 1987 A
4696300 Anderson Sep 1987 A
4719917 Barrows et al. Jan 1988 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4762260 Richards et al. Aug 1988 A
4799495 Hawkins et al. Jan 1989 A
4809695 Gwathmey et al. Mar 1989 A
4851005 Hunt et al. Jul 1989 A
4858608 McQuilkin Aug 1989 A
4884572 Bays et al. Dec 1989 A
4887601 Richards Dec 1989 A
4924866 Yoon May 1990 A
4930674 Barak Jun 1990 A
4968315 Gatturna Nov 1990 A
4976715 Bays et al. Dec 1990 A
4994073 Green Feb 1991 A
4997436 Oberlander Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5013316 Goble et al. May 1991 A
5015249 Nakao et al. May 1991 A
5037422 Hayhurst et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5053047 Yoon Oct 1991 A
5059206 Winters Oct 1991 A
5062563 Green et al. Nov 1991 A
5100417 Cerier et al. Mar 1992 A
5102421 Anspach, Jr. Apr 1992 A
5116357 Eberbach May 1992 A
5122155 Eberbach Jun 1992 A
5123913 Wilk et al. Jun 1992 A
RE34021 Mueller et al. Aug 1992 E
5141515 Eberbach Aug 1992 A
5141520 Goble et al. Aug 1992 A
5156609 Nakao et al. Oct 1992 A
5156616 Meadows et al. Oct 1992 A
5167665 McKinney Dec 1992 A
5171259 Inoue Dec 1992 A
5171273 Silver et al. Dec 1992 A
5174295 Christian et al. Dec 1992 A
5174487 Rothfuss et al. Dec 1992 A
5176682 Chow Jan 1993 A
5176692 Wilk et al. Jan 1993 A
5203787 Noblitt et al. Apr 1993 A
5217472 Green et al. Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5242457 Akopov et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5251642 Handlos Oct 1993 A
5261914 Warren Nov 1993 A
5269753 Wilk Dec 1993 A
5269783 Sander Dec 1993 A
5282829 Hermes Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290217 Campos Mar 1994 A
5304187 Green et al. Apr 1994 A
5333624 Tovey Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5354292 Braeuer et al. Oct 1994 A
5364408 Gordon Nov 1994 A
5366460 Eberbach Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5372604 Trott Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5383477 DeMatteis Jan 1995 A
5397332 Kammerer et al. Mar 1995 A
5403326 Harrison et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5411522 Trott May 1995 A
5411523 Goble May 1995 A
5417691 Hayhurst May 1995 A
5417712 Whittaker et al. May 1995 A
5425490 Goble et al. Jun 1995 A
5441502 Bartlett Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456720 Schultz et al. Oct 1995 A
5464403 Kieturakis et al. Nov 1995 A
5478354 Tovey et al. Dec 1995 A
5486197 Le et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5503623 Tilton, Jr. Apr 1996 A
5505735 Li Apr 1996 A
5507754 Green et al. Apr 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5545180 Le et al. Aug 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562689 Green et al. Oct 1996 A
5569306 Thal Oct 1996 A
5582616 Bolduc et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5618314 Harwin et al. Apr 1997 A
5622257 Deschenes et al. Apr 1997 A
5628751 Sander et al. May 1997 A
5643319 Green et al. Jul 1997 A
5643321 McDevitt Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649963 McDevitt Jul 1997 A
5662683 Kay Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5674245 Ilgen Oct 1997 A
5681342 Benchetrit Oct 1997 A
5702215 Li Dec 1997 A
5713903 Sander et al. Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5741282 Anspach, III et al. Apr 1998 A
5766246 Mulhauser et al. Jun 1998 A
5782864 Lizardi Jul 1998 A
5797909 Michelson Aug 1998 A
5797931 Bito et al. Aug 1998 A
5797963 McDevitt Aug 1998 A
5807403 Beyar et al. Sep 1998 A
5830221 Stein et al. Nov 1998 A
5836961 Kieturakis et al. Nov 1998 A
5868762 Cragg et al. Feb 1999 A
5873891 Sohn Feb 1999 A
5885258 Sachdeva et al. Mar 1999 A
5885294 Pedlick et al. Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5904696 Rosenman May 1999 A
5919184 Tilton, Jr. Jul 1999 A
5922026 Chin Jul 1999 A
5928244 Tovey et al. Jul 1999 A
5948000 Larsen et al. Sep 1999 A
5957939 Heaven et al. Sep 1999 A
5957953 Dipoto et al. Sep 1999 A
5968044 Nicholson et al. Oct 1999 A
5980557 Iserin et al. Nov 1999 A
5989265 Bouquet De La Joliniere et al. Nov 1999 A
5997552 Person et al. Dec 1999 A
6063088 Winslow May 2000 A
6156045 Ulbrich et al. Dec 2000 A
6179840 Bowman Jan 2001 B1
6193731 Oppelt et al. Feb 2001 B1
6193733 Adams Feb 2001 B1
6245072 Zdeblick et al. Jun 2001 B1
6302885 Essiger Oct 2001 B1
6312442 Kieturakis et al. Nov 2001 B1
6315789 Cragg Nov 2001 B1
6318616 Pasqualucci et al. Nov 2001 B1
6322563 Cummings et al. Nov 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
6391333 Li et al. May 2002 B1
6413274 Pedros Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6436110 Bowman et al. Aug 2002 B2
6447522 Gambale et al. Sep 2002 B2
6447524 Knodel et al. Sep 2002 B1
6478803 Kapec et al. Nov 2002 B1
6482178 Andrews et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6506190 Walshe Jan 2003 B1
6511499 Schmieding et al. Jan 2003 B2
6517564 Grafton et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6527795 Lizardi Mar 2003 B1
6530933 Yeung et al. Mar 2003 B1
6540769 Miller, III Apr 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6554852 Oberlander Apr 2003 B1
6569186 Winters et al. May 2003 B1
6575976 Grafton Jun 2003 B2
6599286 Campin et al. Jul 2003 B2
6599289 Bojarski et al. Jul 2003 B1
6620185 Harvie et al. Sep 2003 B1
6629988 Weadock Oct 2003 B2
6638297 Huitema Oct 2003 B1
6648893 Dudasik Nov 2003 B2
6666872 Barreiro et al. Dec 2003 B2
6673094 McDevitt et al. Jan 2004 B1
6685728 Sinnott et al. Feb 2004 B2
6692506 Ory et al. Feb 2004 B1
6702215 Stamm et al. Mar 2004 B2
6723099 Goshert Apr 2004 B1
6726704 Loshakove et al. Apr 2004 B1
6726705 Peterson et al. Apr 2004 B2
6740100 Demopulos et al. May 2004 B2
6746472 Frazier et al. Jun 2004 B2
6764500 Muijs Van De Moer et al. Jul 2004 B1
6770073 McDevitt et al. Aug 2004 B2
6779701 Bailly et al. Aug 2004 B2
6800081 Parodi Oct 2004 B2
6835206 Jackson Dec 2004 B2
6849078 Durgin et al. Feb 2005 B2
6887259 Lizardi May 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6932834 Lizardi et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6946003 Wolowacz et al. Sep 2005 B1
6949117 Gambale et al. Sep 2005 B2
6964685 Murray et al. Nov 2005 B2
6966916 Kumar Nov 2005 B2
6972027 Fallin et al. Dec 2005 B2
6984241 Lubbers et al. Jan 2006 B2
6991597 Gellman et al. Jan 2006 B2
7008435 Cummins Mar 2006 B2
7021316 Leiboff Apr 2006 B2
7025772 Gellman et al. Apr 2006 B2
7033379 Peterson Apr 2006 B2
7037324 Martinek May 2006 B2
7048171 Thornton et al. May 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7083638 Foerster Aug 2006 B2
7087064 Hyde Aug 2006 B1
7112214 Peterson et al. Sep 2006 B2
7118581 Fridén Oct 2006 B2
7144413 Wilford et al. Dec 2006 B2
7144414 Harvie et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7160314 Sgro et al. Jan 2007 B2
7160326 Ball Jan 2007 B2
7163551 Anthony et al. Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7169157 Kayan Jan 2007 B2
7189251 Kay Mar 2007 B2
7201754 Stewart et al. Apr 2007 B2
7214232 Bowman et al. May 2007 B2
7226469 Benavitz et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7247164 Ritchart et al. Jul 2007 B1
7303577 Dean Dec 2007 B1
7309337 Colleran et al. Dec 2007 B2
7320692 Bender et al. Jan 2008 B1
7320701 Haut et al. Jan 2008 B2
7322935 Palmer et al. Jan 2008 B2
7326231 Phillips et al. Feb 2008 B2
7343920 Toby et al. Mar 2008 B2
7368124 Chun et al. May 2008 B2
7377934 Lin et al. May 2008 B2
7381213 Lizardi Jun 2008 B2
7390329 Westra et al. Jun 2008 B2
7399304 Gambale et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7452368 Liberatore et al. Nov 2008 B2
7460913 Kuzma et al. Dec 2008 B2
7463933 Wahlstrom et al. Dec 2008 B2
7465308 Sikora et al. Dec 2008 B2
7481832 Meridew et al. Jan 2009 B1
7485124 Kuhns et al. Feb 2009 B2
7497854 Gill et al. Mar 2009 B2
7500972 Voegele et al. Mar 2009 B2
7500980 Gill et al. Mar 2009 B2
7500983 Kaiser et al. Mar 2009 B1
7503474 Hillstead et al. Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7559941 Zannis et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7585311 Green et al. Sep 2009 B2
7766208 Epperly et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776057 Laufer et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7785255 Malkani Aug 2010 B2
7807192 Li et al. Oct 2010 B2
7819880 Zannis et al. Oct 2010 B2
7918879 Yeung et al. Apr 2011 B2
8114101 Criscuolo et al. Feb 2012 B2
8133500 Ringeisen et al. Mar 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8801801 Datta et al. Aug 2014 B2
8821537 Euteneuer et al. Sep 2014 B2
9033201 Euteneuer May 2015 B2
9095337 Euteneuer et al. Aug 2015 B2
9101460 Euteneuer et al. Aug 2015 B2
9107661 Euteneuer et al. Aug 2015 B2
9113977 Euteneuer et al. Aug 2015 B2
9125650 Euteneuer et al. Sep 2015 B2
9198750 Van Kampen Dec 2015 B2
9198751 Euteneuer et al. Dec 2015 B2
9204940 Euteneuer et al. Dec 2015 B2
9247978 Euteneuer et al. Feb 2016 B2
9271726 Euteneuer Mar 2016 B2
9314314 Euteneuer et al. Apr 2016 B2
9314331 Euteneuer et al. Apr 2016 B2
9370356 Euteneuer Jun 2016 B2
9393103 Van Kampen Jul 2016 B2
9393104 Kampen Jul 2016 B2
10105210 Van Kampen Oct 2018 B2
10123866 Van Kampen Nov 2018 B2
10864072 Van Kampen Dec 2020 B2
20020077687 Ahn Jun 2002 A1
20020090725 Simpson et al. Jul 2002 A1
20020123767 Prestel Sep 2002 A1
20020127270 Li et al. Sep 2002 A1
20020165559 Grant et al. Nov 2002 A1
20030073979 Naimark et al. Apr 2003 A1
20030086975 Ringeisen May 2003 A1
20030125748 Li et al. Jul 2003 A1
20030212456 Lipchitz et al. Nov 2003 A1
20040059416 Murray et al. Mar 2004 A1
20040138705 Heino et al. Jul 2004 A1
20040167519 Weiner et al. Aug 2004 A1
20040267277 Zannis et al. Dec 2004 A1
20050015021 Shiber Jan 2005 A1
20050049618 Masuda et al. Mar 2005 A1
20050051597 Toledano Mar 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050060033 Vacanti et al. Mar 2005 A1
20050107807 Nakao May 2005 A1
20050113736 Orr et al. May 2005 A1
20050113938 Jamiolkowski et al. May 2005 A1
20050123581 Ringeisen et al. Jun 2005 A1
20050171569 Girard et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050240222 Shipp Oct 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20060002980 Ringeisen et al. Jan 2006 A1
20060074423 Alleyne et al. Apr 2006 A1
20060178743 Carter Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060293760 DeDeyne Dec 2006 A1
20070078477 Heneveld, Sr. et al. Apr 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070112361 Schonholz et al. May 2007 A1
20070179531 Thornes Aug 2007 A1
20070185506 Jackson Aug 2007 A1
20070190108 Datta et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070270804 Chudik Nov 2007 A1
20070288023 Pellegrino et al. Dec 2007 A1
20080027470 Hart et al. Jan 2008 A1
20080051888 Ratcliffe et al. Feb 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080090936 Fujimura et al. Apr 2008 A1
20080125869 Paz et al. May 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080173691 Mas et al. Jul 2008 A1
20080188874 Henderson Aug 2008 A1
20080188936 Ball et al. Aug 2008 A1
20080195119 Ferree Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080241213 Chun et al. Oct 2008 A1
20080272173 Coleman et al. Nov 2008 A1
20080306408 Lo Dec 2008 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090012521 Axelson, Jr. et al. Jan 2009 A1
20090030434 Paz et al. Jan 2009 A1
20090069806 De La Mora Levy et al. Mar 2009 A1
20090069893 Paukshto et al. Mar 2009 A1
20090076541 Chin et al. Mar 2009 A1
20090105535 Green et al. Apr 2009 A1
20090112085 Eby Apr 2009 A1
20090134198 Knodel et al. May 2009 A1
20090156986 Trenhaile Jun 2009 A1
20090156997 Trenhaile Jun 2009 A1
20090182245 Zambelli Jul 2009 A1
20090242609 Kanner Oct 2009 A1
20100063599 Brunelle et al. Mar 2010 A1
20100145367 Ratcliffe Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100191332 Euteneuer et al. Jul 2010 A1
20100241227 Euteneuer et al. Sep 2010 A1
20100249801 Sengun et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100256777 Datta et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100292715 Nering et al. Nov 2010 A1
20100292791 Lu et al. Nov 2010 A1
20100312250 Euteneuer et al. Dec 2010 A1
20100312275 Euteneuer et al. Dec 2010 A1
20100327042 Amid et al. Dec 2010 A1
20110000950 Euteneuer et al. Jan 2011 A1
20110004221 Euteneuer et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110034942 Levin et al. Feb 2011 A1
20110040310 Levin et al. Feb 2011 A1
20110040311 Levin et al. Feb 2011 A1
20110066166 Levin et al. Mar 2011 A1
20110106154 DiMatteo et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110166325 Saedi et al. Jul 2011 A1
20110184530 Datta et al. Jul 2011 A1
20110224702 Van Kampen et al. Sep 2011 A1
20110264149 Pappalardo et al. Oct 2011 A1
20120029537 Mortarino Feb 2012 A1
20120100200 Belcheva et al. Apr 2012 A1
20120160893 Harris et al. Jun 2012 A1
20120193391 Michler et al. Aug 2012 A1
20120209401 Euteneuer et al. Aug 2012 A1
20120211543 Euteneuer Aug 2012 A1
20120248171 Bailly et al. Oct 2012 A1
20120316608 Foley Dec 2012 A1
20130153627 Euteneuer et al. Jun 2013 A1
20130153628 Euteneuer Jun 2013 A1
20130158554 Euteneuer et al. Jun 2013 A1
20130158587 Euteneuer et al. Jun 2013 A1
20130158661 Euteneuer et al. Jun 2013 A1
20130172920 Euteneuer et al. Jul 2013 A1
20130172997 Euteneuer et al. Jul 2013 A1
20130184716 Euteneuer et al. Jul 2013 A1
20130240598 Euteneuer et al. Sep 2013 A1
20130245627 Euteneuer et al. Sep 2013 A1
20130245682 Euteneuer et al. Sep 2013 A1
20130245683 Euteneuer et al. Sep 2013 A1
20130245706 Euteneuer et al. Sep 2013 A1
20130245707 Euteneuer et al. Sep 2013 A1
20130245762 Van Kampen et al. Sep 2013 A1
20130245774 Euteneuer et al. Sep 2013 A1
20140371853 Kampen et al. Dec 2014 A1
Foreign Referenced Citations (36)
Number Date Country
2390508 May 2001 CA
0142225 May 1985 EP
0298400 Jan 1989 EP
0390613 Oct 1990 EP
0543499 May 1993 EP
0548998 Jun 1993 EP
0557963 Sep 1993 EP
0589306 Mar 1994 EP
0908152 Apr 1999 EP
1491157 Dec 2004 EP
1559379 Aug 2005 EP
2030576 Mar 2009 EP
2154688 Sep 1985 GB
2397240 Jul 2004 GB
58188442 Nov 1983 JP
2005586122 Mar 2005 JP
2006515774 Jun 2006 JP
8505025 Nov 1985 WO
0176456 Oct 2001 WO
0234140 May 2002 WO
2003105670 Dec 2003 WO
2004000138 Dec 2003 WO
2004093690 Nov 2004 WO
2005016389 Feb 2005 WO
2006086679 Aug 2006 WO
2007014910 Feb 2007 WO
2007030676 Mar 2007 WO
2007078978 Jul 2007 WO
2007082088 Jul 2007 WO
2008111073 Sep 2008 WO
2008111078 Sep 2008 WO
2008139473 Nov 2008 WO
2009079211 Jun 2009 WO
2009143331 Nov 2009 WO
2011095890 Aug 2011 WO
2011128903 Oct 2011 WO
Non-Patent Literature Citations (20)
Entry
“Rotator Cuff Tear,” Wikipedia, the free encyclopedia, 14 pages, Downloaded on Dec. 6, 2012.
Alexander et al., “Ligament and tendon repair with an absorbable polymer-coated carbon fiber stent,” Bulletin of the Hospital for Joint Diseases Orthopaedic Institute, 46(2):155-173, 1986.
Bahler et al., “Trabecular bypass stents decrease intraocular pressure in cultured himan anterior segments,” Am. J. Opthamology, 138(6):988-994, Dec. 2004.
Chamay et al., “Digital contracture deformity after implantation of a silicone prosthesis: Light and electron microscopic study,” The Journal of Hand Surgery, 3(3):266-270, May 1978.
D'Ermo et al., “Our results of the operation of ab externo,” Opthalmologica, 168: 347-355, 1971.
France et al., “Biomechanical evaluation of rotator cuff fixation methods,” The American Journal of Sports Medicine, 17(2), 1989.
Goodship et al., “An assessment of filamentous carbon fibre for the treatment of tendon injury in the horse,” Veterinary Record, 106:217-221, Mar. 8, 1980.
Hunter et al., “Flexor-tendon reconstruction in severely damaged hands,” The Journal of Bone and Joint Surgery (American Volume), 53-A(5): 329-358, Jul. 1971.
Johnstone et al., “Microsurgery of Schlemm's canal and the human aqueous outflow system,” Am. J. Opthamology, 76(6): 906-917, Dec. 1973.
Kowalsky et al., “Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone,” Arthroscopy: The Journal of Arthroscopic and Related Surgery, 24(3):329-334, Mar. 2008.
Lee et al., “Aqueous-venous and intraocular pressure. Preliminary report of animal studies,” Investigative Opthalmology, 5(1): 59-64, Feb. 1966.
Maepea et al., “The pressures in the episcleral veins, Schlemm's canal and the trabecular meshwork in monkeys: Effects of changes in intraocular pressure,” Exp. Eye Res., 49:645-663, 1989.
Nicolle et al., “A silastic tendon prosthesis as an adjunct to flexor tendon grafting: An experimental and clinical evaluation,” British Journal of Plastic Surgery, 22(3-4):224-236, 1969.
Rubin et al., “The use of acellular biologic tissue patches in foot and ankle surgery,” Clinics in Podiatric Medicine and Surgery, 22:533-552, 2005.
Schultz, “Canaloplasty procedure shows promise for open-angle glaucoma in European study,” Ocular Surgery News, 34-35, Mar. 1, 2007.
Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG,” Opthalmic Surgery and Lasers, 30(6):492-494, Jun. 1999.
Stenson et al., “Arthroscopic treatment of partial rotator cuff tears,” Operative Techniques in Sports Medicine, 12(2):135-148, Apr. 2004.
Valdez et al., “Repair of digital flexor tendon lacerations in the horse, using carbon fiber implants,” JAYMA, 177(5): 427-435, Sep. 1, 1980.
Zobitz et al., “Determination of the compressive materials properties of the supraspinatus tendon,” J. Biomech. Eng., vol. 123(1): Feb. 2001.
Finnan et al., “Partial-thickness rotator cuff tears,” J. Shoulder Elbow Surg. vol. 19: 609-616, 2010.
Related Publications (1)
Number Date Country
20210093443 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
61313113 Mar 2010 US
Continuations (6)
Number Date Country
Parent 16150927 Oct 2018 US
Child 17119660 US
Parent 15198662 Jun 2016 US
Child 16150927 US
Parent 15184378 Jun 2016 US
Child 15198662 US
Parent 14474989 Sep 2014 US
Child 15184378 US
Parent 13889701 May 2013 US
Child 14474989 US
Parent 13046624 Mar 2011 US
Child 13889701 US