1. Field of the Invention
The present invention generally relates to fluid bypass devices used with fishing arrangements within a wellbore and the like.
2. Description of the Related Art
Fishing arrangements are used to try to remove stuck tools or devices from the interior of a wellbore. The stuck tool typically has an upper end fishing neck that can be engaged by a latching tool on a running string. Two common latching tools are known as a spear and an overshot tool. Often, the latching tool is actuated using hydraulic pressure to be latched and unlatched from the fishing neck. In such a case, unobstructed fluid flow from the surface is needed to operate the latching tool, since the latching tool is unlatched from the fishing neck by pumping of a predetermined rate of fluid through the latching tool.
The inventors have recognized that fluid flow through the running string to operate other tools within the running string can inadvertently cause the latching tool to be released from the fishing neck of the stuck tool, which is undesirable.
The present invention provides a fluid bypass tool that can be incorporated into a fishing arrangement between a fluid-operated latching tool and a fluid-operated jarring tool. The latching tool uses fluid pumped from the surface to become latched to and unlatched from a stuck tool in the wellbore. The bypass tool permits fluid flow to the latching tool to be interrupted so that the jarring tool may be operated without risk of inadvertently causing the latching tool to unlatch from the stuck tool. When fluid flow to the latching tool is interrupted by the bypass tool, fluid flow from the surface may be used to operate the jarring tool.
An exemplary bypass tool is described which includes a tool body that is made up of first and second body sections that are axially moveable with respect to each other. The bypass tool sections are moveable between a first, run-in condition or position, wherein fluid can be flowed from one axial end of the tool to the other axial end, and a second, actuated condition or position, wherein fluid flow into the first axial end of the tool is diverted radially outwardly through the body of the tool. When tension is applied to the bypass tool, lateral fluid flow ports are unblocked which divert fluid flow into the surrounding wellbore, thereby bypassing the latching tool. The body sections are spring-biased toward the first, run-in condition but activated by tension on the running string to move to the activated condition.
The advantages and other aspects of the invention will be readily appreciated by those of skill in the art and better understood with further reference to the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawings and wherein:
A fishing arrangement, generally indicated at 24, is disposed within the wellbore 10 above the stuck tool 18. The fishing arrangement 24 includes a running string 26 that extends downwardly from the surface 14 of the wellbore 10. The running string 26 is preferably formed of sections of interconnected tubing of a type known in the art. However, it is also contemplated that coiled tubing can be used. A central fluid flowbore 27 is defined within the running string 26. A fluid-operated impact-type jarring tool 28 is affixed to the lower end of the running string 26. One suitable fluid-operated jarring tool which is suitable for use as the jarring tool 28 is the MG3 jarring tool which is available commercially from Baker Hughes Incorporated of Houston, Tex. Other suitable jarring tools are commercially available as well from other manufacturers/vendors and which are typically referred to as “impact hammers” or “impact jars.” The term “fluid-operated” when used with respect to the jarring tool 28 is intended to mean that the jarring tool 28 is actuated by a flow of fluid through the tool 28 from the surface-based fluid pump 22.
A fluid bypass tool 30, in accordance with the present invention, is operably connected with the lower end of the jarring tool 28. It is noted that, while
A retainer 80 radially surrounds the shaft 64 of the mandrel 62. The retainer has a reduced diameter inner surface 82 and an enlarged diameter inner surface 84. When the retainer 80 surrounds the shaft 64, a spring chamber 86 is defined therebetween. Compression spring 88 is retained within the spring chamber 86. The upper end of the compression spring 88 abuts a downward-facing shoulder 90 on the retainer 80 while the lower end of the compression spring 88 abuts an upward-facing shoulder 92 on the chamber housing 66. A set of lateral fluid equalization ports 94 are disposed through the retainer 80 to permit surrounding well fluids to flow into and out of the spring chamber 86.
A tubular sleeve 96 is affixed by a first threaded connection 98 to the retainer 80. The sleeve 96 is also affixed by a second threaded connection 100 to a bottom sub 102. The bottom sub 102 is shown in greater detail in
The fishing arrangement 24 is run into the wellbore 10 and lowered until the overshot latching tool 32 engages the fishing neck 20 of the stuck tool 18. Once this is done, it is desired to operate the jarring tool 28 to try to remove the stuck tool 18. The inventors have recognized that it is also desirable at this time to cut off fluid flow to the latching tool 32 in order to prevent it from being inadvertently unlatched from the fishing neck 20 by variations in fluid pressure in the flowbore 27 during operation of the jarring tool 28.
An overpull on the running string 26 is used to move the bypass tool 30 from the run in configuration shown in
It will be understood that the upper sub 58 and mandrel 62 collectively form a first tool section, while the bottom sub 102, sleeve 96 and retainer 80 collectively form a second tool section. The first and second tool sections are axially moveable with respect to each other between the first, run-in condition and the second, actuated condition.
When the stuck tool 18 has been unstuck from the wellbore 10 via operation of the jarring tool 28, axial tension upon the bypass tool 30 will be reduced, and the spring 88 will urge the bypass tool back to the run-in configuration.
It should be understood that the invention also provides a method for selectively diverting fluid flow from the fluid-operated latching tool 32 while permitting the fluid-operated jarring tool 28 to be operated by fluid flowed through the running string 26.
Further, the invention provides a method and system for removing a stuck tool or object 18 from within a wellbore 10. In an exemplary method for removing a stuck tool or object 18, a fishing arrangement 24 is disposed into the wellbore 10 having a fluid-operated jarring tool 28, a fluid-operated latching tool 32 and a fluid bypass tool 30 disposed between the jarring tool 28 and the latching tool 32. The latching tool 32 is latched to the stuck tool or object 18 using fluid flow through the fishing arrangement 24 to accomplish the latching. Thereafter, the bypass tool 30 is actuated to divert the fluid flow from entering the latching tool 32. Fluid flow through the fishing arrangement 24 then actuates the jarring tool 28 to remove the stuck tool or object 18.
Those of skill in the art will recognize that numerous modifications and changes may be made to the exemplary designs and embodiments described herein and that the invention is limited only by the claims that follow and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2732901 | Davis | Jan 1956 | A |
3735827 | Berryman | May 1973 | A |
3765487 | McEver | Oct 1973 | A |
3800876 | Eggleston | Apr 1974 | A |
5170845 | Gay et al. | Dec 1992 | A |
7281575 | McElroy et al. | Oct 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20110011588 A1 | Jan 2011 | US |