The present disclosure is in the technical field of inflatable film. More particularly, the present disclosure is directed to tension-inducing shafts that resist rotation of a roll of film to induce tension in the film as the film is withdrawn from the roll.
Air cellular cushioning materials are commonly used to protect articles during shipment. One such product is Bubble Wrap® air cellular cushioning sold by Sealed Air Corp. Air cellular cushioning is generally prepared at a production plant and shipped in rolls to distributors and end users. Since the rolls are bulky and have a large volume to weight ratio, shipping costs are relatively high. In addition, the large volume to weight ratio means that relatively large storage areas may be required for storing inventoried cushioning.
To address these issues, inflatable films have been shipped to end users in supply rolls having a relatively low volume to weight ratio. End users are able to inflate the film as needed. It is desirable that end users have access to film inflation systems that inflate and seal such films reliably and consistently to provide desired air cellular cushioning.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In a first embodiment, a system includes a shaft, a first shaft cap, a second shaft cap, and a biasing mechanism. The shaft has a first end and a second end and the shaft includes a bore that extends through the shaft from the first end to the second end. The first shaft cap is positioned on the first end of the shaft. The first shaft cap includes a first collar having a size that is larger than the bore, a first keyed end, and a first anchor. The second shaft cap is positioned on the second end of the shaft. The second shaft cap includes a second collar having a size that is larger than the bore, a second keyed end, and a second anchor. The biasing mechanism is arranged inside the bore of the shaft and coupled to the first anchor of the first shaft cap and to the second anchor of the second shaft cap so that the biasing mechanism exerts inward forces on the first and second shaft caps. The first and second keyed ends are configured to be coupled to a housing so that the first and second shaft caps do not rotate with respect to the housing. The shaft is configured to rotate with respect to the first and second shaft caps such that, when the first and second keyed ends are coupled to the housing, the shaft is capable of rotating with respect to the housing.
In a second embodiment, at least one of the first anchor and the second anchor in the first embodiment is configured to swivel.
In a third embedment, the at least one of the first and second anchors of the second embodiment is configured to swivel during respective rotation of the first and second shaft caps so that the respective rotation of the first and second shaft caps does not cause torque on the biasing mechanism or the first and second anchors sufficient to plastically deform the biasing mechanism or the first and second anchors.
In a fourth embodiment, the system of any of the preceding embodiments claim is configured such that the first shaft cap further includes a first body configured to be slid inside of the bore of the shaft from the first end of the shaft and the second shaft cap further includes a second body configured to be slid inside of the bore of the shaft from the second end of the shaft.
In a fifth embodiment, the system of the fourth claim is configured such that the first anchor extends from an end of the first body of the first shaft cap and the second anchor extends from an end of the second body of the second shaft cap.
In a sixth embodiment, the system of any one of the fourth to the fifth embodiments further comprises a first counterbore at the first end of the shaft, a second counterbore at the first end of the shaft, a first bearing located in the first counterbore, and a second bearing located in the second counterbore. A coefficient of friction between the first bearing and the first body of the first shaft cap is lower than a coefficient of friction between the bore and the first body of the first shaft cap. A coefficient of friction between the second bearing and the second body of the first shaft cap is lower than a coefficient of friction between the bore and the second body of the second shaft cap.
In a seventh embodiment, in the system of any one of the fourth to the sixth embodiments, a material of the first collar, the first body, the first collar, the second body, and the second collar includes at least one of a self-lubricating plastic or a low-friction plastic.
In an eighth embodiment, in the system of any one of the fourth to the seventh embodiments, a material of the first collar, the first body, the first collar, the second body, and the second collar includes polyoxymethylene.
In a ninth embodiment, in the system of any of the preceding embodiments, the shaft includes a circumferential groove located proximate the first end of the shaft.
In a tenth embodiment, the system of the ninth embodiment further comprises a clip located in the circumferential groove. The clip is configured to serve as a side justification for at least one of a film roll positioned on the shaft or end caps that are positioned on the shaft.
In an eleventh embodiment, in the system of any of the preceding embodiments, the shaft includes at least one keyed surface.
In a twelfth embodiment, in the system of the eleventh embodiment, the at least one keyed surface is configured to key to a corresponding surface of at least one of a film roll positioned on the shaft or end caps that are positioned on the shaft.
In a thirteenth embodiment, in the system of any of the preceding embodiments, the first keyed end is a square or rectangular protrusion that extends from the first collar of the first shaft cap and the second keyed end is a square or rectangular protrusion that extends from the second collar of the second shaft cap.
In a fourteenth embodiment, a system includes a housing and a shaft assembly. The shaft has a first end and a second end and the shaft includes a bore that extends through the shaft from the first end to the second end. The shaft also has a first shaft cap positioned on the first end of the shaft, a second shaft cap positioned on the second end of the shaft, and a biasing mechanism. The biasing mechanism is arranged inside the bore of the shaft and coupled to the first shaft cap and to the second shaft cap so that the biasing mechanism exerts inward forces on the first and second shaft caps. The first and second shaft caps are coupled to the housing so that the first and second shaft caps do not rotate with respect to the housing. The shaft is configured to rotate with respect to the first and second shaft caps such that the shaft is capable of rotating with respect to the housing.
In a fifteenth embodiment, the system of the fourteenth embodiment further includes a supply roll of film loaded on the shaft so that rotation of the supply roll of film with respect to the housing causes rotation of the shaft with respect to the housing.
In a sixteenth embodiment, the supply roll of film in the fifteenth embodiment includes a film wound around a core, wherein withdrawal of the film from the core causes rotation of the supply roll.
In a seventeenth embodiment, the system of the sixteenth embodiment further includes a first end cap configured to be inserted into a first end of the core and a second end cap configured to be inserted into a second end of the core.
In an eighteenth embodiment, each of the first and second end caps of the seventeenth embodiment includes a hole that permits each of the respect first and second end caps to be slid onto and across the shaft.
In a nineteenth embodiment, the system of any one of the fourteenth to eighteenth embodiments is configured such that the housing includes a first slot and a second slot, the first shaft cap includes a first keyed end, the second shaft cap includes a second keyed end, and the first and second shaft caps are configured to be coupled to the housing by sliding the first and second keyed ends into the first and second slots, respectively.
In a twentieth embodiment, the system of the nineteenth embodiment is configured such that the shaft assembly is configured to be uncoupled from the housing by lifting the shaft assembly so that the first and second keyed ends of the first and second shaft caps slide out of the first and second slots, respectively.
In a twenty first embodiment, the shaft assembly of any one of the fourteenth to twentieth embodiments is capable of holding supply rolls of multiple different widths.
The foregoing aspects and many of the attendant advantages of the disclosed subject matter will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Depicted in
The present disclosure describes embodiments of film inflation systems for inflating and sealing inflatable film. In addition, the present disclosure describes various components of film inflation systems, including nozzles, sealers, idlers, and end caps for supply rolls of film.
Nozzles in film inflation systems inflate inflatable channels in films. Some nozzle designs do not inflate inflatable channels in film properly. In some cases, inconsistent rates of inflation cause air bubbles and air pillows to be unusable in packages. Described herein are embodiments of nozzles that provide for proper inflation. In one example, a nozzle includes a proximal end that separates the two sides of the common film to open the common channel as the film moves in a film path direction, a distal end that permits the two sides of the film to converge as the film moves in the film path direction, and a slot configured to direct gas transversely into the common channel to inflate the inflatable channels as the film moves in the longitudinal direction. In some examples, the proximal end is curved, the distal end is tapered, and the slot is located in the tapered distal end.
Sealers in film inflation systems form seals in film to seal inflatable channels. Some sealer designs do not form proper seals in films. In some cases, sealers form inconsistent seals in inflatable materials. Described herein are embodiments of sealers that form proper seal in inflatable films. In one example, a sealer has a body with a slot therein and a heating element exposed through a portion of the body. The film is moved be a roller assembly that includes a first roller and a second roller. One of the first and second rollers is a slotted roller and the slot in the body allows portions of the sealer to be located in the slotted roller so that the heating element is located between the first and second rollers. The heating element is capable of being activated to cause a seal to be formed in the film as the film is moved by the first and second rollers.
Some film inflation systems, especially those that pull film from the side of the film, tend to form ripples and folds in the film. In some cases, ripples and folds are formed that prevent inflatable channels from inflating properly. Described herein are embodiments of idlers that provide tension in the film to reduce the likelihood that ripples or folds form in the film. In one example, an idler includes a bracket fixedly coupled to a housing of a film inflation system that hold a supply roll of the film. An idler arm has a first end and a second end and the first end of the idler arm is rotatably coupled to the bracket. A roller is rotatably coupled to the second end of the idler arm. A biasing mechanism biases the idler in an engaged position. The roller is in contact with the supply roll of film and the biasing mechanism causes the roller to exert a force on the supply roll of film when the idler is in the engaged position. In some examples, the biasing mechanism allows the idler to be toggled between the engaged position and a withdrawn position in which the roller is not in contact with the supply roll.
Film supply rolls provide film inflation systems with film to inflate and seal. In some cases, extensive film path systems move the film and align the film with the inflation and sealing systems. However, such extensive film path systems can be expensive and require an operator to have some skill to initially feed the film through the film path. Simpler film path systems typically do not properly align the film with the inflation and sealing systems, resulting in poor inflation and/or sealing of the film. Described herein are embodiments of end caps that can be placed on supply rolls of film to properly align the film with a film inflation system. In one example, an end cap includes an insert that is placed inside of the core of the supply roll, a recessed portion coupled to the insert, and a flange that is coupled to the recessed portion and that contacts the film on the supply roll. The end cap also includes a coupling mechanism on a side of the end cap opposite the supply roll. The coupling mechanism is in a fixed position with respect to the flange and the coupling mechanism engages a coupling on the film inflation system. The recessed portion accommodates any portion of the core that extends beyond the film on the supply roll when the film is in contact with the flange.
Described below are variations of the embodiments of nozzles, sealers, idlers, and end caps mentioned above. Those components are described below both alone and in the context of film inflation systems. Also described below are additional components of film supply systems. The embodiments mentioned in the preceding paragraphs are examples only; they are not intended to identify key features of the claimed subject matter nor to limit the scope of the claimed subject matter.
The film inflation system 100 includes couplings 1041 and 1042 (collectively couplings 104) configured to permit a supply roll 130 of film 140 to be coupled to the film inflation system 100. In some embodiments, as will be discussed in greater detail below, one or more of the couplings 104 are configured to releasably engage end caps that are placed on ends of the supply roll 130 of film 140. In other embodiments, the one or more couplings 104 are configured to releasably engage the supply roll 130 of film 140 itself. In the embodiments depicted in
In some embodiments, the film 140 is a two-ply film that has a common channel that is in fluid communication with a number of inflatable channels. The inflatable channels are arranged to be inflated to have a three-dimensional cushion shape. While on the supply roll 130, the inflatable channels are deflated and an edge of the common channel is open. As will be discussed in greater detail below, the film inflation system 100 is configured to move the film 140 along a film path, during which the inflatable channels are inflated through the common channel and the inflatable channels are individually sealed.
In some embodiments, one or both sides of the film 140 includes at least one or more of polyethylene, ethylene/alpha-olefin copolymer, ethylene/unsaturated ester copolymer, ethylene/unsaturated acid copolymer, polypropylene, propylene/ethylene copolymer, polyethylene terephthalate, polyamide, polyvinylidene chloride, polyacrylonitrile, ethylene/vinyl alcohol (EVOH), or propylene/vinyl alcohol (PVOH). Examples of films are described in U.S. Pat. Nos. 7,807,253, 7,507,311, 7,018,495, 7,223,461, 6,982,113, and 6,800,162, the contents of all of which are hereby incorporated by reference in their entirety.
The film inflation system 100 includes a tensioner 106 coupled to the housing 102. The tensioner 106 is located in the film path downstream of the supply roll 130 of film 140. In some embodiments, the tensioner 106 is configured to direct the film 140 in the film path and to maintain a level of tension in the film as it travels along a portion of the film path. In some embodiments, the tensioner 106 includes one or more protrusions extending from a portion of the housing 102 so that the common channel of the film 140 comes into contact with the tensioner 106.
In some embodiments, the film inflation system 100 also includes an idler 108. As discussed below with respect to the embodiment shown in
The film inflation system 100 also includes a nozzle 110. The nozzle 110 is configured to separate two sides of the common channel in the film 140 and to insert gas through the common channel and into the inflatable channels in the film 140. In some embodiments, the nozzle 110 has a curved proximal end at the side of the nozzle 110 positioned upstream in the film path, a tapered distal end at the side of the nozzle 110 positioned downstream in the film path, and a longitudinal slot located in the tapered distal end of the nozzle 110. The curved proximal end of the nozzle 110 is configured to separate the two sides of the common channel of the film 140. The tapered distal end of the nozzle 110 is configured to permit the two sides of the film to converge before the film 140 is sealed. The longitudinal slot is configured to direct gas transversely into the inflatable channels of the film 140 as the film 140 moves along the film path.
The film inflation system 100 includes a roller assembly 112. The roller assembly 112 is configured to drive the film 140 along the film path and to seal the inflatable channels of the film 140. In the depicted embodiment, the roller assembly 112 includes a first roller 114 and a second roller 116. The first and second rollers 114 and 116 either abut each other or are positioned in an interference fit so the first and second rollers 114 and 116 are in contact with one another. A side of the film 140 is threaded between the first and second rollers 114 and 116. One or both of the first and second rollers 114 and 116 is driven to pull the film 140 off of the supply roll 130. In some embodiments, the film 140 is pulled by the first and second rollers 114 and 116 at a rate up to a speed in a range between 9 and 12 feet per minute. In some embodiments, the first and second rollers 114 and 116 are made from a resilient material, such as a rubber or resilient plastic.
The roller assembly 112 also includes a drag sealer 118. The drag sealer 118 is configured to create a seal in the film 140 after the inflatable channels in the film 140 are inflated. One embodiment of the drag sealer 118 is depicted in
The nozzle 110 and the roller assembly 112 of the film inflation system 100 are depicted in greater detail in the partial perspective view shown in
In the embodiment depicted in
Returning back to
The film inflation system 100 also includes one or more motors 122 configured to drive one or both of the first and second rollers 114 and 116. In some embodiments, the one or more motors 122 includes one motor configured to drive one of the first and second rollers 114 and 116, one motor configured to drive both of the first and second rollers 114 and 116, or two motors each configured to drive one of the first and second rollers 114 and 116. In the depicted embodiment, the one or more motors 122 are located inside the housing 102. In other embodiments, the one or more motors 122 are located outside of the housing 102. In some embodiments, the one or more motors 122 include one or more of an electrical motor, a solenoid, a combustion engine, a pneumatic motor, a hydraulic motor, or any other type of rotary driving mechanism.
The film inflation system 100 also includes a controller 124. In some embodiments, the controller 124 includes one or more of a complex programmable logic device (CPLD), a microprocessor, a multi-core processor, a co-processing entity, an application-specific instruction-set processor (ASIP), a microcontroller, an integrated circuit, an application specific integrated circuits (ASIC), a field programmable gate array (FPGA), a programmable logic array (PLA), a hardware accelerator, any other circuitry, or any combination thereof. The controller 124 is communicatively coupled to each of the drag sealer 118, the gas source 120, and the one or more motors 122. The controller 124 is configured to control operation of the drag sealer 118, such as whether the drag sealer 118 is heating the heating element and/or the temperature of the heating element of the drag sealer 118. In some embodiments, the controller 124 is configured to receive information back from the drag sealer 118, such as a temperature sensor reading indicating the temperature of the heating element of the drag sealer 118. The controller 124 is configured to control operation of the gas source 120, such as whether the gas source 120 is supplying gas to the nozzle 110 and/or the rate of flow of gas from the gas source 120 to the nozzle 110. The controller 124 is configured to control operation of the one or more motors 122, such as the whether the one or more motors 122 are driving one or both of the rollers 114 and 116 and/or the rate at which the one or more motors 122 are driving one or both of the rollers 114 and 116.
The film inflation system 100 also includes a user interface 126. In some embodiments, the user interface 126 includes a physical button, a keyboard, a mouse, a touchscreen display, a touch sensitive pad, a motion input device, a movement input device, an audio input, a pointing device input, a joystick input, a keypad input, a peripheral device, an audio output device, a video output, a display device, a motion output device, a movement output device, a printing device, a light (e.g., a light-emitting diode (LED)), any other input or output device, or any combination thereof. The user interface 126 is communicatively coupled to the controller 124. The user interface 126 is configured to receive user inputs, to communicate the user inputs to the controller 124, to receive signals from the controller 124, and to provide an output to the user. In one example, the user interface 126 receives a user input to begin moving and inflating the film, communicates a signal to the controller 124 indicating the user input, receives an indication from the controller 124 that the film inflation system 100 is operating, and illuminates an LED to indicate that the film inflation system 100 is operating. Other functions that can be controlled via the user interface 126 include the flow rate of gas from the gas source 120 to the nozzle 110, the heat produced by the drag sealer 118, the speed at which the one or more motors 122 operate, or any other function of the film inflation system 100.
The film inflation system 100 also includes a power source 128. The power source 128 is coupled to and configured to provide power to each of the drag sealer 118, the gas source 120, the one or more motors 122, the controller 124, and the user interface 126. In some embodiments, the power source 128 includes a power adapter configured to receive AC power from an external source (e.g., a power outlet, a power supply, etc.) and to convert the AC power into an appropriate level and type of electrical power for each of the drag sealer 118, the gas source 120, the one or more motors 122, the controller 124, and the user interface 126. In other embodiments, the power source 128 includes one or more batteries (e.g., rechargeable batteries, DC batteries, etc.) configured to provide an appropriate level and type of electrical power for each of the drag sealer 118, the gas source 120, the one or more motors 122, the controller 124, and the user interface 126. In some embodiments, the controller 124 is configured to control electrical output from the power source 128 to one or more of the drag sealer 118, the gas source 120, the one or more motors 122, the controller 124, and the user interface 126. For example, the controller 124 may be configured to control the one or more motors 122 by controlling an amount of electrical power provided from the power source 128 to each of the one or more motors 122.
Depicted in
The first and second rollers 114 and 116 are configured to move the film 140 in a direction 150 of a film path. The common channel 142 and the edges 146 of the film pass between the first and second rollers 114 and 116 so that rotation of the first and second rollers 114 and 116 causes the film 140 to move in the direction 150. As the film 140 moves in the direction 150, the longitudinal slot 134 of the nozzle 110 directs gas through the common channel 142 into each of the inflatable channels 144. Then, as the film continues between the first and second rollers 114 and 116, the drag sealer 118 creates a seal 148 in the film 140. The seal 148 individually seals the inflatable channels to maintain the inflatable channels 144 in an inflated state. Thus, the inflatable channels 144 start as deflated inflatable channels 152 on the right side of
Depicted in
As the film 140 continues to move further in the direction 150 along the tapered distal end 136, the tapered distal end 136 permits the edges 146 to come closer to each other. In the depicted embodiment, the longitudinal slot 134 is located in the tapered distal end 136 of the nozzle 110. The location of the longitudinal slot 134 in the tapered distal end 136 allows the inflatable channels 144 of the film 140 to be inflated just before the edges 146 of the film 140 come together and proceed between the first and second rollers 114 and 116. This arrangement allows for gas to remain in the inflatable channels 144 until the inflatable channels 144 are held closed by the first and second rollers 114 and 116 and/or the seal 148 is created by the drag sealer.
Because the inflatable channels 144 allow gas to exit until they are held closed or sealed, it would be advantageous for the longitudinal slot 134 to be as close as possible to the first and second rollers 114 and 116 and/or the heating element 138 of the drag sealer 118. The location of the nozzle 110 in
Depicted in
Depicted in
One of the difficulties with supply rolls of film is depicted in
Misalignment of the core 202 and the film 204 may not allow alignment the end of the film 204 to a surface. In some examples, the hollow bore 206 can be placed over an axle that has a flange on the side. The supply roll 200 can be slid over the axle until a portion of the supply roll 200 contacts the flange. When the core 202 and the film 204 are aligned (e.g., in
One difficulty with not being able align the edge of the film 204 with a surface is that the film 204 may not properly feed through a film path when it is misaligned. Using the example of the film inflation system 100, a variation in the horizontal location of the side of the film 140 when the film 140 comes off of the supply roll 130 can cause the roller assembly 112 to improperly engage the film 140. This can result in rippling of the film 140, poor inflation of inflatable channels in the film 140, improper sealing of the inflatable channels in the film 140, and/or other defects.
Depicted in
The spindle 212 is configured to be releasably coupled to one or more couplings of a film inflation system. The spindle 212 includes a keyed end 222 opposite the end of the spindle 212 with the flange 220. In some embodiments, the keyed end 222 is configured to engage and be releasably coupled to coupling of a film inflation system. For example, the keyed end 222 depicted in
Depicted in
In
In
In both of the instances shown in
Depicted in
The first end cap 520 includes a plug 522 that is configured to be inserted in one end of a film roll core. The plug 522 includes ridges 524 that are arranged to be axially aligned with the film roll core when the plug 522 is inserted into the film roll core. The ridges 524 are configured to prevent relative rotation of the film core roll with respect to the first end cap 520. The first end cap 520 also includes a flange 526. When the plug 522 is inserted into the film core roll, one or both of the film and the film roll core contacts the flange 526, depending on whether the film is aligned with the end of the film roll core (see, e.g.,
The second end cap 530 includes a plug 532 that is configured to be inserted in another end of the film roll core. The plug 532 includes ridges 534 that are arranged to be axially aligned with the film roll core when the plug 532 is inserted into the film roll core. The ridges 534 are configured to prevent relative rotation of the film core roll with respect to the second end cap 530. The second end cap 530 also includes a flange 536. When the plug 532 is inserted into the film core roll, one or both of the film and the film roll core contacts the flange 536, depending on whether the film is aligned with the end of the film roll core (see, e.g.,
The end cap system 500 also includes an adjustable clamp 540. The adjustable clamp 540 is configured to be releasably secured to the spindle 510. The adjustable clamp 540 can be released, moved axially along the spindle 510 to a different location along the spindle, and clamped again to secure the adjustable clamp 540 at a different location along the spindle 510. The adjustable clamp 540 serves as a stop to prevent the first end cap 520 from translating further along the spindle 520 in an axial direction. The ability to move selectively secure the adjustable clamp 540 to the spindle 510 allows the first end cap 520 to be stopped at different locations along the spindle 520. To the extent that the end of film varies with respect to film roll cores (see, e.g.,
While aligning one side of film with the roller and sealer components of a film inflation system increases the ability of the film inflation system to properly inflate and seal film. However, feeding the film from one side of the film also has some disadvantages. In some instances, the pulling the film from one side can cause ripples and/or folds to form in the film as it comes off of a supply roll. Ripples and/or folds can cause inflatable channels in the film to be blocked entirely or partially so that they do not fully inflate. Ripples and/or folds in the film can also cause the film to be misaligned before it reaches the roller and sealer components of the film inflation system, resulting in improper seal location in the film.
Depicted in
The idler 320 includes a bracket 322 that is configured to be fixedly coupled to the housing 308. In some embodiments, the bracket 322 is fixedly coupled to the housing 308 by way of one or more fasteners, such as bolts, nuts, screws, rivets, anchors, and the like. In some embodiments, the bracket 322 is fixedly coupled to the housing 308 by way of something other than a fastener, such as adhesive, welds, and the like. A first end of an idler arm 324 is rotatably coupled to the bracket 322 and a second end of the idler arm 324 is rotatably coupled to a roller 326. The idler arm 324 is configured to be rotated with respect to the bracket 322 about the first end of the idler arm 324. The roller 326 is configured to rotate with respect to the idler arm 324 about the second end of the idler arm 324.
The idler 320 includes a biasing mechanism 328 configured to bias the idler arm 324 toward the supply roll 300. The biasing mechanism 328 causes the roller 326 to be in contact with and apply a force to the film 304 on the supply roll 300. In the embodiment depicted in
In the depiction shown in
In the depiction shown in
When the amount of film 304 on the supply roll 300 is low or exhausted, the supply roll 300 may be replaced with another supply roll. It may be advantageous to move the idler 320 to a withdrawn position so that the idler 320 does not interfere with the removal of the supply roll 300 from the housing 308 or the placement of another supply roll on the housing 308. To transition the supply roll 300 from the engaged position to the withdrawn position, a user may rotate the idler 320 in the direction shown by the dashed arrow. In the particular embodiment, the roller 326 is in contact with the surface 310 when the idler 320 is in the withdrawn position. In addition, in the depicted embodiment, the biasing mechanism 328 biases the roller 326 toward the surface 310. In this way, the idler 320 is toggled to be in either the engaged position or the withdrawn position to provide ease of use for a user.
Depicted in
The amount of tension in the film 140 can be affected by a number of characteristics of the idler 108. In some embodiments, one or more characteristics of the idler 108 are select based on a particular amount of tension in the film 140 during operation of the film inflation system 100. In some embodiments, the one or more characteristics of the idler 108 include one or more of a transverse location of the idler 108 between the coupling 1041 and the coupling 1042, a length of the idler arm of the idler 108, a height of a roller of the idler 108, a dimension of a roller of the idler 108 (e.g., radius, width, etc.), a strength of a biasing mechanism of the idler 108, or any other characteristic of the idler 108.
Depicted in
An intended film path 606 of the film through the tensioning system 600 is also depicted in
The various embodiments of film inflation systems described herein can have a variety of forms and designs. Depicted in
As can be seen, the film inflation system 400 is configured to transition between two configurations to accommodate different width of supply rolls. In the embodiment shown in
In some embodiments, a shaft assembly that holds a film roll is capable of inducing tension in the film as the film is unrolled from the film roll. Such a tension-inducing shaft assembly can provide a simple and cost-effective manner of inducing tension in film that is fed from a roll. Depicted in
The film inflation system 700 also includes a roller assembly 712. The roller assembly 712 is configured to drive film along a film path and to seal the inflatable channels of the film. In some embodiments, the roller assembly 712 includes two rollers that either abut each other or are positioned in an interference fit. A side of the film can be threaded between the rollers 116 and one or both of the rollers can be driven to pull the film off of the supply roll. In some embodiments, the rollers are made from a resilient material, such as a rubber or resilient plastic. The roller assembly 712 can also include a drag sealer (or other sealer) configured to create a seal in the film after the inflatable channels in the film are inflated.
The film inflation system 700 also includes a user interface 726. In some embodiments, the user interface 726 includes a physical button, a keyboard, a mouse, a touchscreen display, a touch sensitive pad, a motion input device, a movement input device, an audio input, a pointing device input, a joystick input, a keypad input, a peripheral device, an audio output device, a video output, a display device, a motion output device, a movement output device, a printing device, a light (e.g., a light-emitting diode (LED)), any other input or output device, or any combination thereof. The user interface 726 can be communicatively coupled to the controller. The user interface 726 is configured to receive user inputs, to communicate the user inputs to the controller, to receive signals from the controller, and to provide an output to the user. In one example, the user interface 726 receives a user input to begin moving and inflating the film, communicates a signal to the controller indicating the user input, receives an indication from the controller that the film inflation system 700 is operating, and illuminates an LED to indicate that the film inflation system 700 is operating. Other functions that can be controlled via the user interface 726 include the flow rate of gas from the gas source to the nozzle, the heat produced by the drag sealer, the speed at which a roller motor operates, or any other function of the film inflation system 700.
The housing 702 of the film inflation system 700 includes slots 740 and 742 configured to be coupled to ends of a shaft. In some embodiments, a shaft located between the slots 740 and 742 is configured to hold a roll of film that can be inflated and sealed by the film inflation system 700. In the depicted embodiment, the slots 740 and 742 include linear portions that at a non-parallel and non-perpendicular angle with respect to vertical. These linear portions may allow for ends of the shaft to slide into proper place under the weight of the film roll and for the shaft to be slid back out of the slots 740 and 742 to replace the film roll. The slots 740 and 742 may be arranged so that the ends of the shaft can be slid into place in the slots 740 and 742 and the shaft can be slid out of the slots 740 and 742 manually without the use of tools.
Depicted in
In the depicted embodiment, the shaft 800 includes a keyed surface 808 and a keyed surface 810. The keyed surfaces 808 and 810 are configured to key to corresponding surfaces of a film roll, end caps that hold a film roll, or any other component. In other embodiments, the shaft 800 may include only one of the keyed surfaces 808 and 810. In still other embodiments, the may not include either of the keyed surfaces 808 and 810. The shaft 800 also includes a circumferential groove 812. In the depicted embodiment, the circumferential groove 812 is located proximate the first end 802 of the shaft 800.
Depicted in
Depicted in
The shaft cap 822 also includes an anchor 832 that is located on the end of the body 826. As is discussed in greater detail below, the anchor 832 is configured to couple the shaft cap 822 to a biasing mechanism (e.g., a spring). In the depicted embodiment, the anchor 832 includes a hole 834 through which a portion of a biasing mechanism can be inserted. For example, in the case where biasing mechanism is a spring that has a hook, the hook of the spring can be inserted through the hole 834 to couple the spring to the shaft cap 822.
In the depicted embodiment, the anchor 832 is configured to swivel, such as by rotating with respect to the body 826. In some embodiments, the body 826, the collar 828, and the keyed end 830 are made from one material (e.g., plastic) and the anchor 832 is made from another material (e.g., metal). In some embodiments, the body 826, the collar 828, and the keyed end 830 are made from a self-lubricating plastic and/or a low-friction plastic, such as polyoxymethylene (sometimes sold under the trade name DELRIN by E. I. du Pont de Nemours and Company). In some embodiments, the shaft cap 824 may be the same as the shaft cap 822 shown in
Depicted in
As can be seen in
Each of the shaft caps 822 and 824 is configured to rotate with respect to the other of the shaft caps 822 and 824. One reason to have one or both of the anchors be a swiveling anchor is to permit relative rotation of the shaft caps 822 and 824 while the biasing mechanism 836 is coupled to the anchors without causing torque on the biasing mechanism 836 or the anchors sufficient to plastically deform the biasing mechanism 836 or the anchors.
Each of the shaft caps 822 and 824 is configured to rotate with respect to the shaft 800. When the keyed ends 830 of the shaft caps 822 and 824 are coupled to a housing (e.g., housing 702) so that the shaft caps 822 and 824 do not rotate with respect to the housing, the shaft 800 is still capable of rotating with respect to the housing by rotating with respect to the shaft caps 822 and 824. When a film roll is loaded on the shaft 800 and the film is unwound from the roll, the shaft 800 will rotate with respect to the shaft caps 822 and 824. The friction between the shaft 800 and the shaft caps 822 and 824 will resist the rotation of the roll, resulting in tension in the film unwound from the roll. In the embodiments where the force applied by the biasing mechanism 836 is substantially constant, the friction between the shaft 800 and the shaft caps 822 and 824 is also substantially constant. In this way, the tension induced in the film by the shaft assembly 820 can be substantially constant.
Depicted in
As described above, the shaft assembly 820 can be used to hold a supply roll of film in a film inflation system to induce tension in the film as the film is fed from the roll to the film inflation system. Depicted in
In
In
The supply roll 882 has been loaded onto end caps 888 and 890. The end cap 888 is configured to be inserted into one end of the hollow bore of the core 886 and the end cap 890 is configured to be inserted into the other end of the hollow bore of the core 886. In some embodiments, a material and/or thickness of the core 886 is selected so that the core 886 does not deform from the weight of the film 884, when the core 886 is placed on the end caps 888 and 890. In some embodiments, the end caps 888 and 890 are made from a rigid material, such as a rigid plastic material, a metal material, and the like.
The end caps 888 and 890 can be placed on the supply roll 882 before the supply roll 882 and the end caps 888 and 890 are loaded onto the supply roll 882. After the end caps 888 and 890 are placed on the supply roll 882, the supply roll 882 and the end caps 888 and 890 can be slid onto the shaft 800. In the depicted embodiment, the end cap 888 can be slid onto the right end (as seen in
With the supply roll 882 and the end caps 888 and 890 loaded on the shaft assembly 820, the shaft assembly 820 can be placed into the housing 702 of the film inflation system 700. In some embodiments, the shaft assembly 820 is placed into the housing 702 of the film inflation system 700 by sliding the keyed ends 830 of the shaft caps 822 and 824 through the slots 740 and 742, respectively, until the shaft assembly 820 is in the position depicted in
With the shaft assembly 820 placed into the housing 702 of the film inflation system 700, the film 884 can be withdrawn from the supply roll 882 to supply the film 884 to the film inflation assembly. For example, the film 884 can be fed from the supply roll 882 to the roller assembly 712 and the roller assembly 712 can feed the film 884. As the film 884 is withdrawn from the supply roll 882, the withdrawing of the film 884 will cause the supply roll 882 to rotate with respect to the housing 702. The rotation of the supply roll 882 causes corresponding rotation of the end caps 888 and 890. The rotation of the end caps 888 and 890 causes corresponding rotation of the shaft 800. The shaft 800 will rotate with respect to the shaft caps 822 and 824, which do not rotate with respect to the housing 702. The inward forces of the shaft caps 822 and 824 on the shaft 800—due to the effect of the biasing mechanism 836 on the shaft caps 822 and 824—causes friction between the shaft 800 and the shaft caps 822 and 824, which resists the rotation of the shaft 800. The resistance of the rotation of the shaft 800 with respect to the shaft caps 822 and 824 induces tension in the film 884 that is being pulled from the supply roll 882. In embodiment where the inward forces of the shaft caps 822 and 824 on the shaft 800 are substantially constant (e.g., when the biasing mechanism 836 is a constant force spring), the tension induced in the unwinding film 884 is substantially constant.
The shaft assembly 820 and the supply roll 882 can be used with multiple supply rolls of film, including supply rolls of different size. For example, the shaft assembly 820 can be removed from position in the housing 702 shown in
After the end caps 888 and 890 are placed on the supply roll 892, the supply roll 892 and the end caps 888 and 890 can be slid onto the shaft 800. In the depicted embodiment, the end cap 888 can be slid onto the right end (as seen in
With the supply roll 892 and the end caps 888 and 890 loaded on the shaft assembly 820, the shaft assembly 820 can be placed into the housing 702 of the film inflation system 700. In some embodiments, the shaft assembly 820 is placed into the housing 702 of the film inflation system 700 by sliding the keyed ends 830 of the shaft caps 822 and 824 through the slots 740 and 742, respectively, until the shaft assembly 820 is in the position depicted in
With the shaft assembly 820 placed into the housing 702 of the film inflation system 700, the film 894 can be withdrawn from the supply roll 892 to supply the film 894 to the film inflation assembly. For example, the film 894 can be fed from the supply roll 892 to the roller assembly 712 and the roller assembly 712 can feed the film 894. As the film 894 is withdrawn from the supply roll 892, the withdrawing of the film 894 will cause the supply roll 892 to rotate with respect to the housing 702. The rotation of the supply roll 892 causes corresponding rotation of the end caps 888 and 890. The rotation of the end caps 888 and 890 causes corresponding rotation of the shaft 800. The shaft 800 will rotate with respect to the shaft caps 822 and 824, which do not rotate with respect to the housing 702. The inward forces of the shaft caps 822 and 824 on the shaft 800—due to the effect of the biasing mechanism 836 on the shaft caps 822 and 824—causes friction between the shaft 800 and the shaft caps 822 and 824, which resists the rotation of the shaft 800. The resistance of the rotation of the shaft 800 with respect to the shaft caps 822 and 824 induces tension in the film 894 that is being pulled from the supply roll 892. In embodiment where the inward forces of the shaft caps 822 and 824 on the shaft 800 are substantially constant (e.g., when the biasing mechanism 836 is a constant force spring), the tension induced in the unwinding film 894 is substantially constant.
One difference between the supply roll 882 and the supply roll 892 depicted in
For purposes of this disclosure, terminology such as “upper,” “lower,” “vertical,” “horizontal,” “inwardly,” “outwardly,” “inner,” “outer,” “front,” “rear,” and the like, should be construed as descriptive and not limiting the scope of the claimed subject matter. Further, the use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. Unless stated otherwise, the terms “substantially,” “approximately,” and the like are used to mean within 5% of a target value.
The principles, representative embodiments, and modes of operation of the present disclosure have been described in the foregoing description. However, aspects of the present disclosure which are intended to be protected are not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. It will be appreciated that variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present disclosure. Accordingly, it is expressly intended that all such variations, changes, and equivalents fall within the spirit and scope of the present disclosure, as claimed.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/018502 | 2/17/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/172094 | 8/27/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1931314 | Bowman | Oct 1933 | A |
2059267 | Nichols | Nov 1936 | A |
4582273 | Saraisky | Apr 1986 | A |
6800162 | Kannankeril et al. | Oct 2004 | B2 |
6982113 | Kannankeril et al. | Jan 2006 | B2 |
7018495 | Kannankeril et al. | Mar 2006 | B2 |
7223461 | Kannankeril et al. | May 2007 | B2 |
7507311 | O'Dowd | Mar 2009 | B2 |
7807253 | Kannankeril | Oct 2010 | B2 |
9004392 | Bigbee, Jr. | Apr 2015 | B1 |
9376280 | Page | Jun 2016 | B2 |
9701091 | Page | Jul 2017 | B2 |
11383476 | Wagner | Jul 2022 | B2 |
20100084503 | Burgess | Apr 2010 | A1 |
20140027553 | Page et al. | Jan 2014 | A1 |
20160288484 | Coussens et al. | Oct 2016 | A1 |
20180236742 | Cheich | Aug 2018 | A1 |
20180281336 | Cheich | Oct 2018 | A1 |
20200016860 | Cheich | Jan 2020 | A1 |
20200239259 | Page | Jul 2020 | A1 |
20210129477 | Wagner | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2019032447 | Feb 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20220135359 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62809006 | Feb 2019 | US |