Tennis balls typically include an elastomeric or rubber-like core about which two dog-bone shaped panels of felt or other textile is bonded. Many tennis balls are pressurized to enhance rebound or bounce performance.
Disclosed herein are examples of tennis balls that have customizable performance characteristics. The example tennis balls may have customizable coefficient of restitution (COR) or a rebound characteristics best suited to a tennis player's or an organization's preferences or player's skill level. For example, some tennis players may prefer a slower tennis ball or a ball that does not bounce as high or as fast. Such slower balls may be easier for a younger or lesser experienced tennis player to keep in play. Other tennis players may prefer a faster tennis ball or a ball that bounces higher.
The example tennis balls disclosed herein facilitate customization of the COR or rebound characteristics of a tennis ball while reducing or eliminating any changes to the weight, feel, sound of impact and other characteristics of the tennis ball. The example tennis balls comprise material shift lines on the inner surface of the core of the tennis balls. Such material shift lines constitute regions where material forming the wall of the core has been shifted such that the remaining portions of the core wall have an altered thickness different than that of the material shift lines. Those remaining portions of the core wall having the altered thickness form a majority of the core wall and provide the core with its overall “effective thickness”. Such material shift lines allow the material of the core wall to be shifted to the remaining portions to increase the effective thickness of the core or to be shifted from remaining portions to decrease the effective thickness of the core, all while maintaining the overall weight of the core and the overall size of the core. Providing a greater effective thickness increases COR or rebound characteristics of the tennis ball. Providing a smaller effective thickness also increases the COR or rebound characteristics and the stiffness or resistance to deformation of the tennis ball.
In some implementations, material shift lines comprise ribs or bands along and projecting from the inner surface of the core. The bands of material on the inner surface of the tennis ball core can allow for material from remaining portions of the core wall to be shifted to such bands, reducing the thickness of the remaining portions of the core. Because the remaining portions of the core wall constitute a majority of the core, the “effective thickness”, the thickness of the core wall throughout a majority of the core, is reduced. As noted above, this lower thickness or lower “effective thickness” throughout a majority of the tennis ball can increase the COR or rebound characteristics and increase the stiffness or resistance to deformation of the tennis ball. In some implementations, the increased “effective thickness”, enhanced COR and increased stiffness may be used to enhance the performance of lower pressure or pressureless tennis balls.
In some implementations, the material shift lines comprise grooves or channels along and recessed into the inner surface of the core. The channels on the inner surface of the tennis ball core may allow material that would otherwise fill the channels to be distributed across remaining portions of the core or core wall. Because the remaining portions of the core wall constitute a majority of the core, the “effective thickness”, the thickness of the core wall throughout a majority of the core, is increased. As noted above, the increased thickness or increased “effective thickness” throughout a majority of the tennis ball increases the COR or rebound characteristics of the tennis ball. In some implementations, the increased “effective thickness” and enhanced COR may be used to enhance the performance of lower pressure or pressureless tennis balls.
In one implementation, tennis ball 10 may be formed by bathing or coating core 14 in an adhesive, such as a synthetic or natural rubber adhesive. In such an implementation, the outer edges of at least one of the two stadium (or dog-bone) shaped panels 16 of textile material are also coated with an adhesive, such as a synthetic or natural rubber adhesive. The panels 16 are then applied over and to the core 14 with the edges of the panels 16 in abutment or close proximity, while the adhesives are in an adhesive state to form the tennis ball shown in
Core 14 comprises a hollow spherical structure having a spherical wall formed from a rubber or rubber-like material. In one implementation, core 14 is faulted from two semi spherical halves or half shells 18 which are molded and joined or bonded together with an adhesive, such as a natural rubber or synthetic rubber adhesive. In one implementation, the two semi-spherical halves or half shells 18 are joined in a pressure chamber so the interior of the joined halves is pressurized. A pressurized tennis ball 10 may have an internal pressure of approximately 10 to 15 psi. In other implementations, the pressure can be below 10 psi. In other implementations, core 14 may be formed in other manners. In other implementations, core 14 may additionally incorporate a valve that facilitates pressurization of the interior of core 14.
As further illustrated by broken lines in
In another implementation, material shift lines 20 comprise regions where material has been removed, or from which material has been shifted to regions 22, such that material shift lines 20 have a lesser thickness as compared to regions 22. Because the thickness of regions 22 is thicker, the effective thickness of such a tennis ball would be increased. For example, in one implementation, the shift lines 20 may comprise grooves or channels recessed into the walls of core 14.
In the example illustrated, material shift lines 20 continuously extend around the axis 24 of core 14. Each material shift line 20 extends 360° about axis 24. In the example illustrated, material shift lines 20 extend parallel to one another. In the example illustrated, material shift lines cover or extend across no greater than 5 percent of the interior circumferential surface of core 14. In other implementations, material shift lines 20 may cover other extents of the interior surface of core 14, may have other configurations, or may intermittently extend along or about the interior surface of core 14.
In many implementations, the tennis ball is produced in accordance with specifications of the U.S. Tennis Association (USTA.) and the International Tennis Federation (ITF). For example, the tennis ball can be produced in accordance with the following specifications.
Core 214 is similar to core 14 except that core 214 comprises material shift lines 220 spaced by intermediate regions 222. Material shift lines 220 are similar to material shift lines 20 except that material shift lines 220 are not in the form of straight parallel lines about an axis of the core, but instead comprise zigzag or jagged lines. Although the zigzag material shift lines 220 are illustrated as being in phase with one another, in other implementations, in other implementations, the zigzag material shift lines 220 may be out of phase with one another. In some implementations, the zigzag material shift lines 220 may extend perpendicular to one another or may cross one another. In other implementations, the zigzag material shift lines 220 may comprise zigzag spaced segments that collectively intermittently extend about the interior surface of core 214. As discussed above with respect to material shift lines 20, material shift lines 120 and 220 may comprise regions of greater thickness as compared to the remaining intermediate portions 122, 222 to decrease the effective thickness of the core 114, 214 or regions of lesser thickness as compared to the remaining intermediate portions 122 and 222 to increase the effective thickness of core 114, 214.
In the example illustrated, core 314 has a diameter D of approximately 62.7 mm and the interior surface 324 has a radius R of 27.6 mm. In the example illustrated, bands 320 are angularly spaced from another by a spacing angle SA of 45°. In other implementations, core 314 may have other configurations and dimensions. Although bands 320 are illustrated as being pointed or generally triangular in shape (
The above patterns of bands 320, 420, 520 and 620 provided on the interior surface of the tennis ball cores may have varying thicknesses and widths to provide different degrees of reduction of the effective thickness of the core to reduce the COR of the tennis ball to various extents. In other implementations, bands can provide core with a reduction in its effective thickness of 30%, 40% or 50%. In still other implementations, other amounts of effective thickness reduction of the core can be used. To reduce the effective thickness of the tennis ball core, the volume decrease is to be achieved is based upon the lower “effective” half-shell or core thickness transferred to continuous “bands” extending outward from the inner surface of the core. The volume to be shifted is dependent upon the degree to which the “effective thickness” of the core is adjusted. The volume of material that may be shifted to such bands in various example tennis ball cores is illustrated as follows:
Pressureless Tennis Ball: A pressureless tennis ball may be molded using a half-shell or core that has an outer diameter of approximately 62.7 mm and an inner diameter of approximately 54.7 mm. This results in a thickness of the half-shell of approximately 4.0 mm and an overall material volume of approximately 43.36 cm3. Adjusting the half-shell to a lesser thickness results in the transfer of volume to the outward extending “bands” as follows:
The above table shows the amount of volume to be transferred into the “bands” extending outward from the inner surface of the half-shell for each 10% reduction in the effective thickness of the core of a Pressureless Tennis Ball. Reducing the thickness of the core beyond 50% can negatively affect the impact durability of core.
Pressurized Tennis Ball: A pressurized tennis ball is molded using a half-shell or core that has an outer diameter of approximately 61.2 mm and an inner diameter of approximately 54.2 mm. This results in a thickness of the core of approximately 3.5 mm and an overall material volume of 36.65 cm3. Adjusting the half-shell to a lesser thickness results in the need to transfer volume to the outward extending “bands” as follows:
The above table shows the amount of volume to be transferred into the “bands” extending outward from the inner surface of the half-shell for each 10% reduction in the effective thickness of the core of a standard (pressurized) Tennis Ball. Reducing the thickness of the core beyond 50% can negatively affect the impact durability of core.
In other implementations, such as the implementations of
For increasing the effective thickness of the tennis ball half-shell, the volume increase based upon the thicker “effective” half-shell or core is transferred from continuous “channels” extending inward from the inner surface of the half-shell. The volume to be shifted is dependent upon the degree to which the “effective thickness” of the half-shell is adjusted. The volume of material that has to be adjusted is illustrated as follows:
Pressureless Tennis Ball: A pressureless tennis ball is molded using a half-shell that has an outer diameter of approximately 62.7 mm and an inner diameter of approximately 54.7 mm. This results in a thickness of the half-shell of approximately 4.0 mm and an overall material volume of 43.36 cm3. Adjusting the half-shell to a greater thickness results in the need to transfer volume to the inward extending “channels” as follows:
The above table shows the amount of volume transferred into the “channels” extending inward from the inner surface of the half-shell for each 10% increase in the effective thickness of the core of a Pressureless Tennis Ball. Increase of the thickness of the core by greater than 30% may result in a necessary removal of an unacceptable high amount of volume that would result in “channels” that are larger than could be incorporated into the half-shell.
Pressurized Tennis Ball: A tennis ball is molded using a half-shell that has an outer diameter of approximately 61.2 mm and an inner diameter of approximately 54.2 mm. This results in a thickness of the half-shell of approximately 3.5 mm and an overall material volume of 36.65 cm3. Adjusting the half-shell or core to a greater thickness results in the transfer of volume or mass from the area of the channels as follows:
The above table shows the amount of volume transferred into the “channels” extending inward from the inner surface of the half-shell for each 10% increase in the effective thickness of the core of a Standard (Pressurized) Tennis Ball. Increase of the thickness of the core by greater than 30% may result in a necessary removal of an unacceptable high amount of volume that would result in “channels” that are larger than could be incorporated into the half-shell.
Core 614 (shown in
Core 514 (shown in
Core 714 (shown in
Core 814 (shown in
Core 914 (shown in
Pressureless tennis balls were molded using the tooling as defined above using a standard pressureless ball compound as follows:
Pressureless tennis balls molded with continuous “bands” or “channels” incorporated in the half shell were tested and compared to a standard pressureless tennis ball formed of the same material composition.
Results of testing were as follows:
Ball Physical Properties:
Deformation measurements were recorded in accordance with U.S.T.A. Specifications using Stevens deformation protocol and through use of an Instron universal test machine. Rebound measurements taken in accordance with U.S.T.A. Specifications wherein the tennis ball is dropped from a height of 100 inches and the height of the rebound is recorded (U.S.T.A. Specifications require a rebound height within the range of 53 to 58 inches). Examples of pressureless tennis balls molded with continuous “bands” to reduce effective cover thickness showed the following:
Overall results showed the following:
The incorporation of continuous bands that extend outward (into the hollow center) from the inner surface of the tennis ball half-shell serve to increase the stiffness (reduce the deformation) of the molded tennis ball. The presence of the continuous bands also results in an increase in tennis ball C.O.R.
The incorporation of continuous channels that extend inward into the molded half-shell have minimal effect on the deformation of the tennis ball. However, an increase in C.O.R. of the tennis ball is also observed in tennis balls incorporating the inward-extending channels.
The adjustment of the tennis ball thickness to a thinner effective core is far easier to perform, as the volume of material that can be shifted to the “bands” that will extend outward from the half-shell is significantly greater than the amount of volume that can be shifted to “channels” that will extend inward from the inner surface of the tennis ball core. The degree of which the effective thickness of the core can be increased is limited as the corresponding volume would need to be incorporated as inward-extending channels. Any level of increase of the effective thickness over about 30% results in inward-extending channels that would result in core/shell thickness between the innermost portion of the inward-extending channels and the outer surface of the half-shell that would be insufficiently thick and result in impact durability issues for the molded tennis ball.
A tennis ball can include a spherical hollow core having an inner surface comprising material shift lines, and a textile outer layer over and about the core. Implementations of the present invention can include one or more of the following elements. The material shift lines can be channels extending into the inner surface forming a plurality of regions of reduced core thickness. Portions of the spherical hollow core between the channels can have a thickness of at least 4 mm. Portions of the spherical hollow core between the channels have a thickness of at least 4.4 mm. The channels can have a collective volume of at least 2 cm3. An interior volume of the spherical hollow core can be pressurized to a pressure of at least 10 psi and portions of the spherical hollow core between the channels can have a thickness of at least 3.7 mm. An interior volume of the spherical hollow core can be pressurized to a pressure of at least 10 psi and the channels can have a collective volume of at least 3 cm3. The channels can cover no greater than about 48% of a total inner surface area of the spherical hollow core. The material shift lines can include bands projecting from the inner surface forming a plurality of regions of increased core thickness. Portions of the spherical hollow core between the bands can have a thickness of no greater than 3.6 mm. Portions of the spherical hollow core between the bands can have a thickness of no greater than 3.2 mm. The bands can have a collective volume of at least 3 cm3. The bands can have a collective volume of at least 8% of a total material volume of the spherical hollow core. An interior volume of the spherical hollow core can have an internal pressure of less than 5 psi and portions of the spherical hollow core between the bands can have a thickness of less than 3.7 mm. An interior volume of the spherical hollow core can have an internal pressure of less than 5 psi and the portions of the spherical hollow core between the bands can have a thickness of less than 3.3 mm. An interior volume of the spherical hollow core can have an internal pressure of less than 5 psi and the bands can have a collective volume of at least 3.3 cm3. The bands can have a collective volume of at least 8% of a total material volume of the spherical hollow core. The bands can cover no greater than about 51% of a total inner surface area of the spherical hollow core. The channels or the bands can have a cross-sectional shape selected from the group consisting of generally V-shaped, generally U-shaped, hemi-spherically shaped, hemi-ovular shaped, polygonal shaped, rounded, irregular and combinations thereof.
Although the present disclosure has been described with reference to example implementations, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the claimed subject matter. For example, although different example implementations may have been described as including one or more features providing one or more benefits, it is contemplated that the described features may be interchanged with one another or alternatively be combined with one another in the described example implementations or in other alternative implementations. Because the technology of the present disclosure is relatively complex, not all changes in the technology are foreseeable. The present disclosure described with reference to the example implementations and set forth in the following claims is manifestly intended to be as broad as possible. For example, unless specifically otherwise noted, the claims reciting a single particular element also encompass a plurality of such particular elements.
Number | Name | Date | Kind |
---|---|---|---|
398558 | Waddington | Feb 1889 | A |
902330 | Rowley | Oct 1908 | A |
1376778 | Orr | May 1921 | A |
2131756 | Roberts | Oct 1938 | A |
2210954 | Roberts | Aug 1940 | A |
3065520 | Schmidt | Nov 1962 | A |
3396970 | Fraser, Jr. et al. | Aug 1968 | A |
3442101 | Ploch et al. | May 1969 | A |
3684284 | Tranfield | Aug 1972 | A |
3904201 | Henry | Sep 1975 | A |
4022469 | Lacoste et al. | May 1977 | A |
RE29303 | Fraser, Jr. et al. | Jul 1977 | E |
4098504 | Koziol et al. | Jul 1978 | A |
4249730 | Frisk | Feb 1981 | A |
4300767 | Reed et al. | Nov 1981 | A |
4305583 | Tandon | Dec 1981 | A |
4318875 | Shrimpton et al. | Mar 1982 | A |
4340222 | Kerkenbush et al. | Jul 1982 | A |
4616828 | Haythornthwaite | Oct 1986 | A |
4853056 | Hoffman | Aug 1989 | A |
4853057 | Hoffman | Aug 1989 | A |
4946166 | Horiuchi et al. | Aug 1990 | A |
4947466 | Horiuchi et al. | Aug 1990 | A |
5209471 | Horiuchi et al. | May 1993 | A |
5211788 | Song | May 1993 | A |
5225258 | Nakamura et al. | Jul 1993 | A |
5308060 | Nakamura et al. | May 1994 | A |
5413333 | Janes et al. | May 1995 | A |
5460367 | Horiuchi | Oct 1995 | A |
5551688 | Miller | Sep 1996 | A |
5558325 | Hargis | Sep 1996 | A |
5593157 | Koros et al. | Jan 1997 | A |
5830092 | Meeks | Nov 1998 | A |
5865697 | Molitor | Feb 1999 | A |
6030304 | Simonutti et al. | Feb 2000 | A |
6106419 | Hall et al. | Aug 2000 | A |
6227992 | Brasier | May 2001 | B1 |
6508732 | Romberger et al. | Jan 2003 | B1 |
6677257 | Brasier | Jan 2004 | B2 |
7611429 | O'Neill et al. | Nov 2009 | B2 |
7985779 | Vleghert | Jul 2011 | B2 |
D668947 | Niksich | Oct 2012 | S |
8622857 | Lo | Jan 2014 | B2 |
20050026521 | Brasier | Feb 2005 | A1 |
20070178997 | Chang | Aug 2007 | A1 |
20090318251 | Limerkens et al. | Dec 2009 | A1 |
20100261563 | Verbeke et al. | Oct 2010 | A1 |
20100307637 | Dirst | Dec 2010 | A1 |
20120165143 | Kanda et al. | Jun 2012 | A1 |
20120298050 | Merritt | Nov 2012 | A1 |
20130017912 | DeAngelis-Duffy | Jan 2013 | A1 |
20140274504 | Hu | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
0022961 | Jan 1981 | EP |
0576233 | Dec 1993 | EP |
2638375 | May 1990 | FR |
719467 | Dec 1954 | GB |
2015056193 | Apr 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20180264327 A1 | Sep 2018 | US |